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Abstract

Cryptic crosswords are puzzles that rely on
general knowledge and the solver’s ability to
manipulate language on different levels, deal-
ing with various types of wordplay. Previ-
ous research suggests that solving such puz-
zles is challenging even for modern NLP mod-
els, including Large Language Models (LLMs).
However, there is little to no research on the
reasons for their poor performance on this
task. In this paper, we establish the bench-
mark results for three popular LLMs: Gemma2,
LLaMA3 and ChatGPT, showing that their per-
formance on this task is still significantly be-
low that of humans. We also investigate
why these models struggle to achieve supe-
rior performance. We release our code and
introduced datasets at https://github.com/
bodasadallah/decrypting-crosswords.

1 Introduction

A cryptic crossword is a type of crossword puz-
zle known for its enigmatic clues (Friedlander and
Fine, 2016). Unlike standard crossword puzzles,
where clues are straightforward definitions or syn-
onyms of the answers, cryptic crosswords involve
wordplay, riddles, and cleverly disguised hints that
make solving them more challenging (Moorey,
2018). Figure 1 shows an example of such a puzzle.

To solve a cryptic clue, one must not only ap-
ply generic rules in the specific context of the clue
but also use domain-specific knowledge to produce
a reasonable answer. Therefore, tackling cryptic
crosswords with modern NLP methods provides a
novel and interesting challenge. It has been shown
that NLP models’ performance is far from that of
humans: Rozner et al. (2021) and Efrat et al. (2021)
report an accuracy of 7.3% and 8.6% for rule- and
transformer-based models. Sadallah et al. (2024)
and Saha et al. (2024) show similarly low results for
LLMs. In contrast, expert human solvers achieve
99% accuracy and self-proclaimed amateurs reach

definition/synonym

Language model beheads little

prefix indicator — L ——

anagram indicator —» lama

confused Alma \(?)]

number of letters

Answer: LLaMa

Figure 1: An example of a cryptic clue: number 5 at
the end of the clue denotes the number of characters in
the answer and is called enumeration. The definition
part here is language model, with the rest being the
wordplay part. Beheads or similar words point to the
first letters of the next word, while confused (as well
as mixed up, etc.) is likely to indicate an anagram. As
we should look for a language model’s name that starts
with the letter / plus an anagram of Alma and consists
of 5 letters, the answer here is LLaMA.

74% (Friedlander and Fine, 2009, 2020), however,
there are still no official statistics for average hu-
man performance.

Typically, a cryptic clue can be divided into two
parts: the definition and the wordplay (see Figure
1). The definition consists of one or more words in
the clue that can be used interchangeably with the
answer, and it usually appears either at the begin-
ning or at the end of the clue. The wordplay can
take many forms: the most popular ones include
anagrams, hidden words, and double definitions,
among others (see Table B1 for popular wordplay
types and their examples).

Past approaches to solving cryptic clues range
from rule-based models to traditional machine
learning models like KNN (Rozner et al., 2021)
and transformers like TS5 (Rozner et al., 2021; Efrat
et al., 2021). However, all these models achieve
only modest accuracy on the task (see Section 2).
The fact that LLMs can develop emergent capabil-
ities (Wei et al., 2022) suggests that they may be
able to solve cryptic puzzles if not on a par with
human solvers, then at least somewhat successfully,
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however, our preliminary investigation shows that
a zero-shot, naive approach to evaluating LLMs
yields very low accuracy. Recently, Sadallah et al.
(2024) and Saha et al. (2024) have evaluated mod-
ern LLMs on the task and showed that using certain
prompting techniques can help push the limits of
LLMs on this task, yet they are still far behind
human experts’ performance.

In this work, we focus on the interpretability
of the LLM performance on the task of cryptic
crossword solving and analyze which aspects of the
task cause models to struggle most. Therefore, we
evaluate LLMs solving one cryptic clue at a time
rather than in a grid-eliminating information flow
from the rest of the grid, in contrast to previous
work like that of Saha et al. (2024). We focus
on three main areas of the models’ reasoning: (1)
we explore whether they can extract the definition
part of the clue; (2) we test the models’ ability to
identify the wordplay type in prompts containing
varying amount of information; and (3) we test
the models’ internal reasoning by asking them to
explain how they arrived at the answer.

Our main contributions are as follows: (1) We
explore the general abilities of LLMs on the chal-
lenging task of solving cryptic crosswords using
simple prompting strategies, each with a different
amount of information embedded into the prompts;
(2) We investigate models’ understanding of the
task by addressing three auxiliary tasks; (3) To fa-
cilitate reproducibility of our results and follow-up
experiments, we introduce a small new dataset an-
notated with word;z)lay type labels,1 and release all
our data and code.

2 Related Work

Although prior work looked into wordplay (Luo
et al., 2019; He et al., 2019; Ermakova et al.,
2023) and traditional crosswords (Littman et al.,
2002; Zugarini et al., 2023), much less attention
has been paid to cryptic crosswords. The early
work of Deits (2015) achieved 7.3% accuracy on
the task with a rule-based solver,3 which applied
hand-crafted probabilistic context-free grammar
to generate all possible syntactic structures for
clue words. Following this, Efrat et al. (2021) in-
troduced Cryptonite, a dataset of 523,114 cryp-

lhttps://huggingface.co/datasets/boda/small_
explanatory_dataset

2https://github.com/bodasadallah/
decrypting-crosswords

3https://github.com/rdeits/cryptics

tic clues collected from The Times and The Tele-
graph. They fine-tuned a TS5 (Raffel et al., 2023)
model, which helped set the benchmark accuracy
for Transformer models at 7.6%. Similarly, Rozner
et al. (2021) introduced a dataset extracted from
The Guardian and used a curriculum learning ap-
proach (Soviany et al., 2021), which involved train-
ing a model on simpler tasks before progressing to
more complex compositional clues. This increased
the performance to 21.8%.

Recently, Sadallah et al. (2024) and Saha et al.
(2024) have evaluated multiple LLMs on the task
of solving cryptic crossword puzzles using a range
of prompting techniques, including zero and few-
shot learning. While Sadallah et al. (2024) also
explicitly fine-tune open-source LLMs for this
task, Saha et al. (2024) use a combination of
chain-of-thought (CoT) (Wei et al., 2023) and self-
consistency (SC) (Wang et al., 2023) techniques,
and achieve an accuracy score of 20.85% with
GPT4-turbo (OpenAl et al., 2024). Both conclude
that LLMs’ performance on this task is still far
from that of human experts. However, neither work
further analyzes the models’ behavior or why they
struggle with this task.

3 Data

3.1 The Guardian dataset

In our experiments, we primarily use the dataset
introduced by Rozner et al. (2021), which was ex-
tracted from The Guardian. Most previous models
were tested on this dataset, so we have chosen it for
comparison purposes as well. In total, the dataset
contains 142,380 clues. Rozner et al. (2021) intro-
duced two different splits for it: naive (random)
and word-initial disjoint. We evaluate our mod-
els on the test subset of 28,476 examples from the
naive (random) split, as it has more diverse exam-
ples than the other split.

3.2 Times for the Times dataset

To test models’ performance across datasets, we
use the data collected by George Ho,4 where every
clue has a marked definition. The original dataset
contains around 600k clues from many sources,
which would result in extremely expensive exper-
imentation with LLMs. For our experiments, we
have sampled 1,000 representative examples5 col-

4https://cryptics.georgeho.org/

5https://huggingface.co/datasets/boda/times_
for_the_times_sampled

5103


https://huggingface.co/datasets/boda/small_explanatory_dataset
https://huggingface.co/datasets/boda/small_explanatory_dataset
https://github.com/bodasadallah/decrypting-crosswords
https://github.com/bodasadallah/decrypting-crosswords
https://github.com/rdeits/cryptics
https://cryptics.georgeho.org/
https://huggingface.co/datasets/boda/times_for_the_times_sampled
https://huggingface.co/datasets/boda/times_for_the_times_sampled

lected from the Times for the Times blog.6 We
ensure that the distribution of these examples, with
respect to the number of words in the definition
and their position in the clue, is similar to the full
dataset and rely on the available definitions to es-
timate how well our models understand what the
definition is. Additionally, this information helps
investigate whether including the definition explic-
itly aids the models in solving the clues.

3.3 Small explanatory dataset

Unfortunately, there is no large-scale dataset that
contains information about the wordplay types of
the clues. To investigate whether our models can
detect wordplay types, we have annotated 200 ex-
amples from the additional dataset (see Section
3.2), including 40 clues for each major wordplay
type (anagram, assemblage, container, hidden
word, and double definition — see Table B1 for
examples).

4 Methodology

4.1 Zero-shot setup

Base prompt We begin by defining a simple
prompt (see Figure E1) that only includes the min-
imal information required to solve the task. We
include the line "you are a cryptic crosswords ex-
pert", as it has been shown that this phrase can help
the model performance (Xu et al., 2023).

All-inclusive prompt In this prompt, we com-
bine general information about cryptic crossword
solving without adding examples or CoT (Wei et al.,
2023) (see Figure E2). We include information
about clue parts and their meanings. We also add
information about the typical position of the def-
inition in the clue. Finally, our preliminary ex-
periments suggest that LLMs often struggle to un-
derstand the constraints of the answer length men-
tioned in the clue, so we explicitly tell the model
that the number of letters in the answer is indicated
in parentheses at the end of the clue. In addition,
we experiment with solving a cryptic clue using the
definition provided.

4.2 Dividing solution process into sub-tasks

Next, we investigate why the models struggle to
solve the task. To do that, we design experiments
to test the models’ ability to (1) extract definition
word(s) from the clue, (2) detect the wordplay type

6h’ctps://times—xwd—times. livejournal.com/

with varying levels of information, and (3) explain
the solution process given the clue and the answer.

S5 Experiments and Discussion

We choose two of the most recent and popular open-
source LLMs, Gemma2 (Gemma et al., 2024) and
LLaMA3 (Grattafiori et al., 2024), and one closed-
source model, ChatGPT (OpenAl, 2021). The de-
tails are provided in Appendix A, and the results in
Table 1.

5.1 Cryptic clue solving

The first four rows of Table 1 show the models’
accuracy in solving cryptic clues on two different
datasets for two different prompts. We can see
that ChatGPT outperforms the open-source models.
Also, we can conclude that providing the models
with the definition improves their performance. To
put these results into perspective, in Table 2, we
compare our results with those obtained by Rozner
etal. (2021). We do not compare to the results from
Saha et al. (2024) because they are reported on a
different subset of the dataset from Rozner et al.
(2021). We observe that using ChatGPT in a zero-
shot setting achieves results comparable to (but still
lower than) those of TS fine-tuning. One important
thing to note is that Rozner et al. (2021) explicitly
fine-tuned models on the task, while the models we
used are general LLMs that were pre-trained on the
generic language modeling task.

5.2 Understanding various aspects of the task
5.2.1 Definition extraction

We ask the models to extract the definition part
of the clue with the prompt illustrated in Figure
E3. We specify that the definition should be a
synonym for the answer but do not indicate that the
definition usually appears at the beginning or end
of the clue. All models show higher results in the
definition extraction task. One reason for this could
be that the definition is explicitly included in the
clue, making the task a matter of repeating part of
the clue, which is generally easier than generating
new words as an answer.

5.2.2 Wordplay detection

Determining the wordplay type We identify
five major types of wordplay listed in Table B1.
Then we investigate if our models could identify
the wordplay type from the clues. Usually, profes-
sional solvers note indicator words that relate the
clue to one type or another: for example, confused,

5104


https://times-xwd-times.livejournal.com/

Number Accuracy

Task of examples Info / Prompt LLaMA3 ChatGPT Gemma2
Cryptic Clue Solution 28476 base prompt 2.2 10.9 4.8
Cryptic Clue Solution 28476 all inclusive prompt 2.1 114 24
Cryptic Clue Solution 1000 all inclusive prompt 33 13.4 53
Cryptic Clue Solution 1000 ~ + definition 3.8 16.2 7.0
Definition Extraction 1000 definition extraction 19.3 41.2 21.8
Wordplay Type Detection 200 wordplay types 20.0 42.5 33.5
Wordplay Type Detection 200 ~ + explanation + ex. 23.0 43.5 39.0
Wordplay Type Detection 200 ~ + clue answer 23.5 44.5 43.5

Table 1: The summary of the results obtained in our experiments on the naive (random) (first two rows), Times
for the Times (rows 3-5), and small explanatory (last three rows) datasets. Best results are highlighted in bold.

mixed up, and mad usually indicate anagrams. To
test the models’ ability to identify the wordplay
type, we design three experiments that gradually
add information to the prompt. The specific design
of the experiments is described in the Appendix C.

The results show that adding the definition for
the wordplay and providing a model with the an-
swer do not significantly improve the model’s
ability to extract the wordplay type except for
Gemma, which has a performance increase of 10%.
LLaMA3 only predicted one wordplay type (hidden
word) using the ‘wordplay types’ prompt (see Fig-
ure E4), but providing more information in the
other prompts helped the model predict other types.
We hypothesize that a potential reason for LLaMA3’s
behavior is that the model seems to attend more to
the task prompt than the clue itself.

We acknowledge that the small dataset size
might constrain our ability to draw definitive con-
clusions. However, an important observation is that
all 3 models over-predict some types (anagram and
hidden word) while under-predicting others (as-
semblage). We include the full analysis with the
models’ confusion matrices on the most informa-
tive prompt shown in Figure E6 in Appendix C.

5.2.3 Explanation extraction

Finally, we ask the models to explain the solution,
given the clue and the answer. Our analysis of the
models’ answers shows that: (1) All the models
follow some kind of structure in their explanations,
breaking the clue into parts of one to three words;
however, this separation often does not seem to
make sense, as it may combine both definition and
wordplay parts together or use words that do not
interact with each other. (2) LLaMA3 does not men-

Model Accuracy
LLaMA3 (best) 2.2
Gemma2 (best) 4.8
ChatGPT (best) 114
Rule-based 7.3
T5 fine-tuned 16.3
T5 fine-tuned + curriculum 21.8

Table 2: Comparison with previous results: a rule-based
method of Deits (2015) and the T5-based approach
of Rozner et al. (2021).

tion any wordplay operations and only works at
a synonym level, which is insufficient for solv-
ing the clues. (3) Gemma shows the knowledge of
some operation types (such as anagram and even
homophones-related operations) but applies it in-
correctly. (4) ChatGPT recognizes that something
should be done with the characters and words in
the clue and sometimes even gets it right, for exam-
ple, suggesting taking an anagram of a given word
or putting together words in an assemblage clue;
however, it does not properly "understand" the pro-
cedure. For instance, one of the ChatGPT’s outputs
is: rearranging the letters of "pan” and adding "to
cook cheese" results in "parmesan”. This statement
is incorrect, as one cannot get "parmesan” from the
letters in "pan" and "to cook cheese." (5) The eas-
iest type to generate sensible explanations for are
clues for the double definition type, where both
parts of the clue are synonymous with the answer —
this aligns with how base LLMs were trained.
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6 Conclusions and Future Work

In this work, we have focused on studying the in-
ner workings of LLMs while solving cryptic cross-
words rather than trying to improve their perfor-
mance on this task. We began by evaluating the
models under a zero-shot setting and then tried to
gain insights into their understanding of cryptic
clues through auxiliary tasks. The results suggest
that although ChatGPT model overall outperforms
open-source LLMs, solving cryptic crosswords re-
mains a very challenging task for all tested LLMs,
with a significant room for improvement. In addi-
tion, we conclude that splitting the task into sub-
tasks helps the models to some extent, which indi-
cates that models cannot break down the composite
task by themselves. The performance of the models
on the chosen subtasks still remains unsatisfactory:
the models struggle to identify the definition and
the wordplay type.

We believe the performance can be improved
in future work using several possible research di-
rections. Firstly, promising avenues for research
in this area are chain-of-thought (Wei et al., 2023)
and tree-of-thought (Yao et al., 2023) techniques.
This is motivated by our current results that sug-
gest that splitting the task into simpler subtasks
helps improve the model performance: specifically,
CoT-based methods can teach models how to ar-
rive at the solution step-by-step by splitting the
original complex task into such multiple simpler
subtasks. Secondly, given the considerable perfor-
mance increase achieved using curriculum learning
with TS5 (Rozner et al., 2021), we consider this di-
rection worth exploring with LLMs as well. Finally,
approaches such as a mixture of experts (Jacobs
et al., 1991; Gale et al., 2022) used to train open-
source models like Mixtral (Jiang et al., 2024) can
be applied to the task, as models may develop ex-
pert layers specializing in separate wordplay types.

Limitations

Limited set of LLMs experimented with Ex-
periments with an extensive set of state-of-the-art
LLMs can get quite expensive. Due to budget lim-
itations, we have been selective in terms of the
LLMs that we use in this study. Specifically, we
chose only a few of the most popular open-source
and closed-source LLMs. We believe that the ob-
tained results shed light on the current LLMs’ capa-
bilities on this task. However, we acknowledge that
the set of LLMs we tested here is limited, and our

results cannot be extrapolated to other LLMs. In
addition, in many experiments, we have observed
that minor changes in settings do not bring substan-
tial improvement to the results. This motivated us
to perform only a limited set of experiments with
the chosen models, as elaborated in the paper.

Limitations of the datasets size Some datasets
we used are not large in terms of the number of
examples. The main reason for this is the lack of
existing datasets with rich annotation, so we had
to create one such dataset ourselves. We acknowl-
edge that the results obtained on a larger dataset
may be more reliable; however, we believe that the
results reported here already provide us with useful
insights.

Closeness to the real-world scenario In this
work, we have focused on solving one clue at a
time. In the real-world scenario, human solvers en-
counter twenty to thirty clues in one grid. Solving
one clue usually reveals letters of the other answers,
which can be quite helpful in the solution process.
In contrast, our goal is to investigate LLMs’ abil-
ities in cryptic crossword clue interpretation, and
we do not try to solve the whole grid.

Dangers of data contamination Finally, we ob-
serve in our experiments that ChatGPT outperforms
the open-source models. We acknowledge that
we lack information about its training setup, as
ChatGPT is a proprietary model, and therefore, we
cannot guarantee that this model’s training data is
uncontaminated; in other words, it is not entirely
clear whether the model could have been exposed
to any of the crossword clues during its training.
However, we note that all LLMs still struggle to
solve cryptic clues, showing that even if some con-
tamination took place, the models do not seem to
be able to memorize and simply reproduce the an-
swers from previously seen clues. As a side note,
human experts also get exposed to a lot of clues in
their practice, and their performance on the task is
still much higher than that of LLMs.
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A Implementation details

For the open-source models, we chose to use
the instruct-tuned versions (gemma-2-9b-it and
Meta-Llama-3-8B-Instruct) as they give better
results and are more suitable for the task. For all
three models, we generated the outputs using zero
temperature (greedy sampling) as it showed slightly
better results in our preliminary experiments. To
get the highest possible performance from the open-
source models, we used the models in full precision,
without doing any quantization. Finally, we used
FlashAttention-2 (Dao, 2023) for faster inference.

We used gpt3.5-turbo with near-zero tempera-
ture and top_p of 1e-9. However, as it gave slightly
different results across different runs, we ran it 3
times and reported the average of the results from
these runs.

We do not use any post-processing of the models’
answers.

B Wordplay types

Common wordplay types are listed in Table B1
with examples7 and explanations. We identify 5
main types: anagram, assemblage, container, hid-
den word, and double definition.

C Worplay type detection experiments

In the first experiment, we give the models the
names of the five different wordplay types and ask
them to predict which wordplay type the given
clue belongs to (see Figure E4). We notice that
LLaMA3 fails to understand the task and produces
only one type for all examples, which suggests
that the model does not analyze the given clues
thoroughly. Next, we experiment with providing
the models with the explanations and one example
for each wordplay type (Figure E6). Finally, we
add the answer for each clue to test whether the
models can infer information about the wordplay
types from the answer (Figure E7).

Next, we analyze the models’ predictions us-
ing the most informative prompt (Figure E7). For
LLaMA3, the most frequently predicted wordplay
type is "hidden word" (100+ samples) and "con-
tainer" (55 samples), and never predicted "double
definition" or "assemblage." The confusion matrix
is shown in Figure C1.

Gemma most frequently predicted "anagram” (101
samples) and "hidden word" (43 times) and never

7Examples are taken from https://crypticshewrote.
wordpress.com/explanations/
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Type Example Clue Answer
Anagram: certain words or letters must be Never upset a Sci Fi writer (5) Verne
jumbled to form an entirely new term.

Assemblage: the answer is broken into its  Bitter initially, but extremely enjoyable ~ Beer
component parts and the hint makes references refreshment (4)

to these in a sequence.

Container: the answer is broken down into The family member put us in the Cousin
different parts, with one part embedded within money (6)

another.

Hidden word: the answer will be hidden Confront them in the tobacco store (6) Accost
within one or multiple words within the pro-

vided phrase.

Double definition: contains two meanings of In which you’d place the photo of the  Frame

the same word.

NZ author (5)

Table B1: Examples of common wordplay types. The definition part is bolded.
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assemblage double definition

Predicted Labels

anagram

hidden word

container

Figure C1: Confusion matrix for LLaMA3 on wordplay
type prediction using the most informative prompt E7.

predicted "assemblage." Its confusion matrix is
shown in Figure C2.

ChatGPT most frequently predicted "container"
(97 times) and "anagram" (46 times) and predicted
"assemblage" only 3 times. Its confusion matrix
is shown in Figure C3. What is interesting here is
that the model sometimes predicted types different
from the specified ones.

D Data sources

In the text of the paper, we mention several sources
of cryptic crosswords:

1. The Times8

9
2. Telegraph
8https ://www.thetimes.co.uk/puzzleclub/
crosswordclub/home/crossword-cryptic

9https ://puzzles.telegraph.co.uk/
crossword-puzzles/cryptic-crossword

Confusion Matrix

0 1 0

anagram
I
&
-

-
S
o

True Labels

double definition container  assemblage hidden word

11 10 0 4 15

' il i
assemblage container double definition

Predicted Labels

l ]
anagram hidden word

Figure C2: Confusion matrix for Gemma on wordplay
type prediction using the most informative prompt E7.

Confusion Matrix
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~
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o

3

True Labels

double definition container  assemblage hidden word

4 3 0 10

hidden word assemblage container double definition

Predicted Labels

anagram

Figure C3: Confusion matrix for ChatGPT on wordplay
type prediction using the most informative prompt E7.
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3. The Guardian"® Ve ~

4. Times for the Times blog“ Y(_)u are a cryptic crc_Jssword expert. |
] ' will give you a cryptic clue. Every clue
We do not parse their data specifically but rather use has two parts: a definition and a
already prepared datasets or samples from them. wordplay. The definition is a synonym
of the clue's answer. Extract the
E Prompts definition word/s from this clue. Only
We present all the prompts we used in this section: (éllﬁgu'[{:j e(}:ieﬁmtlon.
see Figures E1 to E7. Defin.ition:
- J

e A
You are a cryptic crossword expert.

You are given a clue for a cryptic
crossword. Output only the answer.

Figure E3: Prompt for the definition extraction.

clue: /You are a cryptic crosswords expert. I\
{clue} will give you a clue. Every clue has
output: two parts: a definition and wordplay.
{output} Definition is a synonym of the answer.
N\ = Wordplay is the rest of the clue.
Figure E1: Base prompt. PI_ease extract the wordplay type for
this clue.

Here is a list of all possible wordplay
types: anagram, hidden word, double

(You are a cryptic crossword expert. A definition, container, assemblage.
The cryptic clue consists of a Only output the wordplay type.
definition and a wordplay. Clue: {(.:Iue}
The definition is a synonym of the \Output. )

answer and usually comes at the
beginning or the end of the clue.

The wordplay gives some instructions
on how to get to the answer in
another (less literal) way. /Yo
The number/s in the parentheses at
the end of the clue indicates the
number of letters in the answer.
Extract the definiton and the wordplay
in the clue, and use them to solve the
clue. Finally, output the answer on

Figure E4: Prompt for the wordplay type classification.

~

u are a cryptic crossword expert.
The cryptic clue consists of a
definition and a wordplay.

The definition is a synonym of the
answer and usually comes at the
beginning or the end of the clue.
The wordplay gives some instructions

this format: on how to get to the answer in

Ansvyer: <answer>, another (less literal) way.

Clue: The number/s in the parentheses at
\{clue} ) the end of the clue indicates the

number of letters in the answer.
Use the given definition, and extract
the wordplay in the clue, and use
them to solve the clue. Finally, output
the answer on this format:
Answer: <answer>,
Clue:
{clue}
Definition:

{definition}
-

Figure E2: All inclusive prompt.

/

]Ohttps ://www. theguardian.com/crosswords/
series/cryptic
11https ://times-xwd-times.livejournal.com/

Figure E5: All inclusive prompt with included defini-
tion.
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@J are a cryptic crosswords expert. | will give you a clue. As you know, er
clue has two parts: a definition and wordplay. Please extract the wordplay type
from this clue.

Here is a list of all possible wordplay types, and their descriptions:
- anagram: An anagram is a word (or words) that, when rearranged, forms a
different word or phrase.

Example: Ms Reagan is upset by the executives (8)

The answer: Managers

- hidden word: The answer is found in the clue itself, amongst other words.
Example: Confront them in the tobacco store (6)
The answer: Accost

- double definition: Clues contain two meanings of the same word. The words
may be pronounced differently, but must be spelt the same.

Example: Footwear for pack animals (5)

The answer: Mules

- container: One word is placed inside another (or outside another) to get the
answer.

Example: Curse about the Maori jumper (7)

The answer: Sweater

- assemblage: The answer is broken up into smaller parts and each syllable or
part is given a separate clue. These separate clues are then put together into
one clue.
Example: Brash gets a Prime Minister employment, but it's drudgery (6,4)
The answer: Donkey work
Only output the wordplay type.
Clue: {clue}

@put: /

Figure E6: Prompt for the wordplay type classification with examples for each wordplay type.

5113



You are a cryptic crosswords expert. | will give you a clue. As you know, every
clue has two parts: a definition and wordplay. Please extract the wordplay type
from this clue.
Here is a list of all possible wordplay types, and their descriptions:
- anagram: An anagram is a word (or words) that, when rearranged, forms a
different word or phrase.

Example: Ms Reagan is upset by the executives (8)

The answer: Managers

- hidden word: The answer is found in the clue itself, amongst other words.
Example: Confront them in the tobacco store (6)
The answer: Accost

- double definition: Clues contain two meanings of the same word. The words
may be pronounced differently, but must be spelt the same.

Example: Footwear for pack animals (5)

The answer: Mules

- container: One word is placed inside another (or outside another) to get the
answer.

Example: Curse about the Maori jumper (7)

The answer: Sweater

- assemblage: The answer is broken up into smaller parts and each syllable or
part is given a separate clue. These separate clues are then put together into
one clue.
Example: Brash gets a Prime Minister employment, but it's drudgery (6,4)
The answer: Donkey work
Only output the wordplay type.
Clue: {clue}
The answer: {ans}

Qutput: /

Figure E7: Prompt for the wordplay type classification with examples for each wordplay type. Here we also add the
answer for the clue.
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