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Abstract

With the rapid advancement of large language
models (LLMs) for handling complex language
tasks, an increasing number of studies are em-
ploying LLMs as agents to emulate the sequen-
tial decision-making processes of humans often
represented as Markov decision-making pro-
cesses (MDPs). The actions in MDPs adhere
to specific probability distributions and require
iterative sampling. This arouses curiosity re-
garding the capacity of LLM agents to compre-
hend probability distributions, thereby guiding
the agent’s behavioral decision-making through
probabilistic sampling and generating behav-
ioral sequences. To answer the above question,
we divide the problem into two main aspects:
sequence simulation with explicit probability
distribution and sequence simulation with im-
plicit probability distribution. Our analysis in-
dicates that LLM agents can understand proba-
bilities, but they struggle with probability sam-
pling. Their ability to perform probabilistic
sampling can be improved to some extent by
integrating coding tools, but this level of sam-
pling precision still makes it difficult to simu-
late human behavior as agents.

1 Introduction

With the rapid development of artificial intelli-
gence technology, large language models (LLMs),
as a key component, have demonstrated powerful
language understanding and generation capabili-
ties (Zhao et al., 2023; Kojima et al., 2022). In
addition to language generation, people have be-
gun to explore the field of introducing LLMs into
the decision-making process, such as simulating
human sequential decision-making processes as an
agent, and LLM agents have gradually shown their
excellent potential in simulating human behaviors
and decision-making (Li et al., 2023; Gao et al.,
2023; Leng and Yuan, 2024; Brand et al., 2023;
Horton, 2023). This brings great convenience to
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research in fields such as computer science, behav-
ioral science, psychology, and sociology. For ex-
ample, the core conversational robots (Zhou et al.,
2024b) and the social robots of LLMs can more
realistically simulate human speech and behavior.
LLM agents have shown promising results in var-
ious tasks that simulate human behavior (Taylor
et al., 2022; Yuan et al., 2022; Aher et al., 2023;
He et al., 2024). However, whether LLM agents
can effectively simulate human behavior sequences
remains an open question and requires careful vali-
dation.

Human behavior can often be effectively mod-
eled using Markov decision processes (MDPs). Nu-
merous studies have applied this framework to
simulate human behaviors such as planning (Call-
away et al., 2017; Guojiang et al., 2007; Redding
et al., 2012). In MDPs, sequences of actions fol-
low a specific probability distribution. Similarly,
human behavior sequences also adhere to proba-
bilistic distributions (Yan et al., 2012; Hu and Han,
2008; Tenorth et al., 2013). An LLM-based agent
should generate actions that match a probability
distribution if it truly simulates human behavior.
But can LLM agents do this? To explore this
issue, we analyze the probability distribution
of action sequences generated by LLM agents.
Language models have been extensively evaluated
in various aspects (Liang et al., 2023), and they
are capable of probabilistic reasoning (Paruchuri
et al., 2024), but there is less research on their
understanding and sampling of probability distri-
butions. Therefore, our study focuses on under-
standing and sampling the probability distribution
of actions by LLM agents, without setting up other
parts of MDPs in detail.

Figure 1 illustrates our approach to assessing
LLM’s understanding and sampling capabilities
of probability distributions. We outline two tasks
of varying complexity: simulating scenarios with
explicit probability distributions and generating se-
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Figure 1: The decision-making process of the LLM agent is a MDP, and the generated action sequence A conforms
to a certain probability distribution. We input Prompt1 for the explicit probability distribution and Prompt2 for
the implicit probability distribution, analyze the probability distribution PD, of A generated by the LLM agent,
and finally evaluate the behavioral simulation capability of the LLM agent.

quences with probability distribution is not clear.
More specifically, explicit probability distributions
usually refer to probability distributions that we
can express explicitly, usually described by for-
mulas, parameters, or specific probability density
functions (such as the normal distribution). Im-
plicit probability distributions do not have an ex-
plicit mathematical representation and are usually
defined indirectly through a generative process or
model. As shown in the figure 2, in the first sce-
nario, we propose questions about explicit probabil-
ity distributions. Using these questions to prompt
LLM agents for probability sampling, we analyze
the content generated by LLM agents. However,
obtaining an accurate probability distribution is
often challenging in practical scenarios. There-
fore, we explore sequence generation in situations
where the probability distribution is implicit. On-
line social networks are increasingly used in real-
life scenarios (Sakaki et al., 2013; Panzarasa et al.,
2009), so we use these networks as contextual back-
ground. By observing varying user activity levels
corresponding to different behavior sequences gen-
erated by LLM agents, we indirectly assess the
rationality of the sequences sampled. Ultimately,
we instruct LLM agents to sample from probability
distributions by generating code, in order to eval-
uate whether programming tools can assist LLM
agents in improving their sampling success rate.

Our analysis suggests that LLM agents under-
stand probability distributions, but their perfor-
mance in sampling sequences adhering to prob-

ability distributions are limited. However, when
coupled with programming tools, LLM agents can
achieve higher success rates in sampling explicit
distributions by invoking appropriate functions.
However, their abilities to sample from complex
and implicit probability distributions remain weak.
Consequently, prudent consideration is necessary
before employing LLM directly to simulate human
behavior.
Our main contributions are as follows.

* Explore the ability of the LLM agent to un-
derstand and sample probability distributions
from both the perspectives of explicit and im-
plicit probability distributions.

* An idea of using programming tools to assist
sampling is proposed is effective in explicit
probability distributions.

* Our experimental results reveal the limitations
of LLM agents in terms of probability distri-
butions when simulating human behavior.

2 Background
2.1 MDPs of Human Behavior

The modeling of human behavior in MDPs could in-
clude the following aspects (Tan and Cheng, 2009):

Human behavior can be understood as transitions
between different states of state space (S), which
may include emotional states, social identities, and
more. In each state, humans can choose from a
series of possible actions or decisions of action
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Figure 2: Examples of our experiments under a explicit
probability distribution and an implicit probability dis-
tribution.

space (A). These actions lead to state changes with
certain probabilities, represented by the state tran-
sition probability P. Human behavior is driven by
rewards and punishments, described by the reward
function R. To maximize benefits, humans adopt
various strategies, captured by a policy 7, which
maps the probability of taking action « in state s.

Humans have long-term goals like life satisfac-
tion or career achievement, while the objective in
an MDP is to find a policy 7 that maximizes the
expected cumulative reward.

Based on the above discussion, human behavior
can usually be regarded as conforming to a cer-
tain probability distribution. Given characteristics,
there is a defined probability distribution (Viti et al.,
2015). Some simple behaviors conform to common
probability distributions (Yan et al., 2012; Hu and
Han, 2008; Wang et al., 2011). Additionally, many
real-world human behaviors may be complex and
composed of multiple distributions (Tenorth et al.,
2013; Sorensen et al., 2017).

Human behavior can be modeled as MDPs,
where actions in MDPs can be interpreted as be-

haviors that follow a series of probability distribu-
tions (Korthikanti et al., 2010). If LLM agents can
accurately simulate human behavior, the sequences
of behaviors they generate should align with these
probability distributions.

2.2 Large Language Models as Agent

In recent years, with the rapid development of
LLM, more and more studies have discovered the
great potential of LLLM agents in simulating user-
generated behaviors. Behavior simulation can gen-
erate user research data and facilitate research in
recommendation systems, human-computer inter-
action, social science research, etc. (Himaéldinen
et al., 2023; Kim and Lee, 2023; Li et al., 2023).
Many studies have shown that LLM agents can ex-
hibit certain social behavior capabilities, simulate
individuals, and imitate human behavior (Gao et al.,
2023; Leng and Yuan, 2024).

In addition to the analysis and research on the
human-like behavior of LLM agents in various
fields, owing to the complexity of human think-
ing and their outstanding learning and tool usage
abilities, several studies (Yao et al., 2023; Schick
et al., 2023; Shinn et al., 2023; Zhou et al., 2024a)
have designed an agent framework with LLMs as
the core. This framework provides LLMs with
additional modules such as profile management,
reasoning, and tool usage, enabling more accurate
simulation of human speech and behavior.

Simulating human behavior is challenging for
artificial intelligence due to its complexity, and the
capability of LLLM agents to do so through proba-
bility distribution is still being explored.

3 Verification Methodology

We analyzed the relationship between human be-
havior and MDPs, focusing on probabilistic char-
acteristics, and decided to study the probability dis-
tribution understanding and sampling capabilities
of LLM agents. To determine if LLMs can effec-
tively sample actions, we designed experiments to
address the following four research questions:

RQ1: Can LLM agents understand probability
distributions?

RQ2: Can LLM agents sample simple explicit
probability distributions?

RQ3: Can LLM agents sample complex implicit
probability distributions?

RQ4: Can LLM agents improve their proba-
bility distribution sampling ability by combining
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programming tools?

To verify these issues, we evaluated LLMs on
explicit and implicit behavioral probability distri-
butions and used code tools to explore their proba-
bility distribution sampling ability.

3.1 Explicit Probability Distribution

To verify RQ1 and RQ2, we compared the expected
probability distribution with the distribution of gen-
erated sequences using hypothesis testing.

3.1.1 Experimental Design

Firstly, given a question prom like Promptl in Fig-
ure 2 containing state s, the sequence of actions
x in the question theoretically conforms to an ex-
act probability distribution PD(z | s). We ask
the LLM agent to predict a sequence of actions
a according to the prom. Our expectation is as
follows.

PD(a|s)=PD(z|s) (1)

For instance, based on the average math scores
from the last semester, we ask LLM agents to pre-
dict the future scores which conform to normal
distribution, as illustrated in Figure 2.

promp

prom + What probability distribution does
this sequence conform to

Table 1: prom p in experiments with explicit probability
distributions.

Secondly, leveraging the improvement to LLMs
through the chain of thought (CoT) approach, we
add "what probability distribution does this se-
quence conform to" to prom, resulting in promp
as Table 1 shows. This guide the LLM agents
to identify the name of probability distribution to
further explore the probability distribution under-
standing and sampling capabilities of LLM agents.

We also extract the type of the probability distri-
bution from the LLM agents’ answers to verify if
they can understand probability distributions.

3.1.2 Evaluation Metrics

We design evaluation metrics to assess the proba-
bility distribution understanding and sampling ca-
pabilities of LLLM agents.

Firstly, considering the name of probability dis-
tribution answered by LLM agents, unanswered

and incorrect answers are treated as negative sam-
ples. Only correct answers are treated as positive
samples. The ratio of positive samples to total
samples RP is calculated to evaluate the LLM’s
understanding of probability distributions.
Secondly, to evaluate the LLMs’ performance
in sampling the probability distribution PDx, we
employ Kolmogorov-Smirnov test (KS test) (Jr.,
1951). The statistic D is used to assess whether two
samples come from the same distribution. It com-
pares the empirical distribution functions F,(z)
and G,(z), from PDx and PD 4 respectively,
where the empirical distribution function represents
the proportion of samples less than or equal to x.

D:Sup‘Fm(SL‘) _Gn(x)|7 (2)

where sup,, denotes the supremum over all possi-
ble values of x. Then, we assess the fit between the
sample sequence and the target probability distri-
bution using the mean p-value p from the KS test.
When the p-value is greater than the significance
level o, the test is considered to have passed, and
the rate of test pass is denoted as RT'.

Additionally, the p is obtained on the p-value af-
ter outlier processing. Since the calculated average
value is easily affected by outliers, the interquartile
range (IQR) outlier detection method was used to
detect outliers in the experimental data and replace
them with the median. In IQR outlier detection,
the interquartile range 7 is the distance between the
upper quartile ()3 and the lower quartile Q1. The
normal value interval is [Q1 — 1.5, Q3 + 1.57],
and other values are considered outliers.

3.2 Implicit Probability Distribution

To address RQ3, we evaluated the simulation capa-
bility of LLM agents using online social networks
as the background through comparative analysis.

3.2.1 Experimental Design

In online social network platforms, user activity
level [ represents the user’s level of activity on
the platform and affects users’ behavior or actions.
Compared to low-activity-level users, high-activity-
level users frequent social platforms more often,
post more comments, browse more posts, and are
more likely to like and comment on the posts they
browse. We call this rule R. Therefore, even
though the probability distribution of these behav-
iors is unknown, a comparative analysis of the prob-
ability distributions of sampled results with differ-
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ent [ can help determine whether the user action
sequences generated by LLM agents adheres to R.
We set the [ as states s in the prompt prom;
like Prompt2 in Figure 2, along with six activity
indicators that are directly proportional to the level
of activity. These indicators include active behav-
ior indicators and interactive behavior indicators.
We use prom; to prompt LLM agents to generate
the sequence of actions a. Our expectation is that
PD(a | s) follows the same R as PD(z | s).

PD(als),PD(z|s)~TR, ()

where PD(a | s) represents the probability dis-
tribution of action sequence a generated by LLM
agents under state s, while PD(x | s) represents
the probability distribution of theoretical action se-
quence x under state s.

See Appendix A.1.2 for the full prompts used in
this experiment. The ability of LLMs to simulate
user behavior sequences is analyzed by comparing
the generated results across different values of /.

3.2.2 Evaluation Metrics

For active behavior indicators, we compare the re-
sults generated by LLM agents. Taking active be-
havior indicator “browsing duration” as an exam-
ple, browsing duration increases with activity level.

For interactive behavior indicators, we observed
contradictory responses from LL.Ms. When LLM
agents were tasked with generating binary se-
quences of whether to take action, the proportion
of actions taken in actual binary sequences is incon-
sistent with the proportion reported by LLM agents.
Therefore, we adopt a more fine-grained propor-
tion of actions taken in actual generated sequence
to represent the frequency of actions. Take inter-
active behavior indicators “likes” as an example,
Si = {bo,b1,bay ... ,bp,—2,bpn, 1, by, } represents
the like sequence sampled by LLM agents when
[ = l;. Here, n; is the length of the sequence, b;
represents the j-th element in the sequence, and
the value of b; is 1 or 0, indicating like or not like,
respectively. As [ increases, so does the frequency
of likes. Therefore,

cl/nl < CQ/TLQ < Cg/ng

4
sty <y <3, @)

where c; represents the proportion of 1s in S;.

For the experimental group that meets the above
conditions, the simulation is considered successful.
All data combinations corresponding to different

activity levels are cross-checked to calculate the
simulation success rate RS.

3.3 Methods for Code Experiments

Experiments \ ProMmeode

explicit distribution | Directly give Python code to solve

the following problems: + promp.
implicit distribution | Directly give Python code to solve
the following problems: + prom;

Table 2: promceqe in code experiments.

In this section, our goal is to answer RQ4. Con-
sidering that LL.Ms have code generation capabil-
ities (Chen et al., 2021), action sequences can be
generated and sampled with the help of Python
tools. Therefore, we asked LLM agents to solve the
above problems by generating Python code through
Promeege in Table 2. After running codes, we used
the same method to obtain results.

In experiments with explicit distributions, LLM
agents are required to generate Python code based
solely on promp. The generated Python code is
considered correct if the appropriate probability dis-
tribution sampling function is called, and there are
no other code errors. In other cases, the code is con-
sidered incorrect. Therefore, no further KS test is
required. The code accuracy is represented by RC'.
In the experiment of implicit probability distribu-
tions, prom.qe requires the LLM agent to generate
Python code. After running the Python code, the
results are analyzed using the same method as in
the previous experimental method.

4 Experiment

Based on the four questions we raised in Section 3
and the previous validation methods, in this sec-
tion, we will introduce our experimental setup and
present the experimental results in sequence.

4.1 Experimental Setups

4.1.1 Explicit Probability Distribution

We select the following probability distributions.
See the Appendix A.1.1 for prom on each distribu-
tion. The Poisson distribution describes the number
of events occurring within a fixed interval of time
or space. The Uniform distribution describes a
situation where all possible values have equal prob-
ability. The Normal distribution describes data
that are symmetrically distributed around the mean.
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Experiments Metrics Meanings

RP the rate of agents that can correctly answer the probability distribution
Explicit distribution ~ RT the rate of the K test that accepts the hypothesis
the mean p-value of the KS test
the simulation success rate
the code simulation accuracy

P
Implicit distribution RS
Code experiment RC

Table 3: Evaluation metrics in experiments

The Exponential distribution describes the time
intervals between events in a Poisson process, char-
acterized by a constant event rate. The Binomial
distribution describes the number of successes in a
fixed number of independent trials, each with the
same probability of success.

4.1.2 Implicit Probability Distribution

In this part of the experiment, we selected three
activity levels: 0.2, 0.5, and 0.8, with the maximum
activity level set at 1.0. For the activity indicators,
we chose the duration of browsing, the number of
visits to the social platform, the number of posts in
a day, and the likes, reposts, and comments on 100
posts. The values of these indicators will increase
as activity level increases.

4.1.3 Evaluation metrics

In this section, we summarize the evaluation met-
rics used in the experiment as shown in Table 3.

4.1.4 Models

Five large language models were selected for
the experiment of explicit distributions: GPT-
4 (Achiam et al., 2023), GPT-3.5 (GPT-3.5), Claude
2.1 (Bai et al., 2022), Llama2 (Touvron et al.,
2023), and Vicuna (Chiang et al., 2023). Build-
ing on this foundation, four additional LLMs were
included for the experiment of implicit distribu-
tions: ERNIEBot (ERNIE Bot), ChatGLM (Du
et al., 2021), Gemini (Team et al., 2023), and Mix-
tral (Jiang et al., 2024). Given the complexity of
implicit distributions and the diversity among mod-
els, we conducted more extensive experiments.

4.1.5 Hyperparameter

The hyperparameter temperature of the LLMs is set
to 0.9. The model will consider more possibilities
when generating text, rather than just selecting the
words with the highest probability. Our experiment
hopes that the behavior sequences generated by the
LLMs will be more diverse, rather than always the
same. We explore whether the diverse sequences
follow a unified probability distribution rule.

The significance levels commonly used in the
ks test are 0.05 and 0.01, and we use the latter

Probability Distribution

Prompts Method
Poisson Uniform Normal Exponential Binomial
one-step  7.0B-21 7.4E-03  1.6E-03 5.8E-33 1.6E-13
Prom - multi-step 2.1E-41 8.5E-03 9.7E-23 5.8E-33 2.6E-01
one-step  8.5E-09 32E-03 4.0E-03 5.8E-33 6.5E-08
PrOMD - hiltistep  2.1E-41 8.6E-03  3.0E-39 1.6E-13 1.3E-03

Table 4: Comparison of the p of different methods for
GPT-3.5 under prom and promp. The larger the p, the
better the model simulation.

in our experiment. The sample size of our KS
test is large (100). When the sample size is large,
even small differences may be significant, so a
smaller significance level can be used to avoid over-
interpreting small differences.

4.2 Preliminary experiment

When instructing LLM agents to generate se-
quences, we compared the multi-step method with
the one-step method, as shown in Table 4. In the
multi-step method, the behavior sequence is formed
by generating one action at a time in the same con-
text, repeating it 100 times. While in the one-step
method, the behavior sequence is formed by gen-
erating a complete sequence of length 100 at once.
During the text generation process by LLMs, the
prefix that has already been generated is taken into
account. And One-step method generally yields
similar or better results compared to multi-step
method, except in the case of Binomial distribution.
Moreover, the majority of results from both meth-
ods did not achieve the level of statistical signifi-
cance. Therefore, considering both effectiveness
and efficiency, we opt for the one-step method.

4.3 Experimental Results

The LLM’s probability distribution sampling abil-
ity was evaluated in the following four aspects.
Examples of LLM’s answers in the experiment are
shown in Appendix A.2. Experimental results re-
veal that LLM agents exhibit a remarkable capacity
to identify explicit probability distributions from
contextual clues. However, their ability to sample
from distributions is limited, though it improves
with the application of the CoT method or the inte-
gration of code tools. Despite these advancements,
significant challenges persist, particularly with im-
plicit distributions, where task complexity hampers
their ability to generate reasonable outcomes. In
addition, we found that the length of sequences
generated by LLM agents is usually inconsistent
with the instructions, which also indicates that their
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Probability Distribution

Models Metrics

Poisson  Uniform Normal Exponential Binomial

p 70E21  74E-03 1.6E-03 5.8E-33 1.6E-13
GPT35  pp 0% 5% 25% 0% 0%
- » 65E-08 4.6E-03 LIE-02 6.5E-09 2.9E-03
RT 0% 0% 0% 0% 30%
» 5.1E56  12E-02  93E-03 1.2E-10 2.2E-06
Clavde 2.1 o, 0% 45% 5% 0% 0%
Uamaz P 33E-115 7.8E-17  92E-10 00 2.5E-05
RT 0% 0% 0% 5% 0%
Viewna ™ 1.8E-57 1.6E-204 7.IE-03 1.1E-46 3.8E-04
RT 0% 5% 50% 0% 15%

Table 5: The p and the RT when the distribution is
explicit and the prompt is prom. Bold data indicates
the model with the largest p on this distribution.

Probability Distribution

Models Metrics
Poisson Uniform Normal Exponential Binomial

. P 8.5E-09 3.2E-03 4.0E-03 5.8E-33 6.5E-08
GPT-3.5 RT 0% 0% 50% 0% 20%
GPT-4 p 6.5E-08 3.2E-03 3.4E-03 6.5E-09 1.5E-02

RT 0% 0% 20% 0% 40%

. P 6.5E-06 1.1E-02 5.6E-02 1.2E-10 2.3E-04
Claude2.1 . 0% 55% 5% 0% 10%
Llama2 p 8.8E-46 1.0E-08 1.6E-07 7.8E-38 1.6E-02

RT 0% 0% 10% 0% 50%
Vicuna P 2.2E-31 1.6E-09 5.8E-03 2.2E-123 3.9E-10
RT 0% 0% 25% 0% 10%

Table 6: The p and the RT when the distribution is
explicit and the prompt is promp. Bold data indicates
the model with the largest p on this distribution.

simulation capabilities are insufficient.

4.3.1 Understanding of Probability
Distributions

If LLM agents can identify the probability distribu-
tion PDx that a random variable conforms to, it
reflects LLM agents’ ability to understand proba-
bility distributions concerning question RQ1.

As depicted in Figure 3, when LLM agents are
not required to answer probability distributions,
except for the Poisson distribution of GPT-4, and
the Exponential distribution of GPT-3.5, GPT-4,
and Claude2.1, LLM agents rarely take the initia-
tive to answer the question of what distribution it
conforms to. However, this does not imply that
they do not know the PDx. In the promp sce-
nario, except for partial distributions of Vicuna and
Llama?2, the R P of other models is higher, reaching
more than 80%. Similar results were observed in
the promqqe experiment. This demonstrates that
LLMs have a certain ability to understand prob-
ability distributions and can infer the probability
distribution based on the questions, although the
RP of Vicuna is lower than other models.

4.3.2 Sampling from A Explicit Probability
Distribution

In this section, we answered question RQ2. In ex-
periments where the prompt is prom, the Poisson
distribution experiment of GPT-4, and the Expo-
nential distribution experiment of GPT-3.5, GPT-4,
and Claude2.1, the LLM agents could answer the
distribution. Therefore, in these four groups of ex-
periments, we reused the data from the experiment
where the prompt is promp.

As shown in Table 5 and Table 6, from the per-
spective of RT’, most models can achieve the high-
est test pass rate on the Normal distribution, while
the RT on other probability distributions is lower,
and in many cases the RT is 0%. Judging from
the p, the simulation performance of all models
on Normal, Uniform, and Binomial distribution is
much higher than on the Exponential and Poisson
distribution.

At the same time, during our experiments, we
found that the Vicuna model often incorrectly an-
swered questions about other distributions as Nor-
mal distributions. We speculate that the reason
for this phenomenon may be that there is more
data consistent with the Normal distribution in the
LLMs training data, while there is less data for
Exponential and Poisson distribution.

Additionally, we found that experiments using
promp result in a larger p value compared to those
using prom. This suggests that this method can
enhance the distribution sampling ability of LLM
agents, although the p-value often fails to reach a.

Therefore, we conclude that while LLM agents
lack the ability to sample from explicit probabil-
ity distributions, CoT method can be employed to
enhance their performance.

4.3.3 Sampling from An Implicit Probability
Distribution

For different activity levels [, the RS is calculated
based on various activity indicators to measure
the rationality of the behavior simulated by LLM
agents when the probability distribution is implicit
concerning question RQ3.

As seen in Figure 4, most R.S of various models
are less than 30%, especially Llama2, ERNIEBot,
ChatGLM, and Gemini, with an average RS of
only slightly more than 10%. Furthermore, there
is significant performance variance among models
under different activity indicators, indicating that
most of the sampling results of implicit probability
distributions by LLM agents do not meet the re-

5381



100%
80%
60%
a.
o
40%
o kit Lyl

£ o g € a ) €
o £ kS ) £ 3 S
Q o b o o e Q
s £ s £
s s
GPT-3.5 GPT-4

> & € © & E o g
€ o] o I o o c o]
S z e S L = S i
S £ s € a €
o [ e
Q. o [oN
Claude2.1 Llama2 Vicuna

B Possion B Uniform = Normal B Exponential ® Binomial

Figure 3: Comparison of the R P of different prompts for each LLM agent under different probability distributions

100.0%
M Duration
80.0% .
M Sessions
60.0% Likes
%]
x W Shares
40.0%
B Comments
20.0% II I I I | I I I I M Posts
S T T . T
GPT-3.5 GPT-4 Claude2.1 Llama2 Vicuna ERNIEBot ChatGLM Gemini  Mixtral
100.0%
80.0% M Duration
e M Sessions
T 60.0% Likes
% 40.0% W Shares
] .0% B Comments
20.0% I II I I I I II H Posts
0o N ||| I [ T T T

GPT-3.5 GPT-4 Claude2.1 Llama2

Vicuna

ERNIEBot ChatGLM Gemini  Mixtral

Figure 4: Comparison of the RS of prom; and prom.,q. for each LLM agent under implicit probability distributions.
"Duration" is the browsing duration, "Sessions" is the number of visits to the social platform, "Likes" is the proportion
of likes, "Reposts" is the proportion of forwarding, "Comments" is the proportion of comments, and "Posts" is the

number of posts.

Probability Distribution

Models

Poisson Uniform Normal Exponential Binomial
GPT-3.5 100% 100% 100% 75% 100%
GPT-4 100% 100% 100% 100% 100%
Claude 2.1 75% 100% 95% 100% 100%
Llama2 5% 100% 65% 0% 55%
Vicuna 15% 40% 65% 10% 65%

Table 7: In the case of explicit probability distribution,
the RC of each model on the probability distribution by
generating Python code.

quired conditions, and LLM agents lack the ability
to sample implicit probability distributions.

4.3.4 Probability Distribution Sampling
Combined with Code Tools

In this section, we answered question RQ4. In the
code experiment, prom..q. leads LLM agents to
generate Python code, and the results are obtained
by running the Python code.

In experiments with explicit probability distri-
butions, it can be seen from Table 7 and Figure 3
that the RC' and the RP of GPT-3.5, GPT-4, and
Claude?2.1 have reached nearly 100% in most prob-
ability distributions, while Llama2 and Vicuna do
not perform well. But overall, there has been signif-
icant improvement in sampling explicit probability
distributions through Python code.

In the experiment with implicit probability dis-
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tributions, the running results of the code were
statistically evaluated in the same way. As shown
in Figure 4, we found that combining code tools
cannot improve the implicit probability distribution
sampling ability of LLM agents, and the RS of
each model is still low. Moreover, during the exper-
iment, we found that most LLM agents use code
to randomly generate results without considering
. We speculate that because the problem of im-
plicit probability distribution is relatively complex,
and there is no suitable Python tool function that
can directly generate results, LLM agents still need
to generate code through their own reasoning and
then obtain results through the code. Unlike the
problem of explicit probability distribution, where
they only need to reason about the correct proba-
bility distribution and parameters, they can usually
get the correct code. When reasoning skills are still
lacking, it is difficult to generate better code.

5 Conclusion

This paper evaluates the reliability of LLM agents’
behavior simulations from the perspective of novel
probability distributions. We explore their capabili-
ties through KS tests of explicit distributions and
evaluations of implicit distributions. Our findings
indicate that while LLM agents can understand of
probability distributions, their sampling abilities
are insufficient. Consequently, it is challenging
to generate behavior sequences that conform to
specific distributions solely with LLMs. This lim-
itation may arise from the probabilistic nature of
LLMs’ word prediction, which results in a layered
probability distribution. Even with programming
tools, improving sampling performance for implicit
distributions remains difficult. Due to the proba-
bilistic nature of actions in MDPs, without effective
sampling capabilities, LLM agents struggle to sim-
ulate human behavior accurately. Future work will
focus on enhancing the LLM agent’s probability
distribution sampling abilities to improve behav-
ioral simulations.

Limitations

Due to resource limitations, some experiments lack
comprehensive evaluation. For example, when
comparing the similarity between multi-step gen-
erated sequences and sequences containing 100
digits generated at once, only the GPT-3.5 model
was evaluated.

Additionally, the experiment in this article is

based on prompt engineering and faces issues of in-
stability. Before conducting experiments, we com-
pared various prompts and selected those that were
relatively better and elicited better responses from
the LLM. Future work will further address this
issue by developing more diverse prompts and en-
hancing the robustness of evaluations.
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A Appendix
A.1 Prompts

We guide LLM agents to generate sequences
through prompts. The prompts used in the experi-
ment are as follows.

A.1.1 Prompts for Explicit Probability
Distributions

This section shows the prompts for explicit proba-

bility distributions. Table 8 is prom and Table 1 is

promp.

A.1.2 Prompts for Implicit Probability
Distributions

This section shows the prompts for implicit prob-
ability distributions. Table 9 is the template of
prom,.

5385


https://doi.org/10.1109/R10-HTC.2013.6669048
https://doi.org/10.1109/R10-HTC.2013.6669048
https://doi.org/10.1109/R10-HTC.2013.6669048
https://proceedings.neurips.cc/paper_files/paper/2023/file/d842425e4bf79ba039352da0f658a906-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/d842425e4bf79ba039352da0f658a906-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/1b44b878bb782e6954cd888628510e90-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/1b44b878bb782e6954cd888628510e90-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/1b44b878bb782e6954cd888628510e90-Paper-Conference.pdf
https://doi.org/10.1016/j.jretconser.2017.02.003
https://doi.org/10.1016/j.jretconser.2017.02.003
https://api.semanticscholar.org/CorpusID:17945778
https://api.semanticscholar.org/CorpusID:17945778
https://api.semanticscholar.org/CorpusID:17945778
https://arxiv.org/abs/2211.09085
https://arxiv.org/abs/2312.11805
https://arxiv.org/abs/2312.11805
https://doi.org/10.1109/ICRA.2013.6631222
https://doi.org/10.1109/ICRA.2013.6631222
https://doi.org/10.1016/j.physa.2011.02.026
https://doi.org/10.1016/j.physa.2011.02.026
https://doi.org/10.1016/j.physa.2011.08.038
https://doi.org/10.1016/j.physa.2011.08.038
https://doi.org/10.1016/j.physa.2011.08.038
https://arxiv.org/abs/2210.03629
https://arxiv.org/abs/2210.03629
https://doi.org/10.1145/3490099.3511105
https://doi.org/10.1145/3490099.3511105
https://arxiv.org/abs/2303.18223
https://arxiv.org/abs/2403.19275
https://arxiv.org/abs/2403.19275
https://arxiv.org/abs/2311.07445
https://arxiv.org/abs/2311.07445
https://arxiv.org/abs/2311.07445

Probability distributions | prom

Poisson distribution In the past, an average of 3 babies were born
per hour. Estimate the number of babies born
per hour 100 times in the future. List these 100
numbers (duplicates are allowed), separated
by commas.

Uniform distribution Simulate 100 rolls of the dice and list the 100
points separated by commas.

Normal distribution A classmate’s average score on the math test
last semester was 70 points. List his possible
scores on 100 math tests this year. List these
100 grades (can be repeated), separated by
commas.

Exponential distribution | Assume that a coffee shop has an average of
one customer coming in every ten minutes,
guess how long it will take to wait for the
next customer 100 times, and list these 100
numbers, separated by commas.

Binomial distribution Assume you have a 30% probability of answer-
ing "0" and a 70% probability of answering
"1". Please answer 100 times. All answers are
separated by commas.

Table 8: prom for different probability distributions in
experiments with explicit probability distributions.

A.2 Experimental Examples
A.2.1 Examples in Explicit Probability
Distributions Experiments

Some examples of LLM agents’ answers in explicit
probability distribution experiments are shown in
Figure 5.

A.2.2 Examples in Implicit Probability
Distributions Experiments
An example of LLM agents’ answer in the implicit

probability distribution experiments is shown in
Table 10.

A.2.3 Examples in Code Experiments

Some examples of LLM agents’ answers in the
code experiment are shown in Table 11 and Ta-
ble 12.
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promy

Please make sure to provide a simulated answer to the question, ignoring background informa-
tion about the social platform and the user. Assume you are a user on an online social platform,
with a user activity level of [[]. Please provide the total time spent browsing the platform during
idle time in a day (in minutes), the number of browsing sessions, and the number of posts made
by the user. Additionally, please provide a complete set of likes, shares, and comments on 100
posts (using 1 to represent likes, shares, and comments, and O to represent no likes, shares, and
comments, separated by commas).

Please strictly adhere to the following format for output:

Browsing Duration:

Number of Browsing Sessions:

Likes:

Shares:

Comments:

Number of Posts:

Below is an example of an answer:

Browsing Duration: 30

Number of browsing Sessions: 3

Likes: (a string of 100 Os and 1s, where 1 represents a like and O represents no like, separated
by commas)

Shares: (a string of 100 Os and 1s, where 1 represents a share and O represents no share,
separated by commas)

Comments: (a string of 100 Os and 1s, where 1 represents a comment and O represents no
comment, separated by commas)

Number of Posts: 3

Table 9: prom,; in implicit probability distribution experiments, where [ in [] represents different levels of activity.

An example answer of Claude2.1

Browsing Duration: 72

Number of Browsing Sessions: 6

Likes: 1,1,1,1,1,1,0,0,1,1,1,0,0,1,1,1,0,0,1,0,1,0,1,1,1,1,0,1,1,0,0,0,
1,0,0,0,0,0,1,0,0,0,1,1,0,1,1,0,0,1,1,0,0,0,0,1,0,0,1,0,0,0,1,1,1,0,0,0,

0,0,0,1,1,1,0,1,0,0,0,0,0,1,0,0,1,0,0,0,0,1,1,0,1,1,1,1,0,0,0,0,0,0,0,1,
0,1,0,1,1,1,0,1,0,0,0,0

Shares: 1,1,0,0,0,1,1,1,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,1,0,1,0,0,0,0,0,
1,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,1,0,0,1,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,
1,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0

Comments: 0,1,0,0,0,1,1,1,0,1,0,0,0,0,1,0,0,0,0,1,0,1,1,0,0,0,0,0,1,0,1,
1,1,1,1,0,0,1,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,1,1,1,0,0,0,0,0,
1,0,0,1,0,1,0,1,0,0,0,0,0,1,1,1,0,0,1,1,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,
1,0,0,1,1,0,0,0,1,1,1,0,0,1,0,0,0

o) -

Number of Posts:

Table 10: An example answer of Claude2.1 in experiments when the probability distribution is unknown.
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Figure 5: Some examples in explicit probability distributions experiments.The four pictures respectively represent
the frequency histograms of vicuna in the Binomial distribution, Claude in the Exponential distribution, GPT-4
in the Normal distribution, and llama in the Uniform distribution under prom. The red line represents the ideal
probability density function curve.
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An example answer of GPT-3.5

import random

def next_customer_wait_time():
# Average time between customers in minutes
average_time_between_customers = 10

# Generate random wait time following exponential distribution
wait_time = random.expovariate(1 / average_time_between_customers)
return wait_time

# Simulate waiting time for the next customer 100 times
waiting_times = [next_customer_wait_time() for _ in range(100)]

# Print the waiting times separated by commas
print(', '.join(map(str, waiting_times)))

Table 11: An example answer of GPT-3.5 in code experiments when the probability distribution is Exponential
distribution.
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An example answer of GPT-4

import random

# Constants

TIME_SPENT_BASELINE \text{=} 45

# Assume an average user spends 45 minutes a day
ACTIVITY_LEVEL = 0.2

NUM_POSTS = 100

# User-specific calculations

time_spent_browsing = TIME_SPENT_BASELINE * ACTIVITY_LEVEL
number_of_sessions = random.randint(1, 5)

# Assume 1-5 sessions for a low activity user
number_of_posts = round(ACTIVITY_LEVEL * 2)

# Assume an active user posts twice per day

# Social interactions are random according to the activity level
likes = [random.choice([@, 1]) for _ in range(NUM_POSTS)]

shares = [random.choice([@, 1]) for _ in range(NUM_POSTS)]
comments = [random.choice([@, 1]) for _ in range(NUM_POSTS)]

# Output

print(f"Browsing Duration: {time_spent_browsing:.2f}")
print(f"Number of Browsing Sessions: {number_of_sessions}")

print('Likes:', ':'.join(map(str, likes)))
print('Shares:', ':'.join(map(str, shares)))
print('Comments:', ':'.join(map(str, comments)))

print(f"”"Number of Posts: {number_of_posts}")

Table 12: An example answer of GPT-4 in code experiments when the probability distribution is unknown.
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