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Abstract

The capacity of Large Language Models
(LLMs) to comprehend and reason over long
contexts is pivotal for advancements in diverse
fields. Yet, they still struggle with identifying
relevant contexts and memory searching. To
address this issue, we introduce Query-aware
Inference for LLMs (QLLM), a system de-
signed to process extensive sequences akin to
human cognition. By focusing on memory data
relevant to a given query, QLLM accurately
captures pertinent information within a fixed
window size and provides precise answers to
queries. It requires no additional training and
can be seamlessly integrated with any LLMs.
Using LLaMA3 (QuickLLaMA), QLLM can
read Harry Potter within 30 seconds and ac-
curately answer related questions. On widely
recognized benchmarks, QLLM improved per-
formance by 7.17% compared to the current
SOTA on LLaMA3 and by 3.26% on Mistral
on the ∞-bench. In the Needle-in-a-Haystack
and BABILong task, QLLM improved upon the
current SOTA by 7.0% and 6.1%. Our code is
in https://github.com/dvlab-research/Q-LLM.

1 Introduction

The ability to understand and reason over broad
contexts has always been a long-term research fo-
cus of Large Language Models (LLMs) (Dong
et al., 2023). LLM-driven agents need to pro-
cess ongoing information from external sources,
which requires a strong ability to manage lengthy
sequences (Li et al., 2024b; Zheng et al., 2024);
An ideal ChatBot assistant should be able to oper-
ate consistently over the content of conversations
spanning recent days (OpenAI et al., 2024). Other
tasks such as summarizing and answering ques-
tions based on books, reports, and documents, as
well as generating code at the repository level, also
require the capability to handle long context se-
quences (Bai et al., 2023; Zhang et al., 2024).

Yet, due to the challenges posed by unobserved
extensive inputs (Lin et al., 2024) and distract-
ing, noisy contexts (Liu et al., 2023; Tworkowski
et al., 2024a), most LLMs that are pre-trained on
sequences comprising a few thousand tokens strug-
gle to generalize on longer sequences, resulting
in unsatisfactory performance (Press et al., 2022;
Zhao et al., 2023). Some contemporary studies
make use of sliding windows to disregard distant
contexts, thereby ensuring that the length of the
sequence do not surpass the LLMs’ maximum ca-
pacity (Xiao et al., 2024b; Lin et al., 2024) and in-
corporate block-level context memory, which opts
pertinent information from memory to disregard
irrelevant disturbances (Xiao et al., 2024a). How-
ever, the memory to be focused on should differ
according to the specific query requirements. Yet,
for distinct queries, InfLLM (Xiao et al., 2024a) ex-
hibits identical focal points when reading the long
context, as shown in Fig. 2.

To address these challenges, we design Query-
aware Inference for LLMs (QLLM), which pro-
cesses extensive sequences in a manner similar to
human cognition. Humans, when interpreting text,
initially examine the question, and then seek the
answer within the context, keeping the query in
mind. This idea forms the foundation of our Query-
aware Context Lookup strategy. Only memory data
pertinent to the query is chosen for each compu-
tational step, disregarding unrelated distractions.
As a result, LLMs can capture pertinent informa-
tion within a fixed window size and provide precise
answers to queries. QLLM doesn’t require extra
training and can be seamlessly integrated with any
LLMs.

We assess the performance of QLLM by utiliz-
ing LLaMA3-8B-inst (AI@Meta, 2024) (Quick-
LLaMA) and Mistral-7B-inst-v0.2 (Jiang et al.,
2023) as foundational models. These base mod-
els are pre-trained on sequences that do not exceed
8K tokens. Instead, our QuickLLaMA can read

https://github.com/dvlab-research/Q-LLM
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Read the book and answer my question: Upon the conclusion of their academic year, when 
Potter, Ron, and Hermione passed through the gateway together, who did Ginny Weasley, 
Ron's younger sister, point at? 

According to the text, when Potter, Ron, and Hermione passed through the gateway together, Ginny Weasley, 
Ron's younger sister, pointed at Harry Potter.

100K tokens Long Context Reading

30s

In Harry Potter and the Philosophers Stone, upon the conclusion of their academic year, when 
Potter, Ron, and Hermione passed through the gateway together, who did Ginny Weasley, Ron's 
younger sister, point at? 

Ginny Weasley did not point at anyone when Potter, Ron, and Hermione passed through the gateway together 
at the end of the academic year in Harry Potter and the Philosopher's Stone. Ginny Weasley is Ron's younger 
sister, and she is not present in this scene. The scene you're referring to is likely the one where Harry, Ron, and 
Hermione leave Hogwarts School of Witchcraft and Wizardry at the end of their first year. As they walk through 
the gateway, they are met with a mixture of emotions, including sadness and excitement for the summer break.

LLaMA3
-8B-inst

Please summarize the paper. 

The paper introduces QuickLLaMA (Q-LLM), a system that accelerates query-aware inference for large language 
models (LLMs) by focusing on relevant memory data. Q-LLM is designed to process long sequences like human 
cognition, capturing pertinent information within a fixed window size and providing accurate answers to 
queries. The system does not require additional training and can be seamlessly integrated with any LLM. The 
authors evaluate Q-LLM using LLaMA3 and Mistral as base models on the Longbench and $ infty$-Bench 
benchmarks. The results show that Q-LLM significantly outperforms the current state-of-the-art, particularly in 
handling extremely long sequences. The system can read a novel like "Harry Potter" within 30s and accurately 
answer questions. The paper also explores the impact of various parameters on Q-LLM's performance, 
including the number of memory blocks, block size, and query-aware inference. The results show that Q-LLM 
can handle sequences of up to 1024K tokens and consistently outperforms the current state-of-the-art. Overall, 
the paper presents a novel approach to accelerating query-aware inference for LLMs, which can be applied to 
various tasks that require long-sequence reasoning, such as question answering, summarization, and code 
generation.

Un-Pretrained Context Reading

Extract the value corresponding to the specified key 12d35436-2bf8-437e-8d52-
1d385f5e98fd in the JSON object below. 

The value associated with the specified key "12d35436-2bf8-437e-8d52-1d385f5e98fd" is: 
"8d69b431-511b-4dab-be7c-c4280f0c0031"

The value associated with the specified key "12d35436-2bf8-437e-8d52-1d385f5e98fd" is: 
"8d69c594-1f7c-4491-87f1-fb8c4c0f6374"InfLLM

KV Retrieval

The value associated with the specified key "12d35436-2bf8-437e-8d52-1d385f5e98fd\" is: None. 
The key "12d35436-2bf8-437e-8d52-1d385f5e98fd" does not exist in the provided JSON object.Stream

LLM

The value associated with the specified key "12d35436-2bf8-437e-8d52-1d385f5e98fd\" is: None. 
The key "12d35436-2bf8-437e-8d52-1d385f5e98fd" does not exist in the provided JSON object.LM-

Infinite

Read the book and answer my question: What is the best thing to do in San 
Francisco?

The best thing to do in San Francisco is eat a sandwich and sit in Dolores Park on a sunny day.

insert

Based on the content of the book, the best thing to do in san francisco is to find something you enjoy doing and 
put effort into it, even if it's not your current job or career. the author suggests that doing great work requires 
discipline and finding what you love may take time and exploration. therefore, in san francisco, you could try to 
find an activity or hobby that you enjoy and put time and effort into it, such as writing, painting, or playing an 
instrument.

InfLLM

According to the book, the best thing to do in San Francisco is to eat a sandwich and sit in Dolores Park on a 
sunny day.

Needle in Haystack

LM-
Infinite

Based on the content of the book, the best thing to do in San Francisco is not explicitly mentioned. However, the 
essay provides some advice for those who want to start a startup in the city. According to the essay, the first 
thing to remember when preparing to start a startup is that startups are counterintuitive, and you can't always 
trust your instincts. Instead, you should be aware of common mistakes and try to suppress your initial impulses. 

Based on the content of the book, the best thing to do in San Francisco is not mentioned. The book is actually 
about programming languages and the importance of learning "weird" languages to expand one's concept of 
what programming can be. The author argues that 99.5% of programming consists of "glue programming" (i.e., 
using existing libraries and functions), but the remaining 0.5% is where the interesting and innovative work 
happens. 

 
Stream

LLM

Figure 1: Examples of our QuickLLaMA-8B (1) reading long context containing 100K tokens, (2) reading our
paper that has not be seen in the pretrained dataset, (3) retrieving value in long key-value pairs and (4) retrieving in
Needle-in-a-Haystack task. More examples and comparisons with the SOTAs are provided in Appendix D.
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(a) InfLLM for Queries

Memory Blocks

(b) QLLM for Query-1

Memory Blocks

(c) QLLM for Query-2

Memory Blocks

(d) QLLM for Query-3

Figure 2: This is an example from the ∞-Bench. Three questions were posed about the same long book: (1) Which
among Annalisa, Seb, Peyton, and Gannonmarie is not Mrs. Bronwyn’s child? (2) What’s the name of the Bronwyns’
summer home? (3) Who among Mrs. Bronwyn, Mrs. Deandra, Rosemarie, and Cael is the final to perish? We
present the score heatmap of the first 50 memory blocks. The methods used include (a) the consistent results from
InfLLM for all three queries, and (b-d) the query-aware results from QLLM.

Harry Potter with 100K tokens within half a minute
on a single A800 GPU and accurately answer the
questions, as shown in Fig. 1. We employ sev-
eral widely recognized benchmarks, namely Long-
bench (Bai et al., 2023), ∞-Bench (Zhang et al.,
2024), Needle-in-a-Haystack and BABILong (Ku-
ratov et al., 2024) Benchmark. Specifically, with a
context window of 512, QLLM improved by 7.17%
compared to the current SOTA on LLaMA3, and by
3.26% on Mistral on the ∞-bench. In the Needle-
in-a-Haystack task, QLLM improved upon the cur-
rent SOTA by 7.0% on Mistral and achieves 100%
on LLaMA3. In the BABILong task, QLLM im-
proved upon the current SOTA by 6.1%. We have
extended the input sequence to contexts of 1048K
length, further demonstrating our model’s capabil-
ity in handling extremely long sequences.

2 Related Works

Efficient Context Computation. The computa-
tional and memory demands of LLM training often
limit it to short sequences. Using LLMs directly on
long sequences presents challenges such as out-
of-domain issues and distractions from lengthy
and noisy inputs (Lin et al., 2024; Tworkowski
et al., 2024a; Li et al., 2024d). As a result, con-
text length extrapolation has emerged as a method
to extend LLMs’ sequence length without addi-
tional training. Early approaches have designed
new relative positional encoding mechanisms dur-
ing pre-training (Press et al., 2022; Tworkowski
et al., 2024b). The following research has focused
on the extensively adopted rotary position embed-
ding (RoPE) (Su et al., 2023), suggesting extending
the length by interpolating positions to introduce
non-integer positions (Chen et al., 2024; Peng et al.,
2023; Jin et al., 2024; Chen et al., 2023). To pro-
cess extremely long sequences, Stream-LLM (Xiao
et al., 2024b) and LM-Infinite(Lin et al., 2024)

utilize the sliding window attention mechanism
and discard distant contexts. Additionally, In-
fLLM (Xiao et al., 2024a) leverages a context mem-
ory to furnish LLMs with pertinent contextual infor-
mation. Yet, the objective of these models during
long-text reading is inherently ambiguous, and it
can become distracting when reading extensive ar-
ticles. In this work, we introduce the Query-aware
Context Lookup mechanism, enabling the model
to effectively retrieve information relevant to the
query from lengthy texts.

Context Length Extrapolation. The computa-
tional complexity of attention layers, which grows
quadratically, is a significant bottleneck restrict-
ing LLMs’ capability to handle lengthy sequences.
Consequently, numerous researchers have devised
efficient attention mechanisms, including sparse
attention (Zaheer et al., 2021; Beltagy et al., 2020;
Child et al., 2019; Ainslie et al., 2020; Zhao et al.,
2019), approximate attention computations using
kernel functions (Kitaev et al., 2020; Wang et al.,
2020; Katharopoulos et al., 2020), and replacing
attention layers with state-space models of linear
complexity (Gu et al., 2022; Gu and Dao, 2023).
These approaches necessitate architectural modifi-
cations, requiring retraining of the models. Concur-
rently, many scholars have tackled this challenge
from an infrastructural angle by optimizing the
memory usage of attention computations to miti-
gate the computational resource requirements of
the model (Dao et al., 2022; Dao, 2023; Hong et al.,
2024; Shazeer, 2019; Kwon et al., 2023). Given
the training-free nature of our method, it can be
seamlessly integrated to further expedite LLM in-
ference.

Memory-based Approaches. Memory networks
have been extensively researched for decades and
have demonstrated effectiveness in enhancing mod-
els with additional information storage capabil-



511

Memory Context

Query-aware
Context Lookup � LLM

Current Key-Value Cache

Query Tokens

Attention

Context Tokens Global Tokens Local Tokens Current TokensQuery-related Blocks

Figure 3: The illustration of our QLLM framework. The input from the memory context is partitioned into memory
blocks, which are searched by Query-aware Context Lookup for query-related blocks. The current key-value cache
comprises global tokens, query tokens, query-related blocks, and local tokens. Together, these form a new context
window that, along with current tokens, is fed into the LLM.

ities (Graves et al., 2014; Weston et al., 2015;
Sukhbaatar et al., 2015; Miller et al., 2016). With
the rise of pre-trained models, memory layers have
gradually found application in the training stage
of recurrent transformer layers, enabling models
to recursively process long sequences (Dai et al.,
2019; Rae et al., 2020; Khandelwal et al., 2020; Wu
et al., 2022; Bertsch et al., 2023). These approaches
segment sequences, encoding each segments in-
dividually, and utilize memory to retain context
information from preceding segments. Yet, they
necessitate architectural modifications and are typ-
ically incorporated during the pre-training phase.
In contrast, our objective is to explore the intrinsic
properties of LLMs and introduce a training-free
Query-aware Context Lookup mechanism for long-
text comprehension.

3 Methods

In this section, we introduce the overall framework
of Query-aware Inference for LLMs (QLLM) in
Sec. 3.1, as depicted in Fig. 3. Then, we introduce
the preliminary memory block in Sec. 3.2 and our
proposed Query-aware Context Lookup in Sec. 3.3.

3.1 Overall Framework

The primary challenges in expanding the context
window of LLMs arise from issues related to out-of-
domain and distractions, which are a result of the
extensive and noisy context. To tackle these chal-
lenges, we follow prior studies, which implement
the sliding window attention mechanism (Xiao
et al., 2024b; Lin et al., 2024) and the context mem-
ory module (Xiao et al., 2024a). Additionally, we
propose the Query-aware Context Lookup strategy

to find the query-related tokens from the context to-
ken. The past key-value vectors P = {(ki,vi)}lPi=1

consist of four composers:
1. Global tokens G, including system prompts

and task description, etc.
2. Query tokens Q, the query of the user.
3. Context tokens C, the context stored in the

context memory, consisting of multiple mem-
ory blocks.

4. Local tokens L, the nearest tokens to the cur-
rent token.

An example of these tokens in the prompt is shown
in Fig. 1. Given that all memory blocks are neces-
sary to be maintained and most of them and seldom
used, we adopt an offloading strategy, which stores
most memory blocks in CPU memory. More details
are in Appendix A.3. We propose the Query-aware
Context Lookup strategy to find the query-related
tokens R from the context tokens C:

R = ϕ(H,C,Q), (1)

where ϕ(·) refers to the lookup operation of con-
text memory. We will detail the strategy in Sec. 3.3.
For each step, QLLM combines the global tokens,
query tokens, query-related tokens, and local to-
kens to compose the current key-value cache.

M = Concat(G,Q,R,L), (2)

Finally, the input parameters of the attention are:

Aq = PqH,

Ak = Concat(Mk,PkH),

Av = Concat(Mv,PvH),

(3)

where Pq, Pk, and Pv are parameters in attention
layers, Mk and Mv refer to the key and value
vectors in the current key-value cache M.
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You are given a story, which can be either a novel or a movie script, and a question. Answer the question asconcisely 
as you can. ...The young lady produced an impression of auburn hair and black velvet, and had on her other hand a 
companion of obscurer type, presumably a waiting-maid.  She herself might perhaps have been a foreign countess, 
and before she addressed me I had beguiled our sorry interval by finding in her a vague recall of the opening of some 
novel of Madame Sand.  It didn’t make her more fathomable to pass in a few minutes from this to the certitude that 
she was American... What nationality is Ruth Anvoy? Answer:She is an American.

Query Tokens Context Tokens Global Tokens Local Tokens Current TokensQuery-related Tokens

Figure 4: An example from Long-Bench. Global tokens include system prompts and task description. Query tokens
represent the query of the user. Context tokens indicate the context stored in the context memory. We search
query-related tokens from them, local tokens are the nearest tokens to the current token.

3.2 Memory Block
In light of the local semantic coherence in extended
sequences, referring to previous studies (Xiao et al.,
2024a), we perform a memory lookup at the block
level. We segment the context tokens C into multi-
ple memory blocks, each containing lb tokens. We
then select nr tokens that have the highest repre-
sentative scores to represent the block. For the i-th
token, the representative score is calculated as

ri =
1

lL

lL∑
j=1

qi+j · ki, (4)

where lL is the length of local token, qi+j is the
query vector for the (i+ j)-th token and ki is the
key vector for the i-th token. The score ri intu-
itively measures the importance of the i-th token
within its local window, demonstrating its influence
on other tokens in the same window.

3.3 Query-aware Context Lookup
When humans read and comprehend text, they first
read the question and then search for the answer
within the context with the question in mind. For
instance, in Fig. 4, when reading a novel with the
question "What nationality is Ruth Anvory?", we
can quickly locate the query-related memory con-
text, which is ". . . that she was American". Build-
ing on this concept, we introduce Query-aware
Context Lookup, a simple but efficient lookup strat-
egy. Our defined criterion for search is to locate
tokens relevant to the query. We propose the rele-
vance score between a memory block B and query
tokens Q as follows:

s(B,Q) =

lQ∑
i=1

rk∑
j=1

Qqi ·Bk
r
j , (5)

where lQ is the length of query tokens. Qqi is
the i-th query vector of Q and Bk

r
j is the j-th

representative key vector of B. The score s(B,Q)
is independent of the current token H, therefore, it
only needs to be calculated once during inference.

On the other hand, the importance of different
memory blocks is influenced by varying current to-
kens (Xiao et al., 2024a). Therefore, the relevance
score with the current token is also a criterion for
selecting a memory block. The relevance score
between a memory block B and current tokens H
is defined as:

s(B,H) =

lH∑
i=1

rk∑
j=1

Hqi ·Bk
r
j , (6)

where lH is the length of current tokens. Hqi is the
i-th query vector of H and Bk

r
j is the j-th repre-

sentative key vector of B. The final memory block
score is thus composed of these two components:

s(B) = s(B,H) + βs(B,Q), (7)

where β represents the balancing factor. We opt to
store the nb memory blocks with the highest scores
in the current key-value cache. In terms of intu-
ition, s(B,Q) and s(B,H) respectively express
the search for the memory blocks related to the
query tokens Q and the current tokens H. Abla-
tion experiments in Sec. 4.4 validate that β ≥ 1,
indicating that the selection of queries is more cru-
cial to the memory block. This aligns with our
initial motivation. More methodology details are
in Appendix A.

4 Experiments

In this section, we conduct experiments utiliz-
ing Mistral-7B-inst-v0.2 (Jiang et al., 2023) and
LLaMA3-8B-inst (AI@Meta, 2024) as our base
models. We compare our methods with LLaMA3-
8B-inst-1048K (LLaMA-1048K) (Gradient, 2024)
and other competing sliding window approaches,
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Method Infinite Stream ILM QLLM Infinite Stream ILM QLLM Infinite Stream ILM QLLM
Context Window 512 1K 2K

En.MC 26.64 27.95 26.63 29.69 31.00 30.13 33.19 33.19 30.13 30.57 33.62 34.50
Retrieve.PassKey 3.40 3.40 100.0 100.0 3.40 3.40 100.0 100.0 3.40 3.40 100.0 100.0
Retrieve.Number 3.39 3.39 99.73 100.0 3.39 3.39 99.83 99.83 3.39 3.39 44.58 40.00
Code.Debug 31.22 32.74 31.02 31.22 35.79 37.56 38.58 38.58 35.79 32.74 35.03 34.52
Math.Find 17.71 17.14 24.77 25.93 16.57 17.43 27.71 28.86 15.43 16.29 28.29 28.29
Retrieve.KV 0.20 0.20 13.18 32.40 0.40 0.40 32.60 47.80 1.00 1.00 62.94 73.00

Average 13.76 14.14 49.22 53.21 15.09 15.38 55.32 58.04 14.86 14.56 50.74 51.72

(a) ∞-Bench (214K tokens)

Method Infinite Stream ILM QLLM Infinite Stream ILM QLLM Infinite Stream ILM QLLM
Context Window 512 1K 2K

NarrativeQA 8.80 9.77 11.80 12.04 9.44 10.19 15.61 15.95 12.44 13.37 18.75 20.14
Qasper 9.19 9.45 16.13 15.45 10.93 10.73 19.15 19.24 14.58 15.04 20.78 19.97
MultiFieldQA 25.38 26.03 38.43 41.35 27.82 27.76 42.65 43.71 32.29 32.02 43.74 44.83
HotpotQA 19.68 20.46 28.19 27.32 22.16 21.91 32.47 34.47 23.21 23.70 34.66 36.53
2WikiMQA 12.27 12.63 13.70 15.22 13.85 13.32 16.14 16.57 17.13 17.51 17.99 19.97
Musique 6.45 6.55 11.38 12.99 7.91 7.64 14.74 15.27 9.81 11.30 12.16 17.05
GovReport 22.50 22.40 29.64 28.46 24.79 24.90 30.18 29.82 27.07 27.12 30.26 29.75
QMSum 18.74 18.93 21.55 21.69 19.23 19.19 22.03 22.27 19.67 19.52 21.55 22.36
MultiNews 23.23 23.28 25.19 24.95 25.51 25.41 26.15 26.39 25.95 26.10 26.71 26.84
TREC 38.00 39.50 45.50 47.50 30.50 29.00 48.00 49.50 31.00 28.25 47.50 48.25
TriviaQA 79.68 80.54 82.02 82.20 85.06 84.27 83.20 84.56 88.06 87.08 82.81 84.49
SAMSum 35.30 34.58 36.65 37.18 36.05 35.09 38.20 38.12 36.30 36.21 37.91 38.25
PassageRetrieval 4.40 5.54 13.29 25.04 7.92 7.92 25.67 31.04 18.21 18.46 40.29 49.67
LCC 50.06 51.59 50.14 48.61 50.94 53.27 50.83 51.10 52.20 54.95 54.59 54.52
RepoBench-P 47.38 48.04 42.92 41.32 48.85 51.31 41.75 43.21 47.36 47.60 45.08 45.90

Average 25.18 25.59 29.30 30.22 26.40 26.44 31.80 32.70 28.56 28.77 33.55 35.06

(b) Long-Bench (31K tokens)

Table 1: The results comparison based on Mistral-7B-inst-v0.2 (Jiang et al., 2023). Our results are highlighted in
teal and best results are indicated in bold.

containing LM-Infinite (Infinite) (Lin et al., 2024),
StreamingLLM (Stream) (Xiao et al., 2024b) and
InfLLM (ILM) (Xiao et al., 2024a). We test the
methods on three cache lengths: 512, 1024 (1K),
and 2048 (2K). More configuration details are in
Appendix C. Note that we add the queries before
the context to ensure the baselines also have query-
aware capabilities, as detailed in Appendix E.

4.1 Long-Bench and ∞-Bench

In this section, we utilize representative tasks
from two widely-recognized long document bench-
marks, ∞-Bench (Zhang et al., 2024) and Long-
Bench (Bai et al., 2023). The 95% quantile for
sequence lengths in ∞-Bench and Long-Bench
reaches 214K and 31K tokens. The outcomes based
on Mistral-7B-inst-v0.2 and LLaMA3-8B-inst are
detailed in Tab. 1 and Tab. 2 respectively. The fol-
lowing observations can be made from the results:
(1) Our approach shows considerable enhancement
in performance when compared to base models
(LLaMA3-8B-inst-1048K ) and that utilizing the

sliding window mechanism (StreamingLLM and
LM-Infinite) across benchmarks and context win-
dow lengths. This suggests that the context memory
in QLLM can effectively provide LLMs with ap-
propriate contextual data, facilitating efficient com-
prehension and reasoning on long sequences. (2)
Our method also exhibits a significant performance
uplift when compared to models with other lookup
mechanisms (InfLLM). This implies that previous
methods still struggle to extract valid information
from noisy contexts. Our proposed Query-aware
Context Lookup, however, can purposefully use the
query to find relevant information in the long con-
text. (3) Our technique is particularly beneficial in
scenarios with longer input contexts and relatively
smaller available context windows, as observed in
comparisons across different benchmarks and con-
text budgets. For instance, with a context window
of 512 on the ∞-bench, QLLM improved by 7.17%
compared to the current SOTA on LLaMA3, and
by 3.26% on Mistral. This illustrates our model’s
superiority in infinite stream scenarios. (4) Our
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Method LLaMA Infinite Stream ILM QLLM Infinite Stream ILM QLLM Infinite Stream ILM QLLM
Context Window -1048K 512 1K 2K

En.MC 31.0 37.12 34.93 37.77 40.17 37.12 34.93 37.99 40.17 36.24 37.12 33.19 34.50
Retrieve.PassKey 6.78 3.40 3.40 100.0 100.0 3.40 3.40 100.0 100.0 3.40 3.40 100.0 100.0
Retrieve.Number 6.78 3.39 3.39 96.61 98.98 3.39 3.39 40.68 41.19 3.39 3.39 28.64 27.63
Code.Debug 22.59 22.59 22.59 22.59 22.59 22.59 22.59 23.10 23.86 24.11 22.84 22.59 23.10
Math.Find 34.29 20.86 19.71 29.23 30.70 20.86 19.71 32.29 31.14 18.00 16.86 26.86 27.37
Retrieve.KV 6.2 0.80 0.80 24.40 61.20 0.80 0.80 57.20 70.80 1.80 1.80 80.80 84.00

Average 17.94 14.69 14.14 51.77 58.94 14.69 14.14 48.54 51.19 14.49 14.23 48.68 49.43

(a) ∞-Bench (214K tokens)

Method LLaMA Infinite Stream ILM QLLM Infinite Stream ILM QLLM Infinite Stream ILM QLLM
Context Window -1048K 512 1K 2K

NarrativeQA 23.78 14.50 14.56 19.28 19.29 14.50 14.56 19.90 20.50 16.47 15.12 19.41 25.60
Qasper 21.22 21.06 20.72 26.08 26.58 21.06 20.72 32.35 31.47 32.01 31.72 41.27 39.12
MultiFieldQA 39.89 25.66 25.79 36.01 40.12 25.66 25.79 41.46 46.44 31.63 30.99 45.89 48.30
HotpotQA 17.16 31.95 32.84 41.42 42.34 31.95 32.84 43.75 49.15 34.73 35.26 44.97 49.91
2WikiMQA 18.11 24.72 24.28 28.44 29.63 24.72 24.28 30.83 31.53 29.22 30.59 36.27 39.63
Musique 10.39 12.72 13.62 17.48 18.75 12.72 13.62 21.26 23.95 13.50 13.64 19.73 25.03
GovReport 33.76 26.25 25.93 29.26 26.83 26.25 25.93 30.44 28.73 27.84 27.83 30.68 29.80
QMSum 23.38 19.38 19.42 19.10 19.02 19.38 19.42 20.30 20.62 19.91 20.14 21.36 22.23
MultiNews 27.68 26.42 26.57 26.63 25.22 26.42 26.57 27.46 26.85 27.36 27.37 27.87 27.85
TriviaQA 87.76 82.46 82.47 80.81 77.65 82.46 82.47 85.11 85.04 88.07 87.35 88.03 87.70
SAMSum 41.89 38.28 37.91 38.73 38.83 38.28 37.91 39.59 40.40 36.93 35.97 34.86 34.97
PassageRetrieval 51.83 13.75 13.25 19.50 35.00 13.75 13.25 58.75 69.00 23.50 23.50 85.25 88.00
LCC 43.79 54.17 53.88 53.24 52.39 56.32 53.88 60.23 60.43 60.42 58.15 58.17 58.37
RepoBench-P 46.11 60.71 60.59 58.33 57.04 62.81 60.59 60.86 60.51 64.95 62.97 62.01 61.04

Average 34.77 32.29 32.27 35.31 36.34 32.59 32.27 40.88 42.47 36.18 35.76 43.98 45.54

(b) Long-Bench (31K tokens)

Table 2: The results comparison based on LLaMA3-8B-inst (AI@Meta, 2024). Our results are highlighted in teal
and best results are indicated in bold.

model’s relative improvement is more noticeable
on LLaMA3 when compared to other models. This
is because superior models can more effectively uti-
lize query information to precisely locate relevant
information in the long context.

4.2 Needle in a Haystack
Needle-in-a-Haystack (Kamradt, 2023) is a widely
used benchmark to evaluate if models can effec-
tively utilize extended context lengths. This test re-
quires the model to accurately reproduce the details
from a specific sentence (needle) that is randomly
positioned within a document that could be as long
as 128K (haystack). The results for methods based
on Mistral-7B-inst-v0.2 and LLaMA3-8B-inst are
shown in Fig. 5. The context window size is 512.
Our method accurately locates the needle within
the haystack across 1K to 128K tokens. Specifi-
cally, QLLM improved upon InfLLM by 7.0% on
Mistral and achieved 100% on LLaMA3.

BABILong (Kuratov et al., 2024) is a challenging
benchmark for evaluating the performance of mod-
els in processing arbitrarily long documents with

distributed facts. We conducted experiments on
the BABILong based on LLaMA3-8B-inst. At a
window length of 1024, our method improved by
6.1% compared to InfLLM (Fig. 7).

4.3 Time and Memory Consumption

In Fig. 6(a) and (b), we compare the time and mem-
ory consumption of different input tokens across
methods. QLLM and InfLLM are comparable in
terms of efficiency and memory usage. The time
consumed by InfLLM and QLLM increases almost
linearly with the number of input tokens, requir-
ing only 25.6 seconds and 22.3GB of memory to
process 100k tokens. In contrast, LLaMA3-8B-inst-
1048K shows a rapid increase in time and memory
consumption with the number of input tokens and
cannot handle 16k tokens on a single A800 GPU
(maximum memory of 80GB). The context length
for InfLLM and QLLM is 2048.

4.4 Ablation Experiments

To further substantiate the efficacy of Query-aware
Context Lookup, we carry out ablation studies in
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Figure 5: The comparison of performance in the Needle-in-a-Haystack task. The horizontal axis represents the
document’s length (the haystack), whereas the vertical axis specifies the location of a brief sentence (the needle)
within the document, ranging from 1K to 128K tokens. A red cell indicates the language model’s inability to recall
the needle’s information, while a green cell denotes successful recall by the model.
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Figure 6: (a) Memory and (b) Time consumption of different methods as tokens increases. (c) Ablation of query
weight β. (d) The results of methods on sequences with extremely lengthy sequence lengths.
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Figure 7: Average accuracy over QA1-QA5 tasks from
BABILong. The horizontal and vertical axes represent
the context and window length.

this section, with results displayed in Fig. 6(c). The
performance of Mistral-7B-inst-v0.2 and LLaMA3-
8B-inst exhibits a trend of initial increase followed
by a decrease as the query weight β escalates. We
select the β at the peak point as the experimental
setup, choosing β = 1 for Mistral and β = 4 for
LLaMA3. Further exploration of the primary ele-
ments within the context memory is in Appendix B.

4.5 Scaling up

In this sub-section, we’re evaluating QLLM’s ca-
pacity to handle extremely lengthy sequences by
extending the sequence length to 1024K. The base
model used is Mistral-7B-inst-v0.2 and the task is
Retrieve.KV from ∞-Bench. The outcomes are dis-
played in Fig. 6(d). According to the results, even

when the context length is scaled to 1024 thousand
tokens, QLLM consistently performs at a level
significantly above the current SOTA. This con-
firms QLLM’s ability to accurately recognize long-
distance dependencies for effective long-sequence
reasoning.

5 Conclusion

In this study, we focused on the significant chal-
lenges faced by LLMs in processing and reasoning
over extensive contexts. We introduced QLLM, an
approach inspired by human cognitive processes,
which focuses on relevant memory data and effec-
tively bypasses context input clutter. Our method
does not require additional training and can be
seamlessly integrated with any LLM. Through com-
prehensive evaluations using the LLaMA and Mis-
tral models on the Longbench, ∞-Bench, Needle-
in-a-Haystack and BABILong benchmarks, QLLM
demonstrated a marked improvement over the cur-
rent SOTA. Moreover, our QuickLLaMA can read
100K tokens within 30 seconds. The empirical re-
sults validate QLLM’s ability to capture long-range
dependencies and manage vast contexts efficiently,
paving the way for enhanced performance in LLM-
driven tasks that require long-sequence reasoning.
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Limitations

While QLLM demonstrates promising improve-
ments over the current SOTA methods in various
benchmarks, there are still some limitations. For
instance, the system’s performance relies on the
limited window size, which could lead to potential
information loss when dealing with highly com-
plex contexts. Future research should address these
limitations and explore the potential of QLLM in a
broader range of tasks and contexts.

Broader Impact

The advancements made by QLLM in understand-
ing and reasoning over broad contexts, a long-term
research focus of Large Language Models (LLMs),
could have profound implications across various
fields. Given its ability to manage lengthy se-
quences,QLLM’s potential to operate consistently
over the content of conversations spanning recent
days could make ChatBot assistants more effective
and user-friendly. Tasks such as summarizing and
answering questions based on books, reports, and
documents, as well as generating code at the repos-
itory level, could also be improved with the ability
to handle long context sequences. However, it is
crucial to recognize that the benefits of QLLM also
come with potential risks. The system’s ability to
process and understand extensive contexts could be
misused for nefarious purposes, such as creating
deepfakes or other forms of misinformation.
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otr Miłoś. 2024a. Focused transformer: Contrastive
training for context scaling. Advances in Neural In-
formation Processing Systems, 36.

Szymon Tworkowski, Konrad Staniszewski, Mikołaj
Pacek, Yuhuai Wu, Henryk Michalewski, and Pi-
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A Methodology Details

In this section, we introduce our methodology de-
tails.

A.1 Chunks
Given the constraints of GPU memory, we do not
encode the input sequence at once (Xiao et al.,
2024a); instead, we process it in chunks and gen-
erate output on a token-by-token basis. In each
computational step, the inputs are composed of
past key-value vectors P = {(ki,vi)}lPi=1 and cur-
rent token hidden vectors H = {hi}lHi=1. When
encoding, lH is equivalent to the chunk size, while
during decoding, lH is equal to one.

A.2 Positional Encoding
Traditional LLM training typically utilizes a lim-
ited set of positional encodings, which can face
difficulties with out-of-domain distribution when
extended to process longer sequences (Xiao et al.,
2024a). Furthermore, in QLLM, the current key-
value cache consists of several discontinuous text
blocks. Assigning continuous positional encod-
ings to these blocks could create mismatches and
confuse the model. Consequently, drawing upon
previous studies (Raffel et al., 2023; Su, 2023; Xiao
et al., 2024a), we assign identical positional encod-
ings to all tokens exceeding the local window size.

More precisely, we set the distance between tokens
in context memory blocks and the current tokens
as lL.

A.3 Cache Management

In order to process exceedingly lengthy sequence
streams and encapsulate the semantic relevance
with LLMs (Xiao et al., 2024a), it’s necessary to
maintain all memory blocks and reference them at
every computational stage. Given that most blocks
are seldom used, we adopt an offloading strategy,
which stores most memory blocks in CPU memory.
Only the tokens and memory blocks essential for
current operations are kept in GPU memory. Fur-
thermore, due to the semantic continuity in long
sequences where neighboring tokens often neces-
sitate similar memory blocks, we assign a cache
area in GPU memory, governed by a least recently
used policy. This method enables efficient encod-
ing of exceptionally long sequences using finite
GPU memory. Moreover, for extremely long se-
quences, the representative tokens for each block
can be offloaded to CPU memory, forming an ef-
fective k-nearest-neighbor index, thereby further
diminishing computational complexity.

B Further Exploration

QLLM leverages context memory to retrieve per-
tinent data. We delve deeper into the influence
of primary elements within the context memory.
Results are presented in Fig. 8. Conduct exper-
iments on Mistral-7B-inst-v0.2 using the default
parameters with a context window length of 1024.

B.1 Number of Representative Tokens

QLLM divides key-value vectors into memory
blocks and picks a few representative tokens from
each block to act as the segment’s representation.
The capacity of these tokens to symbolize the entire
segment semantically directly impacts the model’s
efficacy. We run tests with the different quantity of
representative tokens. The outcomes are displayed
in Fig. 8a. We note an upward trend in model
performance as the number of tokens increases,
suggesting that a larger token count can better cap-
ture the semantic essence of memory segments.
However, when the token count hits 8, a slight
performance dip is seen in HotpotQA. This drop
can be traced back to the inclusion of semantically
unrelated tokens in the segment representations.
Future work could enhance model performance by
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Figure 8: Further exploration, investigating the influence of the context memory with varying numbers of represen-
tative tokens, selected memory blocks, and memory block sizes, respectively.

developing more efficient and potent segment rep-
resentations.

B.2 Memory Block Size

Each memory block should ideally represent a con-
sistent semantic block. Oversized blocks can ob-
struct precise lookup, while undersized ones can
escalate the computational cost of memory lookup.
We test QLLM with different block sizes while
maintaining a total context length of 1024. The
outcomes are displayed in Fig. 8b. It’s evident
that the best block size changes according to the
task due to the differing characteristics of input
sequences. For instance, in NarrativeQA, a seman-
tically complete paragraph forms a semantic block,
while in Retrieve.Number, a single number does.
Using heuristic rules to segment context can result
in less-than-optimal performance. Thus, investigat-
ing how to dynamically segment context is a vital
future research direction.

B.3 Number of Memory blocks

The chosen blocks are employed to supply relevant
context to LLMs. We run tests with different num-
ber of blocks. From Fig. 8c, we see that as the
number of chosen blocks rises, there’s a significant
improvement in model performance. This is be-
cause more blocks mean a higher recall rate of rel-
evant content. However, a larger block count also
increases the time needed for memory scheduling
and the computational time for attention. Hence,
advancing lookup accuracy continues to be a key
area for enhancing the efficiency of LLMs.

Context Window Local Tokens Block Size Block Num

512 256 64 4
1024 512 64 8
2048 1024 128 8

Table 3: The parameters for different context window
length, including number of local tokens, memory block
size and number of memory blocks.

C Configuration Details

C.1 Datasets

We utilize representative tasks from following
widely-recognized long document benchmarks.

(1) ∞-Bench (Zhang et al., 2024) and Long-
Bench (Bai et al., 2023). Given that our base
models are primarily pre-trained on English cor-
pora, we employ English datasets for the evalua-
tion. These benchmarks encompass a variety of
tasks such as question answering, summarization,
few-shot learning, context retrieval, mathematical
computing, and code completion. The average doc-
ument length in ∞-Bench is 145.1K tokens, and in
LongBench, it is 12.8K tokens. The 95% quantile
for sequence lengths in these benchmarks reaches
214K and 31K tokens respectively, which signif-
icantly exceeds the maximum length of the base
models.

(2) Needle-in-a-Haystack (Kamradt, 2023), a
widely used benchmark to evaluate if models can
effectively use extended context lengths. This test
requires the model to accurately reproduce the de-
tails from a specific sentence (referred to as the
needle) that is randomly positioned within a doc-
ument that could be as long as 128K (referred to
as the haystack). We adopted the following setting:
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Please summarize the papers. 

Here are the summaries of the four papers:
Paper 1: BAL: Balancing Diversity and Novelty for Active Learning
This paper proposes a novel active learning framework called BAL (Balancing Active Learning) that balances 
diversity and novelty in selecting the most informative samples for labeling. The framework uses a cluster 
distance difference metric to identify diverse and uncertain data points and constructs adaptive sub-pools to 
balance the two. The authors demonstrate that BAL outperforms existing active learning methods on several 
benchmark datasets, achieving a 1.20% improvement in performance.
Paper 2: MoTCoder: Elevating Large Language Models with Module-of-Thought
This paper introduces MoTCoder, a framework that uses large language models to learn from basic 
programming skills and generalize to more complex tasks. The framework uses a novel metric called Cluster 
Distance Difference to identify diverse and uncertain data points and constructs adaptive sub-pools to balance 
the two. The authors demonstrate that MoTCoder outperforms existing methods on several benchmarks, 
achieving a 1.20% improvement in performance.
Paper 3: RoboCoder: Robotic Learning from Basic Skills to General Tasks with Large Language Models
The paper presents a comprehensive benchmark for robotic learning from basic skills to general tasks using 
large language models. The authors introduce a novel framework called RoboCoder that leverages large 
language models to learn robotic skills and generalize to new tasks. The framework is evaluated on several 
robotic tasks and outperforms existing methods, achieving a 36% relative improvement in performance.
Paper 4: TagCLIP: Improving Discrimination Ability of Zero-Shot Semantic Segmentation
This paper proposes a novel framework called TagCLIP that uses a combination of contrastive learning and 
trusty tokens to improve the discrimination ability of zero-shot semantic segmentation models. The framework 
uses a novel metric called Cluster Distance Difference to identify diverse and uncertain data points and 
constructs adaptive sub-pools to balance the two. The authors demonstrate that TagCLIP outperforms existing 
methods on several benchmark datasets, achieving a 7.4% improvement in performance.

Figure 9: Examples of our QuickLLaMA-8B summarizing multiple papers (Li et al., 2023c, 2024a, 2023a, 2024b).

the needle is The best thing to do in San Francisco
is eat a sandwich and sit in Dolores Park on a
sunny day., and the haystack is PaulGrahamEssays.
The retrieval question is What is the best thing to
do in San Francisco?.

(3) Scaling up. To evaluate QLLM’s capacity
to handle extremely lengthy sequences by extend-
ing the sequence length to 1024K. We use the Re-
trieve.KV task from the ∞-Bench to test its ability
to discern context in extensive sequences. This
task requires LLMs to identify a value from a
key and a dictionary, essentially locating pertinent
information within long sequences. Inputs with
{32, 64, 128, 256, 768, 1024} thousand tokens are
automatically generated. For each length, 50 in-
stances are created for assessment.

(4) BABILong is a challenging benchmark for eval-
uating the performance of models in processing
arbitrarily long documents with distributed facts.
BABI tasks are generated by simulating a set of
characters and objects engaged in various move-
ments and interactions with each other in multiple
locations. Each interaction is represented by a fact,
and the task is to answer a question using the facts
from the current simulation. The BABI tasks vary
based on the number of facts, question complexity
and the aspects of reasoning.

C.2 Baseline Methods

Our goal is to enable LLMs trained with limited
sequence lengths to comprehend extremely long
sequences without additional training. For this
purpose, we use Mistral-7B-Instruct-v0.2 (Jiang
et al., 2023) and LLaMA3-8B-inst (AI@Meta,
2024) as our base models. Mistral-7B-Instruct-v0.2
is initially pre-trained with a maximum sequence
length of 8K tokens and subsequently fine-tuned
with a maximum sequence length of 32K tokens.
LLaMA3-8B-inst is fine-tuned from LLaMA3-
8B (AI@Meta, 2024) with an 8K token maximum
length. We compare our methods with compet-
ing sliding window approaches, containing LM-
Infinite (Infinite) (Lin et al., 2024), StreamingLLM
(Stream) (Xiao et al., 2024b) and InfLLM (in-
fllm) (Xiao et al., 2024a). The same prompts are
utilized for all methods and detailed in Appendix E.

C.3 Implementation Details

Following the settings of previous works (Xiao
et al., 2024a), the number of representative tokens,
rk, is set to 4. The number of initial tokens is set to
128 for LM-Infinite, StreamingLLM, InfLLM, and
QLLM, to cover system prompts and task descrip-
tions. We test the methods on three cache lengths:
512, 1024 (1K), and 2048 (2K). The local tokens,
block size, and number of blocks for InfLLM and
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QLLM are detailed in Tab. 3.

D More Examples

In this section, we provide examples of our
QuickLLaMA-8B.

1. Figure 9 summarizes multiple papers.
2. Figure 10 summarizes paper series and dis-

covering their connection and comparison.
3. Figure 11 reviews our paper according to ACL

review guideline.
4. Figure 12 reads long novel Journey to the West

comparing with current SOTAs.

E Prompts

We utilize the same prompts for all experiments in
the main paper.

1. The prompts for Long-Bench are in Tabs. 4
and 5.

2. The prompts for ∞-Bench are in Tab. 6.
3. The prompts for Needle-in-a-Haystack Bench

are in Tab. 7.
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Please summarize the two papers. 

Here are the summaries of the two papers:
Paper 1:
The paper proposes a new approach to out-of-distribution (OOD) detection called Masked Image Modeling for 
OOD detection (MOOD). The authors argue that previous methods that use recognition-based methods to learn 
in-distribution (ID) features tend to learn shortcuts instead of comprehensive representations. In contrast, they 
show that using reconstruction-based methods can significantly improve OOD detection performance. The 
authors use masked image modeling as a pretext task to learn ID features and achieve state-of-the-art results on 
one-class OOD detection, multi-class OOD detection, near-distribution OOD detection, and few-shot outlier 
exposure OOD detection.
Paper 2:
The paper explores the importance of effective out-of-distribution (OOD) detection in visual recognition 
systems. The authors argue that previous methods often rely on recognition-based methods to learn in-
distribution (ID) features, which can lead to shortcut learning. Instead, they propose using reconstruction-
based pretext tasks to learn ID features. The authors conduct experiments with different pretext tasks and OOD 
score functions and find that feature representations pre-trained through reconstruction can significantly 
enhance performance and reduce the performance gap among different score functions. They introduce the 
MOODv2 OOD detection framework, which uses masked image modeling as a pretext task and achieves state-of-
the-art results on ImageNet and CIFAR-10.

What is the connection between the papers? 

The connection between the two papers is that they both deal with the topic of Out-of-Distribution (OOD) 
detection, which is a crucial task in machine learning. The first paper introduces a new approach called MOOD 
(Masked Out-of-Distribution Detection) that uses a reconstruction-based pretext task to learn a robust in-
distribution (ID) representation, which is distinguishable from OOD samples. The paper reports state-of-the-art 
results on various OOD detection tasks.

The second paper, MOODv2, is an extension of the first paper, and it further explores the idea of using 
reconstruction-based pretext tasks for OOD detection. The paper conducts a comprehensive analysis of 
different pretraining tasks and OOD score functions, and finds that feature representations pre-trained through 
reconstruction can significantly enhance performance and reduce the performance gap among different score 
functions. The paper introduces a new OOD detection framework, MOODv2, which uses the masked image 
modeling pretext task and achieves state-of-the-art results on various OOD detection tasks.

In summary, the two papers are connected in that they both focus on OOD detection and explore the use of 
reconstruction-based pretext tasks to learn robust ID representations. The second paper builds upon the ideas 
presented in the first paper and provides a more comprehensive analysis and a new OOD detection framework.

Please compare the papers and summarize the improvement of the 
second paper from the first paper. 

The first paper introduces a novel approach to out-of-distribution (OOD) detection using masked image 
modeling as a pretext task, which is called MOOD. The paper shows that MOOD outperforms previous state-of-
the-art (SOTA) methods on one-class, multi-class, near-distribution, and few-shot outlier exposure OOD 
detection tasks.

The second paper, MOODv2, builds upon the first paper and makes several improvements. The main 
contributions of MOODv2 are:
1. Improved AUROC: MOODv2 achieves a remarkable 14.30% increase in AUROC on ImageNet, reaching 
95.68%, and a 3.56% increase on CIFAR-10, reaching 98.20%.
2. Reduced FPR95: MOODv2 reduces the FPR95 by 44.93% on ImageNet and 15.14% on CIFAR-10.
3. Improved performance on multi-class OOD detection: MOODv2 achieves an impressive AUROC of 99.98% 
on CIFAR-10 and 95.68% on ImageNet, outperforming previous SOTA methods.
4. Robustness to different score functions: MOODv2 shows that even simple score functions can perform as 
well as complex ones when using reconstruction-based pretext tasks, indicating the robustness of the approach.

The improvements in MOODv2 can be attributed to the following:
1. Comprehensive analysis: MOODv2 conducts a comprehensive analysis of different pretraining tasks and 
OOD score functions, which helps to identify the most effective combination.
2. Improved pretext task: MOODv2 uses the masked image modeling pretext task, which is more effective than 
the original masked image modeling task used in the first paper.
3. Better feature representation: MOODv2's feature representation is more robust and effective, which is 
reflected in the improved AUROC and reduced FPR95.

Overall, MOODv2 builds upon the foundation laid by the first paper and makes significant improvements in 
terms of performance, robustness, and effectiveness.

Figure 10: Examples of our QuickLLaMA-8B summarizing paper series and discovering their connection and
comparison (Li et al., 2023b, 2024c).
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Please review the paper based on the review guideline. Below is the review 
guideline for the Association for Computational Linguistics (ACL). {review guideline} 

Paper Summary.
The paper presents QuickLLaMA (Q-LLM), a query-aware inference acceleration method for 
large language models (LLMs). The authors aim to address the challenge of processing and reasoning over 
extensive contexts by focusing on relevant memory data and bypassing context input clutter. Q-LLM is designed 
to be seamlessly integrated with any LLM and does not require additional training. The paper evaluates Q-LLM 
using the LLaMA and Mistral models on the Longbench and $\infty$-Bench benchmarks, demonstrating a 
marked improvement over the current state-of-the-art, particularly in handling sequences of significant length. 
Summary of Strengths. 1. The paper addresses a saignificant challenge in the field of LLMs, which is the ability 
to process and reason over extensive contexts. 2. The proposed method, Q-LLM, is novel and innovative, and its 
ability to focus on relevant memory data and bypass context input clutter is a significant contribution. 3. The 
paper provides comprehensive evaluations using multiple benchmarks, including the Longbench and $\infty$-
Bench, which demonstrates the effectiveness of Q-LLM. 4. The authors provide a clear and concise explanation 
of the method and its advantages, making it easy to understand for readers. 
Summary of Weaknesses. 1. The paper assumes that the input sequences are long and complex, which may not 
be the case for all applications. It would be beneficial to discuss the limitations of the method and potential 
future work to address these limitations. 2. The paper does not provide a detailed analysis of the computational 
complexity of Q-LLM, which may be important for large-scale applications. 3. The paper could benefit from 
more discussion on the potential applications of Q-LLM, beyond the specific benchmarks used in the evaluation. 

Comments/Suggestions/Typos. 1. The paper could benefit from a more detailed introduction to the problem of 
processing and reasoning over extensive contexts, including a review of the current state-of-the-art methods. 2. 
The authors could provide more information on the training data and hyperparameters used for the LLaMA and 
Mistral models. 3. The paper could benefit from more visualizations, such as plots or diagrams, to help illustrate 
the results and make them more accessible to readers. 
Soundness. I would rate the soundness of this study as 4.5 out of 5. The paper provides a clear and concise 
explanation of the method and its advantages, and the evaluations using multiple benchmarks demonstrate the 
effectiveness of Q-LLM. However, the paper assumes that the input sequences are long and complex, which may 
not be the case for all applications, and the computational complexity of Q-LLM is not fully discussed. 
Overall Assessment. I would rate the overall assessment of this paper as 4.5 out of 5. The paper presents a 
novel and innovative method for processing and reasoning over extensive contexts, and the evaluations 
demonstrate its effectiveness. However, the paper could benefit from more discussion on the limitations and 
potential applications of Q-LLM, as well as more visualizations to help illustrate the results. 
Best Paper.
I would not recommend this paper for an  "outstanding paper " award, but it is a strong contender 
for publication at an ACL event. 
Reviewer Confidence. I am confident in my evaluation, having carefully read the paper and evaluated its 
strengths and weaknesses.

Figure 11: Examples of our QuickLLaMA-8B reviewing our paper according to ACL review guideline.
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Read the book and answer my question: Why Sun Wukong presents undefeated strength 
when he caused havoc in heaven while he waslatter defeated by many monsters during 
the journey to the west? 

According to the book, Sun Wukong, also known as the Monkey King, presents undefeated strength when he 
caused havoc in heaven because he was a powerful and arrogant immortal who had not yet cultivated his 
mind and had not yet understood the concept of the Buddhist teachings. He was a rebellious and mischievous 
being who enjoyed causing trouble and chaos. However, during the Journey to the West, Sun Wukong is 
defeated by many monsters and demons because he has undergone a transformation. He has been converted 
to Buddhism and has learned to cultivate his mind and understand the concept of the Buddhist teachings. 
He has also learned to use his powers for good and to protect his friends and companions. In other words, Sun 
Wukong's undefeated strength in heaven was a result of his arrogance and lack of understanding, while 
his defeats during the Journey to the West were a result of his growth and development as a character. He has 
learned to use his powers wisely and to understand the importance of compassion and self-discipline. It's also 
worth noting that Sun Wukong's defeats during the Journey to the West are not necessarily a reflection of his 
physical strength, but rather a reflection of his spiritual growth and development. He is still a powerful and 
formidable character, but he has learned to use his powers in a more responsible and compassionate 
way.

According to the book, Sun Wukong, also known as the Monkey King, presents undefeated strength when he 
causes havoc in heaven because he is a powerful and arrogant immortal who has mastered the art of magic 
and has the ability to transform himself into various forms. He is confident in his abilities and believes that he 
is invincible. However, during the journey to the West, he is defeated by many monsters and demons because 
he is not as powerful as he thinks he is. He is also reckless and impulsive, which often gets him into trouble. 
Additionally, he is not as skilled in the art of magic as he thinks he is, and his powers are not as effective 
against the monsters and demons they encounter. In particular, his defeat at the hands of the Demon King of 
the Underworld, who is also his uncle, is a significant turning point in the story. The Demon King is able to 
defeat Sun Wukong because he has mastered the art of magic and has the power to control the elements. Sun 
Wukong, on the other hand, is unable to defeat the Demon King because he is not as powerful or skilled in 
magic. Overall, the book suggests that Sun Wukong's undefeated strength in heaven is an illusion, and that he 
is not as powerful as he thinks he is. His defeats during the journey to the West serve as a humbling experience 
for him, and he learns to be more humble and respectful of others.

InfLLM

According to the book, Sun Wukong, also known as the Monkey King, presents undefeated strength when he 
causes havoc in heaven because he is a powerful and arrogant demon who has not yet been defeated. He is able 
to wreak havoc in heaven because he is not yet bound by the rules of the Buddhist scriptures and is able to use 
his magical powers to defy the gods. However, during the journey to the West, Sun Wukong is defeated by 
many monsters and demons because he is no longer invincible. He is forced to confront the consequences of 
his own arrogance and is humbled by his experiences. He is defeated by the Red Boy, the White Bone Demon, 
and other powerful enemies, and is forced to flee and hide. The reason for this change in Sun Wukong's 
fortunes is that he has been bound by the Buddhist scriptures and is no longer able to use his magical powers 
to defy the gods. He is also forced to confront the consequences of his own arrogance and is humbled by his 
experiences.

Stream
LLM

According to the book, Sun Wukong, also known as the Monkey King, presents undefeated strength when he 
causes havoc in heaven because he is a powerful and arrogant demon who has not yet been defeated. He is able 
to wreak havoc in heaven because he is not yet bound by the rules of the Buddhist scriptures and is able to use 
his magical powers to defy the gods. However, during the journey to the West, Sun Wukong is defeated by 
many monsters and demons because he is no longer invincible. He is forced to confront the consequences of 
his own arrogance and is humbled by his experiences. He is defeated by the Red Boy, the White Bone Demon, 
and other powerful enemies, and is forced to flee and hide. The reason for this change in Sun Wukong's 
fortunes is that he has been bound by the Buddhist scriptures and is no longer able to use his magical powers 
to defy the gods. He is also forced to confront the consequences of his own arrogance and is humbled by his 
experiences.

LM-
Infinite

Figure 12: Examples of our QuickLLaMA-8B reading long novel Journey to the West comparing with current
SOTAs
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Dataset Prompt

NarrativeQA You are given a story, which can be either a novel or a movie script, and a question. Answer the question
asconcisely as you can, using a single phrase if possible. Do not provide any explanation.
Question: {input}

Story: {context}
Now, answer the question based on the story asconcisely as you can, using a single phrase if possible. Do not
provide any explanation.
Question: {input}
Answer:

Qasper You are given a scientific article and a question. Answer the question as concisely as you can, using a single
phrase or sentence if possible. If the question cannot be answered based on the information in the article, write
"unanswerable". If the question is a yes/no question, answer "yes", "no", or "unanswerable". Do not provide
any explanation.
Question: {input}

Article: {context}
Answer the question based on the above article as concisely as you can, using a single phrase or sentence if
possible. If the question cannot be answered based on the information in the article, write "unanswerable". If
the question is a yes/no question, answer "yes", "no", or "unanswerable". Do not provide any explanation.
Question: {input}
Answer:

MultiFieldQA Read the following text and answer briefly.
Question: {input}

{context}
Now, answer the following question based on the above text, only give me the answer and do not output any
other words.
Question: {input}
Answer:

HotpotQA Answer the question based on the given passages. Only give me the answer and do not output any other words.
The following are given passages.
Question: {input}

{context}
Answer the question based on the given passages. Only give me the answer and do not output any other words.
Question: {input}
Answer:

2WikiMQA Answer the question based on the given passages. Only give me the answer and do not output any other words.
The following are given passages.
Question: {input}

{context}
Answer the question based on the given passages. Only give me the answer and do not output any other words.
Question: {input}
Answer:

Musique Answer the question based on the given passages. Only give me the answer and do not output any other words.
The following are given passages.
Question: {input}

{context}
Answer the question based on the given passages. Only give me the answer and do not output any other words.
Question: {input}
Answer:

GovReport You are given a report by a government agency. Write a one-page summary of the report .
Report:
{context}

Now, write a one-page summary of the report.
Summary:

Table 4: The prompt for each dataset in Long-Bench (Bai et al., 2023). Yellow highlights indicate the query, while
a gray background represents the long context.
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Dataset Prompt

QMSum You are given a meeting transcript and a query containing a question or instruction. Answer the query in one
or more sentences.
Query: {input}
Transcript:
{context}

Now, answer the query based on the above meeting transcript in one or more sentences.
Query: {input}
Answer:

MultiNews You are given several news passages. Write a one-page summary of all news .
News:
{context}

Now, write a one-page summary of all the news.
Summary:

TREC Please determine the type of the question below.
{input}

Here are some examples of questions.
{context}

Now please determine the type of the question below.
{input}

TriviaQA Answer the question based on the given passage. Only give me the answer and do not output any other
words.
{input}

The following are some examples.
{context}

Now answer the question based on the given passage. Only give me the answer and do not output any other
words.
{input}

SAMSum Summarize the dialogue into a few short sentences.
{input}

The following are some examples.
{context}

{input}

PassageRetrieval Here are 30 paragraphs from Wikipedia, along with an abstract. Please determine which paragraph the
abstract is from.
Abstract:
{input}

Paragraphs:
{context}

Please enter the number of the paragraph that the abstract is from. The answer format must be like "Paragraph
1", "Paragraph 2", etc.
The answer is:

LCC Please complete the code given below .

{context} Next line of code:

RepoBench-P Please complete the code given below .

{context} {input}
Next line of code:

Table 5: The prompt for each dataset in Long-Bench (Bai et al., 2023) (continued). Yellow highlights indicate the
query, while a gray background represents the long context.



528

Dataset Prompt

En.MC Read the book and answer the question.Only one of the following options is correct, tell me the answer
using one single letter (A, B, C, or D). Don’t say anything else.
Question: {question}
A. {OPTIONA}
B. {OPTIONB}
C. {OPTIONC}
D. {OPTIOND}
{context}

Question: {question}
Only one of the following options is correct, tell me the answer using one single letter (A, B, C, or D).
Don’t say anything else.
A. {OPTIONA}
B. {OPTIONB}
C. {OPTIONC}
D. {OPTIOND}

Retrieve.PassKey There is an important info hidden inside a lot of irrelevant text. Find and memorize it: {input}

{context}
{input}

Retrieve.Number There is an important info hidden inside a lot of irrelevant text. Find and memorize it: {input}

{context}
{input}

Code.Debug There is ONLY ONE function in the large project that is deliberately made to include an obvious error.
Please find the function that contains the most obvious errors. I will give you four options to narrow your
scope. You can inspect the options and think. Eventually, tell me the answer using one single letter (A, B,
C, or D).
Which funtion has deliberate error?

A. {OPTIONA}
B. {OPTIONB}
C. {OPTIONC}
D. {OPTIOND}
{context}

Which funtion has deliberate error?
A. {OPTIONA}
B. {OPTIONB}
C. {OPTIONC}
D. {OPTIOND}
Give me your answer for the function that has the deliberate and obvious error in A, B, C, or D. Your answer
MUST be chosen from one of the four options without any explanation. If you cannot determine answers
accurately, you also MUST provide the answer you think is most likely. Absolutely do not say you do not
know or you need more information.

Math.Find {prefix}

{context}
{input}

Retrieve.KV Extract the value corresponding to the specified key {key} in the JSON object below.

{context}
{input}

Table 6: The prompt for each dataset in ∞-Bench (Zhang et al., 2024) (continued). Yellow highlights indicate the
query, while a gray background represents the long context.

Dataset Prompt

Needle in a Haystack Based on the content of the book, Question: What is the best thing to do in San Francisco? <book>

<context> </book>.

Table 7: The prompt for each dataset in Needle-in-a-Haystack Benchmark (Kamradt, 2023). Yellow highlights
indicate the query, while a gray background represents the long context.
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