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Abstract

Large language models (LLMs) possess exten-
sive prior knowledge and powerful in-context
learning (ICL) capabilities, presenting sig-
nificant opportunities for low-resource tasks.
Though effective, several key issues still have
not been well-addressed when focusing on zero-
shot named entity recognition (NER), including
the misalignment between model and human
definitions of entity types, and confusion of sim-
ilar types. This paper proposes an Evolving
Prompts framework that guides the model to
better address these issues through continuous
prompt refinement. Specifically, we leverage
the model to summarize the definition of each
entity type and the distinctions between similar
types (i.e., entity type guidelines). An itera-
tive process is introduced to continually adjust
and improve these guidelines. Additionally,
since high-quality demonstrations are crucial
for effective learning yet challenging to obtain
in zero-shot scenarios, we design a strategy
motivated by self-consistency and prototype
learning to extract reliable and diverse pseudo
samples from the model’s predictions. Experi-
ments on four benchmarks demonstrate the ef-
fectiveness of our framework, showing consis-
tent performance improvements. Code is avail-
able at https://github.com/tongzeliang/
EvoPrompt.

1 Introduction

Named Entity Recognition (NER) aims to iden-
tify entities belonging to predefined types in texts,
which is a fundamental information extraction
task (Wei et al., 2021; Gu et al., 2022; Fan et al.,
2024; Liu et al., 2023, 2024). While neural net-
works perform well in supervised settings, practical
scenarios often lack annotated data. This has led to
increased attention on NER in low-resource scenar-
ios (Chen et al., 2022; Qu et al., 2023a). Early meth-
ods include distant supervision (Qu et al., 2023b),
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Figure 1: (a) Traditional prompting methods struggle
with misalignment between model and human defini-
tions, as well as confusion among similar types, es-
pecially in resource-scarce zero-shot settings. (b) We
introduce the evolved prompt through iterative improve-
ment to explicitly address these challenges.

transfer learning (Jia et al., 2019; Ding et al., 2024),
few/zero-shot learning (Wang et al., 2022), etc.
Recent works show that large language models
(LLMs) perform well across various tasks using
only a few in-context learning (ICL) demonstra-
tions, without parameter tuning (Wei et al., 2022;
Yao et al., 2024). This has motivated research
into designing prompting methods for low-resource
NER using LLMs (Wei et al., 2023; Xie et al., 2024;
Wang et al., 2023a).

In this work, we use LLMs for zero-shot NER, a
strict scenario where no annotated data is available.
We focus on two challenges: (1) the misalignment
between the model’s understanding of entity types
and humans, and (2) the confusion of similar types,
as shown in Figure 1. While a significant num-
ber of methods utilize high-quality ICL demonstra-
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tions to improve performance, they do not explic-
itly tackle these challenges, which hinders further
improvements. Furthermore, they often require an
annotated sample library (e.g., retrieving similar
examples from the library for each test example).
Some studies (Li et al., 2023; Sainz et al., 2023)
attempt to introduce guidelines for entity types to
instruct the model on which entities to recognize
explicitly. While this approach can be beneficial,
their guidelines are often developed in isolation for
each entity type, without accounting for the dis-
tinctions between similar types. Moreover, crafting
guidelines that are comprehensive and easy for the
model to understand is also a challenging task.

Considering these issues, we propose an Evolv-
ing Prompts framework, which offers more precise
guidance for the model through continuously re-
fined prompts. Specifically, we first prompt the
model to generate initial entity predictions, referred
to as pseudo-samples. Then, we leverage these
pseudo-samples to construct entity type guidelines
from two perspectives: (i) Definitions of each entity
type. We leverage the model to summarize defini-
tions for entity types based on the pseudo-samples.
(ii) Distinctions between similar types. We identify
entities that are assigned to multiple types across
different contexts. When sufficient examples are
found, we infer that the corresponding types are
confusable and use the model to summarize their
distinctions. In addition, we construct ICL demon-
strations from these pseudo-samples. Finally, the
guidelines and pseudo-ICL demonstrations prompt
the model in subsequent iterations, progressively
improving its predictions.

Notably, we rely solely on pseudo-samples to
derive guidelines and pseudo-ICL demonstrations
in zero-shot scenarios. Ensuring the reliability and
diversity of these samples is crucial to avoid neg-
ative optimization. To address this, we design a
pseudo-sample selection strategy inspired by self-
consistency (Xie et al., 2024) and prototype learn-
ing. First, we filter samples based on consistency
across predictions from previous iterations. Then,
we apply clustering to identify prototypical samples
for each entity type, using them as representatives.
This approach mitigates noise in pseudo-samples
and enhances the diversity of selected samples.

Our automated prompts refinement framework
offers several advantages. Besides its convenience,
it provides more comprehensive guidance: as itera-
tions progress, the model encounters an increas-
ing number of reliable and representative sam-

ples, resulting in progressively more precise guide-
lines and higher-quality pseudo-ICL demonstra-
tions. Another potential benefit is that the self-
summarized and refined guidelines are more adapt-
able to the model, similar to human learning, where
mastery is achieved through personal understand-
ing rather than solely relying on externally pro-
vided information.

To sum up, our contributions are as follows: (1)
We propose an Evolving Prompts framework for
zero-shot NER with LLMs, which provides dy-
namic, comprehensive, and model-adaptive guid-
ance that alleviates the model’s misunderstanding
of entity types and confusion about similar types.
(2) We design a pseudo-sample selection strategy
to improve sample reliability and diversity for zero-
shot settings. (3) Experimental results on four
benchmark datasets demonstrate the effectiveness
of our proposed framework.

2 Related Works

LLMs for Named Entity Recognition The ex-
ploration of applying LLMs to various tasks con-
tinues unabated, including IE tasks like NER (Ma
et al., 2023; Zhang et al., 2024). Existing works
can be mainly categorized into two types based on
whether model training is required.

One category of works constructs extensive
instruction-tuning data from open-source datasets
and then performs instruction tuning on LLMs (Lu
et al., 2023; Wang et al., 2023b; Zhou et al., 2023a;
Xiao et al., 2023). Li et al. (2024) include pre-
training, further enhancing the model’s task adapt-
ability. Despite their promising results, the signifi-
cant demand for annotated data and computational
resources hinders their widespread adoption.

Another category of works designs prompting
methods. Some works consider improving task
prompts, mainly focusing on prompt format and
ICL demonstrations. For example, Li et al. (2023)
employs code-style prompts and Code-LLMs to
better meet the structured output needs of IE tasks.
Xie et al. (2024) select reliable samples from model
predictions as ICL. demonstrations for zero-shot
NER. Other works propose more intricate reason-
ing processes instead of a single interaction (Xie
et al., 2023; Wei et al., 2023). They do not directly
address the above-mentioned fundamental issues,
limiting potential performance gains. Some studies
incorporate crafted label guidelines into prompts
(Sainz et al., 2023; Zhang et al., 2023). Although
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beneficial, manually written guidelines often lack
comprehensiveness and suitability. We propose an
Evolving Prompts framework to better guide the
model through continuously refined prompts.

Demonstration Retrieval in ICL.  Existing stud-
ies have demonstrated that high-quality demonstra-
tions can significantly enhance the performance
of LLMs in ICL (Rubin et al., 2022; Wang et al.,
2023a; Cai et al., 2023). However, this be-
comes more challenging in low-resource settings.
Xie et al. (2024) retrieves reliable self-annotated
demonstration by self-consistency. Building on
this, we propose a novel framework that further
enhances reliability and considers the diversity of
pseudo-labeled demonstrations.

3 Methodology

Preliminary Let = represent the input text and
L = {l;}, denotes the entity label set, where n
indicates the total number of labels. The objec-
tive of NER is to extract a set of entities 7 =
{(e1,1e;), (e2,1ey)s - - -, (en,ley)}, where e; rep-
resents the entity span in x and ., € L is the
corresponding entity type for e;.

Our goal is to perform zero-shot NER with
LLMs. Given a test sample x, we prompt the LLM
M to generate corresponding predictions for x:

y~ Puly|T,S,x), (D

where T is the task description, and .S denotes ICL
demonstrations. For zero-shot settings, we initially
have no golden annotated data to construct S.

Overal workflow As shown in Figure 2: (1) We
start by prompting the model to generate entity
predictions. (2) Then, we consolidate these pre-
dictions with any from previous steps to form a
new set, denoted as pseudo-sample set D. This
set guides the model in generating guidelines for
entity types (Section 3.2) and selecting pseudo-ICL
demonstrations (Section 3.3). (3) Finally, we inte-
grate these guidelines and demonstrations to create
a new prompt, which guides the model in predict-
ing entities in the next iteration.

3.1 Initial Self-Annotating

We start from an unlabeled corpus & = {x;}. We
first generate predictions with the model via zero-
shot prompting:

yNP/Vl(y |Tnemx)' (2)

We instruct the model to generate predictions in
JSON format to facilitate processing. Based on
dataset introductions, we incorporate brief seed
guidelines for entity types in the task description
Ter (Appendix E). Since these entity predictions
contain noise, we refer to them as pseudo-samples.

3.2 Guidelines Self-Summarization

After obtaining the pseudo-samples, we leverage
them to construct comprehensive and adaptive
guidelines for entity types, thereby enhancing the
model’s understanding of label semantics. As
shown in the second step of Figure 2, we employ
the model to summarize two aspects of the guide-
lines: the definition of entity types and the distinc-
tions between similar types.

Sample Library Construction Based on the
pseudo-samples D, we initially construct sample
libraries to generate guidelines.

For the first part of the guidelines (i.e., the def-
inition of entity types), we partition D by en-
tity types. For an entity type I € L, we con-
struct a definition-related sample library D; =
{s1,s2,...,s,}. Each element s; in D; consists
of a text z; and all entities e/ of type [ within the
text: s; = {z; : [e},e2,... e}

For the second part of the guidelines (i.e., the
distinctions between similar types [; and l2), we
construct a distinction-related library D;,;,. The
element s; of this library is defined as: s; =
{ei, [ ab, . aln), (22, 2%, ... 2!2]}, where
e; denotes an entity, .CU? denotes a text in which e;
appears as an entity of type /1, and xé? denotes a
text where e; appears as an entity of type [o.

Representative Sample Selection After con-
structing sample libraries, we further select rep-
resentative subsets for them, considering the relia-
bility and diversity.

For the definition-related library D;, we select
a set of prototypes (Snell et al., 2017) as repre-
sentative samples Df“b. Specifically, we perform
clustering and choose the cluster centroids. For the
element s; € D;, we consolidate its information
(i.e., the text and entities) into a new text s;. For
example, 5; =“In the text x;, eil and e? are entities
of type 1”. These new texts incorporate both con-
textual and entity information. Then we perform
clustering on them and get K clustering centroids
to construct Df“b. By focusing on cluster centroids,
we mitigate noise from boundary and outlier points,
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Figure 2: Overview of our framework. (1) We start with an unlabeled corpus and use zero-shot prompting to
generate entity predictions (pseudo-labeled data). We then build two types of sample libraries using this data. (2)
Reliable and representative samples are selected from these libraries to prompt the model to summarize guidelines
(i.e. definitions for each entity type and distinctions between similar types. (3) We further select in-context learning
(ICL) demonstrations from these sample libraries. (4) With the guidelines and ICL demonstrations, we prompt the
model to generate new entity predictions. These predictions can then be used in a new iteration.

leading to more accurate guideline generation. Fur-
thermore, these cluster centroids effectively capture
the diverse features of the sample set, enabling the
model to generate more comprehensive guidelines.

For the distinction-related library Dy, of
type 1 and Iy, we apply the majority rule to
construct a representative sample subset Du0

lilo®

Consider the content of its elements: s; =
l ly 1 l

{ei, [at,ab  ah]) (2l 2l 2] Em

is very small, it suggests that entity e; rarely ap-
pears as type I1. This could mean that e; is an
uncommon instance of type [, potentially limiting
its significance. Moreover, with fewer instances,
the risk of prediction error increases (i.e. e; is not
of type l1). The same logic applies to n. Therefore,
we only include a sample in D5“b when both m
and n exceed a certain threshold.

Guidelines Generation We prompt the model
to generate guidelines based on the representative
samples Dfi“b and DZ’;]I’ where [;, I € L.

To generate the first part of guidelines g;, (i.e.
type definition) for the entity type [;, we prompt
the model with the task description T1 and Di“b:

L~ Prm(gi, Ty, g27¢, D), 3)

where g7 denotes the guidelines of type /; from
the previous iteration.

To generate the second part of guidelines g;, (i.e.
distinctions between similar types) for /;, we first
identify which types are confused with /;. For a
given type l; (j # 1), if the number of samples
in DyY b exceeds a certain threshold, we determine
that l and l; are easily confused and prompt the
model to summarize their distinctions:

9 ~ Pr(g 117, DJY). )

The second part of the guidelines for [; is then

constructed as: g;, = [gg2 . ,gz(jm)}.

3.3 ICL Demonstration Selection

There is no annotated data for ICL demonstrations
in zero-shot scenarios. In the previous process,
we constructed a subset Df“b for each entity type
[, consisting of samples with high reliability and
diversity. They can be directly used as ICL demon-
strations. In our experiments, we control the num-
ber of demonstrations for each type to be around
two. We call them pseudo-ICL demonstrations.

Additionally, KNN sampling (i.e. retrieving the
K-nearest neighbors based on similarity for each
test instance) is a widely used strategy for ICL
demonstration selection. However, it typically re-
lies on an annotated sample library. In our scenario,
we also test this strategy.
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3.4 Iterative Annotation

Our framework gradually improves the predictions
over several iterations. Previous sections have de-
scribed the main processes within an iteration. This
section supplements two additional processes.

Historical Predictions Integration As described
in Section 3.2, we start with a pseudo-sample set D
and proceed with the sample library construction.
In the initial step, only the prediction Dy from this
step is available. However, as the iterative process
advances, we obtain multiple predictions D; from
different steps. To enhance the reliability of the
pseudo-sample set D, we consider integrating these
predictions, similar to self-consistency (SC) (Wang
et al., 2023c). This integration further enhances the
overall reliability of the process.

Unlike SC, which generates different predictions
by adjusting the model’s temperature parameter,
our historical predictions D; are derived from dis-
tinct guidelines and pseudo-ICL demonstrations.
We propose two integration strategies: (1) Quantity-
based Selection: This follows the main approach
of SC. An entity prediction (e, l.) is selected if it
appears in a sufficient number of predictions. We
dynamically adjust this threshold based on the dif-
ference between the number of entities predicted
in the current step and those in the previous steps.
This ensures that the number of predicted entities
does not fluctuate excessively, enhancing the sta-
bility of the iterative process. (2) Weight-based
Selection: Given our efforts for iterative improve-
ment, predictions D; at steps 7 are theoretically
more accurate than D; (j < ). Therefore, we as-
sign weights to each entity prediction (e, l.). When
(e, l.) appears in D;, it receives a weight w;, with
w; < wj;ifi < j (we simply set w; = 7). We
accumulate the weights assigned to the prediction
at each step. An entity prediction (e, l.) is selected
if its weight exceeds a certain threshold.

Termination Conditions A straightforward ap-
proach is empirically setting the maximum step
to terminate the iteration. In our experiments,
approximately five iterations are sufficient. We
also adopt a simple termination strategy to en-
hance the framework’s generalization and auton-
omy. Specifically, after several initial steps, if the
difference between predictions of two consecutive
steps, | D; \ Di+1|/|D;], falls below a threshold (e.g.
5%), further iterations are not performed.

4 Experiments

4.1 Setup

Datasets and Metrics We conduct the exper-
iments on four widely used NER benchmark
datasets: CONLLO3 (Sang and De Meulder, 2003),
ACEOQ5 (Walker et al., 2006), MIT-Movie and MIT-
Restaurant (Ushio and Camacho-Collados, 2021).
We use their test sets for experiments. We use the
entity-level micro-F1 score as the metric, where
both the entity boundary and entity type must be
correctly predicted.

LLMs We evaluate the effectiveness of our
framework using gpt-3.5-turbo, and the open-
source models Qwen2-72B (Yang et al., 2024a)
and Llama3.1-70B (Dubey et al., 2024). We uti-
lize the instruction versions of these models for
better instruction following ability. For most of our
analytical experiments, we employed the locally
deployed Qwen2-72B model. For more implemen-
tation details, please refer to our Appendix A.

4.2 Main Results

Firstly, we evaluate the overall effectiveness of
our framework, as shown in Table 1. We com-
pare our work with recent studies in similar scenar-
ios, including InstructUIE (Wang et al., 2023b),
GoLLIE (Sainz et al., 2023), CodelE (Li et al.,
2023), Code4UIE (Guo et al., 2023) and Self-
Improving (Xie et al., 2024), to demonstrate the
significance of our work. See appendix A for de-
tails. Additionally, we compare backbone LLMs
without our framework (refer to as the vanilla) to
those with our framework, demonstrating the effec-
tive improvements brought by our framework. We
also attempt to extend our framework to sentiment
information extraction tasks (appendix 4.9).

We further analyze our framework, as shown in
Table 2. Specifically: (1) Analysis of Guidelines.
Experimental results show that the worst perfor-
mance mostly occurs without any guidelines (w/o
guidelines). Either guidelines_definition or guide-
lines_distinction brings improvement, and using
both yields the best results (i.e. the complete frame-
work, EvoPrompt). A noteworthy comparison is
between the Vanilla (zero-shot with crafted seed
guidelines) and w/o pseudo demonstrations (zero-
shot with model-summarized guidelines), which
highlights the advantages of our approach. While
manually crafted guidelines could potentially be
superior, our framework strikes a better balance
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between convenience and performance. (2) Analy-
sis of Pseudo Demonstrations. The performance
drop (W/o pseudo demonstrations) indicates that
even noisy pseudo-ICL demonstrations can be ben-
eficial. However, this depends on the quality of
these demonstrations. Retrieving similar ones for
each test query (w/ nearest demonstrations) may be
less effective than not using any pseudo-samples, as
directly retrieved neighbors from pseudo-samples
often contain more noise.For fine-grained tasks like
NER, the accuracy of ICL samples significantly
impacts performance. (3) Analysis of Pseudo-
sample Selection. This part affects both guidelines
and pseudo-ICL demonstrations. We test the initial
selection based on historical predictions integration
(HPI) and the secondary selection based on clus-
tering. Overall, the former has a slightly greater
impact. However, the latter may have a greater
effect on data with more noise (such as ACEQ5).

Additionally, we introduce annotated data as ICL
demonstrations (Scenarios with Annotated Data).
We use the training set to test two common ICL
demonstration selection strategies: random and
nearest neighbor-based selection. Results show
that guidelines remain beneficial. However, with
nearest neighbor selection, the impact of guide-
lines is minimal. A possible reason is that similar
samples are more conducive to promoting model
learning. Therefore, the quality of similar samples
significantly influences the model’s performance
(comparing ‘w/ nearest demonstrations’ and ‘near-
est + guidelines’). Nevertheless, these experiments
highlight the potential of our framework to general-
ize to scenarios with limited annotated data, closer
to practical application scenarios

4.3 Analysis of Iterative Improvements

This section analyzes performance changes during
the iteration process. Figure 3 shows the perfor-
mance for the four datasets across different iter-
ations, using Qwen2-72B as the backbone LLM.
Generally, the model’s performance improves grad-
ually in the iterations, confirming the effectiveness
of our framework. After several iterations, per-
formance tends to stabilize, and further iterations
may cause a decline or fluctuation. This is ex-
pected, as both the generation of guidelines and the
acquisition of ICL demonstrations rely on noisy
pseudo-samples, which have optimization limits.
We further evaluate our framework on models of
different sizes, as shown in Figure 4. The frame-
work proves effective for both smaller-scale models

Movie Res CONLL03 ACEO05

InstructUIE (2023b) 63.00 20.99 - -
GoLLIE-34B (2023) 6240 52.70 - -
CodelE (2023) - - 72.66 45.99
Code4UIE (2023) - - 79.70 57.00
Self-Improving (2024) - - 74.99 32.29
gpt-3.5-turbo

Vanilla 54.90 46.36 66.92 32.78
EvoPrompt 68.10 68.44 79.24 47.34
QOwen2-72B

Vanilla 62.86 5245 72.62 47.03
EvoPrompt 70.93 69.26 81.33 51.23
Llama3.1-70B

Vanilla 49.17 48.36 69.16 36.22
EvoPrompt 65.45 58.41 73.57 42.92

Table 1: Experimental results. We compare with recent
works in similar scenarios and vanilla performance (i.e.
general zero-shot settings without our framework).

Movie Restaurant

72.0 72.0
69.5 67.0 /\
67.0 62.0
64.5 57.0
62.0 52.0

2 4 6 8 2 4 6 8
82.0 CONLLO3 52.0 ACEOQ5

——t

79.5 50.5 \
77.0 49.0
74.5 47.5
72.0 46.0

2 4 6 8 2 4 6 8

Figure 3: Iterative improvements on different datasets.
The horizontal axis is the iteration number and the verti-
cal denotes entity-level F1 scores. Star points indicate
the last step based on the termination strategy.

and larger-scale models, demonstrating its robust-
ness. For more details, refer to our appendix B.1.

4.4 Cognition Evolution of LLM

We show the extraction accuracy of several labels
in Figure 5, where the darkened regions denote cor-
rect extractions, reflecting the consensus between
the model and manual annotations. Our framework
substantially enhances cognitive consistency be-
tween LLMs and manual annotations. For instance,
in the CONLL dataset, the entity type “MISC” of-
ten suffers from ambiguous definitions in manual
guidelines, leading to challenges in accurate ex-
traction by the LLMs. Conversely, the entity type
“PLOT” in the Movie dataset has a broad interpre-
tation (e.g., events, categories, countries, efc.), and
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Movie  Restaurant CONLL03  ACE05 Avg

Vanilla 62.86 52.45 72.62 47.03 58.74
Analysis of Guidelines

w/o guidelines 61.39 65.04 75.90 44 .38 61.68

w/ guidelines_definition 65.06 68.70 78.67 48.31 65.19

w/ guidelines_distinction 64.47 67.98 78.94 49.51 65.23
Analysis of Pseudo Demonstrations

w/o pseudo demonstrations 65.70 58.51 76.66 51.02 62.97

w/ nearest demonstrations 66.43 59.37 77.22 46.18 62.30
Analysis of Pseudo-sample Selection

w/o HPI 66.19 64.63 76.10 50.56 64.37

w/o cluster 70.16 67.19 78.93 47.20 65.87
EvoPrompt 70.93 69.26 81.33 51.23 68.19
Scenarios with Annotated Data

random 76.08 70.12 81.30 53.34 70.21

random + guidelines 77.63 71.36 82.84 54.85 71.67

nearest 84.38 75.08 89.58 61.07 77.53

nearest + guidelines 84.69 74.96 89.36 61.37 77.60

Table 2: Detailed analysis of our framework. We mainly analyze the impact of three factors: (1) guidelines, (2)
pseudo-ICL demonstrations, and (3) representative pseudo-sample selection strategies. Additionally, we briefly
explored the combination of guidelines and annotated data.

gwen2-7B qwenl.5-14B gpt3.5-turbo

60.0 57.0
65.0

60.0

55.5 51.5

51.0 46.0
55.0

46.5 40.5 50.0

42.0 35.0 45.0
2.5 5.0 7.5 2.5 5.0 7.5 2 4 6

Figure 4: Iterative improvements in different scale and
closed source models using the Restaurant dataset.

models often struggle to capture its full conceptual
breadth. By incorporating continuously refined
guidelines, we observe a significant reduction in
cognitive misalignment, demonstrating the effec-
tiveness of our approach. For more details, refer to
our appendix B.2.

4.5 Confusion Mitigation Visualization

As shown in Figure 6, the confusion matrices on
two datasets demonstrate that our framework effec-
tively reduces the model’s confusion between sim-
ilar types compared with the original ICL setting,
such as “GENRE” and “PLOT”, “RATINGS_AVE”
and “RATING” in the MIT-Movie dataset, and
“CUISINE” and “DISH” in the MIT-Restaurant
dataset. This improvement stems from our frame-
work, which provides clear label definitions and
distinctions, along with reliable and representative
samples. This enhances the model’s understanding

LLM Unique HEE Consistency Match Human Unique

MISC(CONLL) H

LOCATION(Res)
GE-SC-PO(ACEO5)

PLOT(Mov)

Proportion

(a) Vanilla

LLM Unique Emm Consistency Match Human Unique

MISC(CONLL)
LOCATION(Res)
GE-SC-PO(ACEO05)
PLOT(Mov)

0 100%
Proportion

(b) EvoPrompt

Figure 5: Effect of our framework on the evolution cog-
nitive of the model. The darker areas represent the con-
sensus between LLM and human understanding, while
the lighter areas represent their unique cognitions.

of entity types and reduces noise interference. For
more details, refer to our appendix B.3.

4.6 Case Study

This section provides two cases to illustrate the ef-
fectiveness of our proposed framework, as shown
in Table 3. In case (a), the traditional ICL-based
solution fails to offer a detailed and comprehen-
sive explanation of the labels “LOCATION” and
“AMENTIY”, leading the model to overly rely on
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Sentence: Are there any places to eat in the area that offer a two for one special?
@ Golden (in the area, LOCATION) (two for one special, AMENITY)
Traditional ICL X (two for one, PRICE) x (any, AMENITY) x
EvoPrompt (Ours) y y
Sentence: I would like to watch a romance about soccer.
b Golden (romance, GENRE) (soccer, PLOT)
Traditional ICL " (soccer, GENRE) x
EvoPrompt (Ours) y y

Table 3: Example cases with golden labels and predictions from traditional ICL and our method.  indicates a
correct prediction, while x represents a failure to generate. Incorrect components are highlighted in bold.

::::::::::::::::::::

True Labels

True Labels

Predicted Labels

Predicted Labels

(a) Vanilla-Movie (b) EvoPrompt-Movie

True Labels
True Labels

RATNG- 1 3 1 3 RATING - 1 3

RESNAME- 3 4 7 RESNAME- 1 2

&
&

s e e ¢ e s & e
& & T F T S & oS E
& & & & & &

Predicted Labels Predicted Labels

(c) Vanilla-Restaurant (d) EvoPrompt-Restaurant

Figure 6: The confusion matrix for our framework
on the Movie and Restaurant datasets. Labels high-
lighted in red denote types prone to confusion, while
the heatmap’s color intensity indicates the degree of
confusion, with darker shades representing higher levels
of ambiguity.

its inherent understanding. This prevents it from
consistently aligning with task requirements, ulti-
mately failing to extract the relevant entities “in
the area” and “two for one special”’. In case
(b), the traditional ICL approach struggles to help
the model distinguish between the two ambiguous
labels “GENRE” and “PLOT”. Our EvoPrompt
framework successfully resolves these two prob-
lematic cases by incorporating dynamic, compre-
hensive, and model-adaptive guidance.

4.7 Efficiency Analysis

Our approach demonstrates promising results.
However, the requirement for multiple iterations to
refine guidelines and enhance accuracy inevitably
leads to increased calls to the LLM. To assess the

gpt-3.5-turbo Qwen2-72B-Chat

Model
Cost/100 items F1  Time/item F1
Vanilla 0.35% 50.24 0.31sec 58.74
Self-Improving 2.34% 59.24 243sec  62.01
EvoPrompt(Ours) 1.47% 65.78 1.29sec  68.19

Table 4: Comparison of inference time or API call costs.
All experimental metrics we report are averages of the
four datasets used in the main experiment.

1.0 Movie 1.0 Restaurant
0.9

0.9
0.8

0.8

0.7
10% 15% 20% 25% 30% 10% 15% 20% 25% 30%

Figure 7: The performance with prompts derived from
partial data. The horizontal axis represents the percent-
age of data used for prompt construction, and the verti-
cal axis represents the performance ratio compared to
full data settings. The dashed line indicates the vanilla
performance (i.e. zero-shot without our framework).

practicality of our method, we compared its infer-
ence performance and associated costs with those
of other approaches, as summarized in Table 4.
The results show that our EvoPrompt-based rea-
soning paradigm significantly reduces both time
and financial costs compared to other iterative
annotation-based methods (e.g., self-improve (Xie
et al., 2024)). While our framework incurs higher
costs than the Vanilla method, it substantially im-
proves performance. We consider this trade-off
acceptable, as the gains in accuracy outweigh the
additional computational expense.

4.8 Efficiency Improvements

The iterative process inherently increases time
costs. Its primary goal is to generate multiple ver-
sions of predictions, thereby acquiring more reli-
able data for constructing better prompts. From
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this perspective, reducing the data in the iterative
process is feasible. To this end, we attempt to uti-
lize a portion of the unlabeled data in the iterative
process to construct prompts and then apply them
for the final prediction on all test data. As shown
in Figure 7, using approximately 20% of the data
for prompt construction yields satisfactory perfor-
mance. We hypothesize that increasing the data can
enhance the comprehensiveness of guidelines and
pseudo-samples but may also introduce more noise.
Therefore, using an appropriate data volume dur-
ing iteration can improve efficiency and potentially
enhance performance as well.

4.9 Framework Generalization

In this section, we extend the proposed EvoPrompt
framework to the Aspect-based Sentiment Analy-
sis (ABSA) (Zhang et al., 2021; Hu et al., 2022;
Tong et al., 2024) task, which focuses on extract-
ing sentiment-related information from given sen-
tences, including aspect terms, opinion terms, cat-
egories, and sentiment polarities. Similar to NER,
we define the extraction target as a triplet com-
prising <aspect, category, sentiment >, where the
aspect and category correspond to the entity and
entity type, respectively, in NER. However, un-
like NER, the extraction target also incorporates
sentiment polarity associated with the aspect, cate-
gorized as positive, negative, or neutral. Moreover,
due to the diversity of sentiment expression, a sin-
gle aspect in a sentence may be associated with
multiple emotional attributes and assigning multi-
ple category labels, which presents more significant
challenges and complexities.

We conduct experiments on the test sets of the
Rest15, Rest16 (Zhang et al., 2021), Lap14 (Cai
et al., 2021), and FSQP (Bai et al., 2024) datasets,
which are widely recognized for their comprehen-
sive annotations of sentiment quadruples, encom-
passing the aforementioned four sentiment ele-
ments. We only changed the output format and
initial prompt of the task, and all other settings re-
main the same, as stated in appendix A. The micro
F1 score (F1) is employed as the evaluation metric.

Experimental results in Table 5 demonstrate that
our model achieves robust performance, affirming
the strong generalization capability of EvoPrompt.

4.10 Effectiveness of Guidelines

To further validate the effectiveness of the guide-
lines generated by EvoPrompt, we generalized
them to GoLLIE (Sainz et al., 2023), which fo-

Restl5 Restl6 FSQP

gpt-3.5-turbo

Vanilla 37.64 40.99 44.29
EvoPrompt 49.06 52.04 52.18
Owen2-72B

Vanilla 46.64 44.38 40.58
EvoPrompt 55.70 53.02 47.96
Llama3.1-70B

Vanilla 46.86 55.73 50.49
EvoPrompt 55.65 64.80 53.99

Table 5: Experimental results. We compare EvoPrompt
with vanilla performance (i.e. general zero-shot settings
without our framework).

Method Movie Restaurant
GoLLIE-7B 63.00 43.40
GoLLIE-7B w EvoPrompt 71.18 54.01

Table 6: Effectiveness of the guidelines generated by
Evoprompt for GoLLIE. The notation “w” represents
the guidelines in GoLLIE that are initialized by the
guidelines generated at the termination of the Evo-
Prompt iteration.

cuses on enhancing the model’s ability to follow
guidelines through fine-tuning. Specifically, we
deployed GoLLIE with the guidelines generated
by EvoPrompt, replacing the manually designed,
fixed guidelines previously used. The experimental
results in Table 6 show a significant performance
improvement when GoLLIE applies EvoPrompt-
generated guidelines, thereby confirming their ef-
fectiveness. This also suggests that EvoPrompt can
be orthogonally integrated with parameter tuning-
based methods, acting as a powerful complement.

5 Conclusion

We propose the EvoPrompt framework for zero-
shot NER, consisting of two carefully designed
components: (1) the iteratively refined guidelines
that inject dynamic, comprehensive, and model-
adaptive entity type information into LLMs, miti-
gating their misunderstanding of types and reduc-
ing confusion between similar types, and (2) a sam-
ple selection strategy, grounded in self-consistency
and prototype learning, which enhances the reliabil-
ity and diversity of pseudo samples. Experiments
on benchmark datasets demonstrate the effective-
ness. We hope our contributions will offer meaning-
ful insights for further advancements in the field.

5144



Limitations

We acknowledge the following limitations of our
work: (1) We primarily focus on the zero-shot NER
task. Further experiments are needed for other IE
tasks. (2) Some settings could be further optimized.
For example, we can select more suitable sentence
embedding models or further adapt them to the data
domain. (3) The bias introduced by the model’s
prior knowledge is a challenge that deserves further
exploration in future work.
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A Experimental Setup Details

A.1 Implementation Details

We employ gpt-3.5-turbo and two open-source
models, Qwen2-72B, and Llama3.1-70B, as our
foundational LL.Ms. We access the former via the
gpt-3.5-turbo API; for the latter two, we utilize
their GPTQ-Int4 quantized versions' 2, enabling
local deployment. We leverage the vLLM? frame-
work to boost the inference speed.

We set the temperature to 0 for LLMs for all ex-
periments. We set the maximum length of each part
of the guidelines to 32 tokens and the number of
pseudo-ICL demonstrations for each type to 2. In
the first two iterations, we use only guidelines with-
out pseudo-ICL demonstrations. At this stage, we
select the first sample from the dataset as a demon-
stration to show the input-output format (simply se-
lecting the first one without any additional design).
We employ LaBSE* as the sentence embedding
model, which is a recently updated model in the
HuggingFace repository at the time. We employ
the classic K-means clustering method.

A.2 Recent Works

We compared several recent works in our exper-
iments. Here is a brief overview: InstructUIE
and GoLLIE enhance the model’s general capa-
bility for information extraction (IE) tasks through
instruction tuning, achieving strong zero-shot gen-
eralization to unseen data. CodelE improves the
model’s ability to output structured content by
using code-style prompts and code-based LLMs,
making it more effective for IE tasks. Code4UIE
utilizes annotated data to select ICL demonstrations
based on sample similarities. Self-Improving stim-
ulates the self-learning ability of LLMs to prompt
them for zero-shot NER tasks.

As previously mentioned, the main goal of com-
paring our work with existing studies is to highlight
the practical value of our results. While all meth-
ods focus on low-resource information extraction,
they differ in specific configurations such as data
and base model requirements. Therefore, we do
not recommend using experimental results as the
absolute criterion for method superiority.

"https://huggingface.co/Qwen/
Qwen2-72B-Instruct-GPTQ-Int4

2https://huggingface.co/hugging—quants/
Meta-Llama-3.1-70B-Instruct-GPTQ-INT4

3https://github.com/vllm-project/v1llm

4https://huggingface.co/sentence—transformers/
LaBSE

A.3 Details of Overall Workflow

Algorithm 1 EvoPrompt

Require: Unlabeled corpus U/, predifined label set £, seed
guidelines g, task instruction for NER 7., task instruc-
tion for guidelines summarize Tgl, Tg2, language model
Py, max iteration steps M and termination threshold 4.

1: DONPQ(DO \Tppr,g,U)

2: Initialize t = 0, D = Dy

3: while t < M and |D; \ Di41]|/|D:| > d do

4:  Initialize S = ¢, G = &

5: forl; € L do .
6: Get sample libraries Dfi“b, Df:f’j from D
T Giy ~ PG(gil | T917D1iyuz;)

8: iz ™~ Pe(giz | Tgvalsﬁlbj)

9: gi < {9i1, 92} ,
10: Sample pseudo ICL-demonstrations S}fl € Dfi“b
11: St S U S G+ g UG
12: end for

13: Dy~ Py(Ds | Ter, G, 5™ U)
14: D « Integration(D U D;)

15: t+—t+1

16: end while

17: return D,

B Complete Experimental Analysis

B.1 Iterative Improvements

In section 4.3, we briefly analyze the iterative im-
provements. This section presents the iterative per-
formance of the three primary vanilla LLMs on
four datasets, as illustrated in Figure 8. Our frame-
work consistently enhances the performance of the
three vanilla LLMs, demonstrating strong gener-
alizability. Notably, the improvement trends vary
among models. Qwen2 and gpt-3.5-turbo typically
show a stable increase or a slow initial improve-
ment followed by a significant boost. Conversely,
Llama often exhibits a substantial initial improve-
ment followed by a gradual slowdown. The distinct
characteristics of different models can also be ob-
served in the subsequent experimental analysis.

B.2 Cognition Evolution

In section 4.4, we briefly analyze the cognition
evolution of LLMs. As shown Figure 9, we ob-
serve that across various LLM sizes and architec-
tures (including Llama3.1, Qwen2, and gpt-3.5-
turbo), there is a consistent divergence in model-
human cognitive alignment on specific labels, such
as “PLOT” in the Movie dataset and “MISC” in
the CONLL dataset. Furthermore, different LLMs
exhibit distinct interpretations of the same labels,
even when following identical manual guidelines.
For instance, both Qwen2 and gpt-3.5-turbo align
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Figure 8: Iterative improvements on four datasets for Qwen-2-72B, Llama-3.1-70B and gpt-3.5-turbo. The horizontal
axis is the iteration number and the vertical axis is the entity-level F1 scores.

with the annotator’s understanding of the label “AC-
TOR” in the Movie dataset, whereas Llama3.1 devi-
ates in its interpretation. This discrepancy can be at-
tributed to the inherent ambiguity or broad applica-
bility of certain labels. As Sainz et al. (2023) noted,
some labels are used to annotate a wide array of
elements (e.g., “PLOT” refers to events, characters,
countries, etc.), and handwritten guidelines often
fall short in fully or adaptively correcting a model’s
innate understanding of these labels, thereby com-
plicating the task of maintaining cognitive align-
ment between the model and annotators. Fortu-
nately, our EvoPrompt framework introduces dy-
namic, comprehensive, and model-adaptive guide-
lines, which mitigate the model’s misinterpretation
of entity types. Notably, our framework yields sig-
nificant improvements in aligning labels that histor-
ically exhibit substantial cognitive dissonance, such
as "MISC" in the CONLL dataset, “RATING_AVE”
in the MIT-Movie dataset, and "LOCATION" in
the MIT-Restaurant dataset, among others.

B.3 Confusion Mitigation

In section 4.5, we briefly analyze the confusion mit-
igation. As shown in the upper part of Figure 10,
we observe that various LLMs consistently confuse
certain labels, especially those with high seman-
tic similarity, such as “CUISINE” and “DISH” in

the Restaurant dataset and “RATING” and “RAT-
INGS_AVE” in the Movie dataset. These labels
share similar characteristics, making it challenging
to classify them accurately based solely on label
names or straightforward interpretations. Addi-
tionally, different LLMs exhibit varied confusion
patterns. For instance, Llama3.1 struggles to distin-
guish between “CHARACTER” and "ACTOR” in
the Movie dataset, while gpt-3.5-turbo and Qwen2
correctly classify them. Conversely, the two mod-
els confuse “CHARACTER” with “PLOT”, a dis-
tinction Llama3.1 manages successfully. This vari-
ation suggests that designing a universal prompt
paradigm or guidelines is difficult, as different
LLMs require tailored prompts. Our EvoPrompt
framework addresses this issue by allowing mod-
els to self-induce optimal guidelines through rea-
soning, significantly reducing label confusion, as
shown in the lower part of Figure 10.

C Compared with Automatic Prompt
Engineering in Low-Resource Scenario

To further elucidate the value and advantages of our
work in low-resource scenarios, this section pro-
vides a detailed analysis of the differences between
EvoPrompt and other existing automatic prompt
engineering-based optimization methods, accompa-
nied by comprehensive experimental comparisons.
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C.1 Automatic Prompt Engineering

Automatic prompt optimization aims to refine the
prompts to achieve optimal performance. The cur-
rent approach involves generating an initial set
of prompts manually or automatically and per-
forming preliminary validation on the training
set, followed by iterative refinement through the
integration of specifically designed optimization
rules and tailored feedback utilization methods,
thereby progressively enhancing prompt quality.
For example, Zhou et al. (2023b) introduced APE,
which first prompts the LLM to generate candidate
prompts, then utilizes their performance scores on
the training set as feedback signals and simulates a
Monte Carlo search process to obtain high-quality
prompts. Pryzant et al. (2023) proposed ProTeGid,
which primarily utilizes error cases as feedback
signals and refines the prompts through the LLM’s
analysis of the underlying causes of these errors
during the iterative optimization process. Yang
et al. (2024b) introduced OPRO, which leverages
the entirety of past iteration records as feedback sig-
nals, including the performance of each prompt in

Movie Restaurant CONLLO03 ACEO05

EvoPrompt 68.10  68.44 79.24 4737
APEforvara 62.39 6393 6934 41.02°
APErverse 6177 65.00 67.58  41.36
ProTeGi 6427  61.98 7343 42,92
OPRO 63.18  65.09 72.80  44.16

Table 7: Experimental comparison of EvoPrompt with
other automatic prompt optimization methods. For APE,
we deploy it in two modes: (1) the forward mode pro-
vides task examples first, allowing the LLM to generate
the prompt at the final stage, and (2) the reverse mode
provides the prompt’s position initially, enabling the
LLM to generate it in a fill-in-the-blank manner.

every round and regularity in the iterative process,
thereby refining the prompts through the LLM’s
logical reasoning capabilities.

While these methods have enabled LLMs to
self-optimize prompts, they still require a certain
amount of annotated data to provide real-time feed-
back on prompt performance. In resource-scarce
scenarios, the scale of downstream annotated data
is often insufficient to support this process, lead-
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Sentence: T'm trying to find a family friendly restaurant with a gift shop within 10 miles of sunswept hotel in orange beach.
(a) Golden: (within 10 miles of sunswept hotel in orange beach, LOCATION)
EvoPrompt: (within 10 miles of sunswept hotel, LOCATION)
Sentence: Show me the movie where cary grant has two aunts that poison and bury old men.
(b) Golden: two aunts that poison and bury old men, PLOT)
EvoPrompt: (cary grant has two aunts that poison and bury old men, PLOT)
Sentence: Find the melissa leo movie about smuggling illegals across the border.
(¢) Golden: (about smuggling illegals across the border, PLOT)
EvoPrompt: smuggling illegals across the border, PLOT)

Table 8: Example cases with predictions from EvoPrompt for complex long named entities

ing to suboptimal results. In contrast, EvoPrompt
introduces a novel automated framework that opti-
mizes prompts without annotated data, demonstrat-
ing strong adaptability in low-resource settings.

C.2 Experiments and Analysis

To empirically compare the performance of vari-
ous automated prompt optimization methods, we
conducted experimental comparisons between Evo-
Prompt and the works mentioned above. The im-
plementations of these methods adhered to their
officially released code and configurations. We pro-
vide five real annotated examples for each label as
feedback signals for the iterative optimization of
the methods mentioned above and report the aver-
age results across five runs with different random
seeds. We use gpt-3.5-turbo as the backbone, and
the results are presented in Table 7.

We infer that the suboptimal performance of
automated prompt optimization methods can be
attributed to two primary factors: (1) under low-
resource conditions, models struggle to derive de-
tailed and comprehensive guideline interpretations
from limited annotated data; (2) These methods of-
ten face challenges in pinpointing and optimizing
the weaker components of the prompt. This lack of
specificity in the optimization target impedes the
development of consistent guidelines for tagging
elements with ambiguous or easily confused labels.

In short, thanks to the refinement and targeted
optimization of various components in prompt,
as well as the screening strategy of high-quality
pseudo-samples, EvoPrompt performs well under
resource-poor conditions with a lack of labeled
data and has great usage value and broad applica-
tion scenarios.

D Complex Long Named Entities

To obtain a comprehensive understanding of our
EvoPrompt framework, we also analyze its failure

cases. While EvoPrompt achieves state-of-the-art
performance across various situations, it occasion-
ally fails when handling complex long-named enti-
ties, as illustrated in Table 8. However, this failure
is not due to a fundamental technical issue with the
model’s understanding of labels but rather arises
from differences in extraction granularity, such as
the retention level of entity modifiers, prepositions,
and other contextual information. We believe this
issue can be addressed through more detailed entity
boundary definitions and contextual information.
Given the rarity of such cases, we leave the perfec-
tion of EvoPrompt as the future work>.

E Human Effort to Build Seed Guidelines

In the initial zero-shot process, we designed seed
guidelines for each entity type to enhance the per-
formance of the vanilla model. We directly used
the official guidelines for datasets that already pro-
vided entity types as seed guidelines. For datasets
without publicly available guidelines, we organized
a group of domain experts to design guidelines for
each entity type and conducted a voting process to
select the best ones as seed guidelines.

It is important to note that since EvoPrompt has
the ability to summarize, generalize, and iteratively
optimize guidelines, the role of seed guidelines is
primarily to assist the model in the initial under-
standing of label interpretation. This requirement
is also common across most IE tasks.

F Prompts
F.1 Prompts for NER

The prompts used for NER are as follows, includ-
ing three scenarios: (1) zero-shot, (2) guidelines-
only, and (3) the combination of guidelines and
pseudo-ICL demonstrations.

>We want to point out that existing LLM-based zero-shot
schemes cannot handle those situations perfectly as well.
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Prompt for Zero-shot NER F.2 Prompts for Guidelines Generation

The prompts used for NER are as follows, includ-

GIEVENIENTIEYREYDESS ing two parts: (1) definition summarization and (2)

{“typel”, “type2”,. . . }.

[ seed guidelines (optional) ]
Please recognize the named entities
in the text belonging to the given
types. Don’t fabricate entities
that don’t belong to the text.
Provide answers in the following
JSON format: {“entity”: “type”}.
Text: {text}

Answer:

Prompt with Guidelines

Given entity types:

{“typel”,“type2”,. . . }.
The definitions of each type are:
{“typel”:“guideliens1”, . . .}

Please recognize the named entities
in the text belonging to the given
types. Don’t fabricate entities
that don’t belong to the text.
Provide answers in the following
JSON format: {“entity”: “type”}.
Text: {text}

Answer:

Prompt with Guidelines & pseudo-
ICL demonstrations

Given entity types:

{“typel”,“type2”,. . . }.
The definitions of each type are:
{“typel”:“guideliens1”, . . .}

Please recognize the named entities
in the text belonging to the given
types. Don’t fabricate entities
that don’t belong to the text.
Provide answers in the following
JSON format: {“entity”: “type”}.
Here are some examples:

Text: {text1}

Answer: {answer1}

Text: {text}
Answer:

distinction summarization.

Prompt for Definition Summariza-
tion

Currently, the “typel” is defined
as: “{previous guidelines}”.

The following are some texts
which contain entities of the
type. According to these examples,
supplement or modify the definition
to make it more complete.

In text “text”, the “typel” entities

are: {entityl,entity2,. ..}

According to these examples, the
“typel refers to:

Prompt for Distinction Summariza-
tion

The following are some examples of
different types of the same entity:

“entityl1” is a “type_a” entity in
text: “text_a”; and a “type_b”
entity in text: “text_b”

According to these confusing
examples, compared to the “type_b”,
the “type_a” refers to:
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Figure 10: Confusion matrix of our framework on all datasets across various LLMs (Qwen?2, gpt-3.5-turbo and
Llama3.1). The part above the dotted line represents the test results of the vanilla, and the part below the dotted line
represents the results of applying EvoPrompt .
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