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Abstract

Despite significant advances in automatic
speech recognition (ASR) accuracy, challenges
remain. Naturally occurring conversation of-
ten involves multiple overlapping speakers, of
different ages, accents, and genders, as well
as noisy environments and suboptimal audio
recording equipment, all of which reduce ASR
accuracy. In this study, we evaluate the ac-
curacy of state of the art open source ASR
systems across diverse conversational speech
datasets, examining the impact of audio and
speaker characteristics on WER. We then ex-
plore the potential of ASR ensembling and post-
ASR correction methods to improve transcrip-
tion accuracy. Our findings emphasize the need
for robust error correction techniques and for
continuing to address demographic biases to
enhance ASR performance and inclusivity.

1 Introduction

Automatic Speech Recognition (ASR) technology
has witnessed significant advancements in recent
years, primarily due to the introduction of powerful
transformer models trained on large datasets. These
advancements have brought ASR systems close
to human accuracy for conversational telephone
speech (Stolcke and Droppo, 2017). However, ASR
systems still face challenges in transcribing spon-
taneous human conversations (Szymanski et al.,
2020). In particular, naturally occurring conversa-
tion tends to involve multiple overlapping speakers,
of different ages, accents, and genders, as well as
noisy environments and suboptimal audio collec-
tion equipment. Transcription accuracy of state-
of-the-art ASR systems varies significantly with
audio characteristics such as accent, gender, over-
lapping speech, and background noise (Tatman
and Kasten, 2017; Goldwater et al., 2008; Liesen-
feld et al., 2023; Chen et al., 2022). Gaining a

“Work done while at Colby College

Tahiya Chowdhury
Colby College
tchowdhu@colby. edu

Amanda Stent
Colby College
amanda.stent@gmail.com

deeper understanding of how these factors influ-
ence ASR performance is essential for improving
both accuracy and inclusivity.

To address these challenges, various ASR er-
ror correction methods have been explored. Tradi-
tional approaches like ROVER reflect the classic
ASR pipeline comprising acoustic and language
models (Fiscus, 1997). With the shift towards end-
to-end (E2E) ASR systems, new transcription er-
ror correction methods have emerged (Chan et al.,
2016). These methods often leverage large-scale
pre-trained language models like BERT (Devlin
et al., 2019) and T5 (Raffel et al., 2020) to enhance
correction capabilities, especially in contexts with
limited labeled speech data. However, previous
studies have not extensively investigated error cor-
rection across ensembles of ASR systems.

In this study, we: (1) evaluate the accuracy of
state-of-the-art open-source ASR systems across
diverse conversational speech conditions, exploring
the impact of speaker age, gender, accentedness,
and background noise level; (2) examine the poten-
tial of ASR ensembling plus post-ASR correction
methods to increase transcription accuracy; and (3)
we release a dataset comprising the results from six
different ASR systems across six datasets with vary-
ing audio characteristics, supporting reproducible
research and encouraging further exploration of
ASR ensembling strategies.'

2 Related Work

2.1 Disparities in ASR Performance

Previous research has highlighted disparities in
ASR performance based on speaker attributes.
Studies have demonstrated that gender, age, and ac-
cent can significantly influence WER. For instance,
certain studies found female speech to be more
accurately recognized than male speech, suggest-
ing gender disparities in ASR performance (Adda-
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Decker and Lamel, 2005; Goldwater et al., 2008;
Feng et al., 2024). Conversely, (Garnerin et al.,
2019; Tatman, 2017) observed a lower WER for
male speech in specific contexts. Some studies re-
ported no significant differences based on gender,
highlighting the variability of ASR performance
across different systems and datasets (Tatman and
Kasten, 2017). Age-related differences in WER
have also been documented, with findings indi-
cating that child speech poses more challenges
for ASR systems compared to adult speech due
to physiological and behavioral differences (Jain
et al., 2023). Accent presents another significant
challenge, with systems often mis-recognizing the
speech of speakers with accents divergent from the
"standard" variant of the language used in train-
ing datasets (Tatman and Kasten, 2017; Koenecke
et al., 2020; Dorn, 2019; DiChristofano et al., 2023;
Tadimeti et al., 2022; del Rio et al., 2023).

While the impact of individual audio character-
istics on ASR performance has been extensively
studied, less is known about how open-source
ASRs with different architectures, such as Hidden
Markov Models (HMM), self-supervised learning
(SSL) models, speech foundation models, and E2E
models perform across diverse datasets featuring
various audio characteristics. In this study, we aim
to fill this gap by comparing the transcription capa-
bilities of six different open-source ASR systems
across six conversational speech datasets.

2.2 Transcription Error Correction

Error correction models focus on detecting and
correcting errors within ASR hypotheses. Tra-
ditional methods like ROVER use multiple hy-
pothesis alignment and voting mechanisms to gen-
erate the best hypothesis (Fiscus, 1997). Other
early error correction methods included statistical
correction and statistical machine translation sys-
tems, and ontology learning (Cucu et al., 2013;
D’Haro and Banchs, 2016; Anantaram et al., 2018).
More recently, non-autoregressive correction mod-
els have shown promise (Leng et al., 2021b,a,
2023). Following the trend of E2E ASR systems,
recent methods combine these components in an
E2E manner (Guo et al., 2023; Hrinchuk et al.,
2020; Guo et al., 2019). Pre-trained language mod-
els such as TS, BERT, and BART have also shown
promise in correcting ASR transcription errors (Ma
et al., 2023a; Li et al., 2024, 2021; Zhao et al.,
2021; Ma et al., 2023b). Finally, generative large
language models (LLMs) like GPT-3.5 and LLaMA

have also been explored for this purpose (Ma et al.,
2023c; Chen et al., 2023). Moreover, using multi-
ple hypotheses—such as an n-best list—from a sin-
gle ASR system can enhance the contextual frame-
work for error correction models, allowing for im-
proved correction capabilities (Zhu et al., 2021;
Leng et al., 2021a). In this study, we compare dif-
ferent approaches to ASR error correction while
combining hypotheses from multiple ASR systems.

3 Data & Systems

Dataset selection. We chose datasets to ensure a
comprehensive and accurate evaluation of conversa-
tional speech. Priority was given to datasets that are
not commonly used in the training of ASR models.
The datasets include child speech, different levels
of noise, varying number of speakers, and multiple
accents of English (Table 1).

On dataset complexity, we recognize that the
multidimensional nature of complexity is difficult
to capture in a 2-D table. For instance, child speech
is challenging not only due to its pitch and acous-
tic features but also due to variability in linguistic
and pronunciation characteristics (Lee et al., 1997,
1999). Two-speaker audio introduces multiple con-
versational dynamics and conditions, such as over-
lapped speech and acoustic variability related to
changes in speaker characteristics like gender. In
comparison, single-speaker accented speech lacks
these dyadic conversational elements, making the
former more complex (Takaaki et al., 2013). Our
dataset selection reflects these nuances, ordered in
decreasing order of complexity from top to bottom:

* Sawyer (Sawyer, 2013) — unstructured play
sessions involving 20 children.

* Cameron (Starke, 2023) — structured interac-
tions between an adult and a child in a con-
trolled, quiet environment.

* CHIiME-5 (Barker et al., 2018) — multi-
speaker conversations in noisy environments,
such as dinner table recordings.

e AMI (Mccowan et al., 2005) — meetings in-
volving multiple speakers.

e Covid conversations (Romero and Paxton,
2023) — two-speaker interactions from experi-
mental psychology sessions.

* SPGISpeech (O’Neill et al., 2021) — earnings
calls.

ASR system selection. We chose systems based
on their performance, architecture diversity, and
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Data Noisy # of Accented  Child Total Length
Dataset Split audio? speakers speech? speech? (Sample Length)
Sawyer All 20 v’ 24 h (23 min)
Cameron Owav 2 v’ 28 h (20 min)
CHiME-5 dev v’ 4 v’ 4.5 h (22 min)
AMI IHM-test v’ 4 100 h (16 min)
Covid Conversations All 2 1.5 h (58 min)
SPGISpeech test 1 v’ 5,000 h (61 min)

Table 1: Characteristics of each dataset

representation of both traditional and modern ap-
proaches to speech recognition:

* Kaldi (Librispeech) (Povey et al., 2011) — A
HMM system trained on 960 hours of Lib-
rispeech data.

o Wav2Vec2 (Large-960h) (Baevski et al., 2020)
— A transformer-based SSL model pre-trained
on unlabeled data and fine-tuned on 960 hours
of labeled Librispeech data.

* HuBERT (large-1s960-ft) (Hsu et al., 2021) —
Another transformer-based SSL model, also
fine-tuned on 960 hours of Librispeech data.

* Whisper (medium.en) (Radford et al., 2023)
— A transformer-based speech foundation
model, multilingual, specifically fine-tuned
for English language tasks.

* Distil-Whisper (medium.en) (Gandhi et al.,
2023) [DWhisper] — A distilled version of the
Whisper medium model.

* NVIDIA (Conformer-Transducer X-
Large) (Gulati et al., 2020) — A conformer-
based E2E model, trained on several
thousand hours of English speech including
Librispeech.

4 Metrics
4.1 Word Error Rate

Word error rate (WER) is a common metric used
to evaluate the performance of ASRs. It quantifies
the percentage of errors in the transcription gener-
ated by the ASR system compared to a reference
transcription.

4.2 Stop Words Filtered WER (swf-WER)

Previous research has identified limitations in the
utility of WER for accurately reflecting speech un-
derstanding (Wang et al., 2003). To address this,
we also use Stop Words Filtered WER, swf-WER,
which calculates WER excluding stop words (Garo-
folo et al., 1998). We used the part of speech tags

provided by the spaCy NLP library to identify stop
words in transcripts (Honnibal et al., 2020).

5 Methods

Figure 1 shows a visual presentation of our ap-
proach, which we describe below.

5.1 Dataset preprocessing

5.1.1 Generating turn-level audio files

ASR over long audio samples is more error-prone
than ASR over short audio samples, so we con-
structed turn-level samples for our experiments.
The SPGI and AMI datasets each contain a single
utterance per audio file. However, for the other
datasets, each recording contains an entire conver-
sation. For the CHiME-5, Sawyer, and Cameron
datasets, which include turn-level timestamps, we
used ffmpeg (Tomar, 2006) to extract individual
turns. The Psychology dataset came with non-
timestamped turn-level transcripts, so we used the
Montreal Forced Aligner (McAuliffe et al., 2017)
to create time-aligned transcripts, from which we
extracted turn-level timestamps.

5.1.2 Removing paralinguistic transcriptions

Transcriptions of the CHiME-5, Cameron, and
Sawyer datasets included paralinguistic annota-
tions such as "laugh" or "xxx" for unintelligible
utterances. To focus on the linguistic content, we
excluded these annotations from our analysis. How-
ever, the audio was retained as it provided more
context information, and exposed the systems to
real-world conditions and various speaker condi-
tions (Shriberg, 2005; Schuller and Batliner, 2013).
The Cameron dataset, in particular, offers both pho-
netic and semantic transcriptions. We chose to use
the semantic transcriptions to align with modern
ASR systems that use language models to gener-
ate hypotheses. For instance, phonetic transcrip-
tions like "ah a gobritha [: gorilla]" were converted
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Figure 1: Method diagram

to their semantic equivalents, "ah a gorilla." It is
important to note that this method might not be
advantageous for ASR systems like Kaldi, which
predominantly rely on acoustic models to produce
transcriptions.

5.2 Random Sampling of Dataset

We randomly sampled 400 audio turns from each
dataset. All audio files were then resampled to a
mono channel at 16 kHz to meet the sample rate
requirements of the ASR systems. The total audio
duration for these 400 turns from each dataset is
summarized in Table 1.

5.3 Feature Extraction from Each Sample

With limited speaker metadata available for our
datasets, we used machine learning based models to
estimate gender, age, and accent (Zuluaga-Gomez
et al., 2023; Burkhardt et al., 2023; Ferreira, 2023).
We measured noise levels using Power Spectral
Density (PSD) estimates via Welch’s method from
scipy, and computed both audio duration and sylla-
bles per second (PyPI, 2024).

6 Analysis of ASR Performance

In this section, we analyze the effects of various
speaker and audio characteristics on WER. In sub-
section 6.1, we look at the overall accuracy of each
recognizer. In subsection 6.2, we analyze differ-
ences in WER due to continuous features (duration,
speaking rate, noise level, age). In subsection 6.3,
we analyze differences in WER due to categorical
features (accentedness and speaker gender).

6.1 Comparative WER across different ASR
systems

A comparative analysis of WER across different
ASR systems is shown in Figure 2. We plot WER
on a logarithmic scale due to its wide range and
order datasets from the most to the least complex
from left to right (see Table 1 for the features we
consider as contributing to dataset complexity),
with the rightmost column representing the results
for all six datasets combined.

Performance Trends. As expected, we observe a
decrease in WER as we move from the more com-
plex datasets to the simpler ones. Speech Foun-
dation models, such as DWhisper and Whisper,
generally exhibit lower WER, suggesting a higher
robustness to diverse audio characteristics. The
E2E NVIDIA ASR has a slightly higher WER on
simpler datasets, but a lower WER on the most
complex dataset.

Variability in Performance. The error bars, rep-
resenting standard deviations, indicate variability
in WER for each system across the datasets. Sys-
tems exhibit higher variability (larger error bars) for
more complex datasets like Sawyer and CHiME-5,
implying fluctuating performance in challenging
conditions. Whisper, in particular, shows extended
error bars in these datasets, which is indicative of
issues including hallucination.

ASR Recommendation. The NVIDIA ASR con-
sistently achieves the lowest mean WER across all
datasets, followed by DWhisper. For highly com-
plex and noisy conditions, the E2E NVIDIA ASR
offers reliable performance with the least variabil-
ity. In contrast, DWhisper may be more suitable
for environments with less complex settings.

In Table 2, we analyze swf-WER:
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Dataset Mean Standard Deviation Minimum Maximum
WER swf-WER WER swf-WER WER swf-WER WER swf-WER
Sawyer 1.98 1.83 1.50 1.36 0.65 0.64 4.44 4.06
Cameron 1.10 1.15 0.56 0.60 0.59 0.61 1.94 2.07
CHiME-5 1.06 0.96 0.64 0.57 0.39 0.39 1.96 1.77
AMI 0.55 0.57 0.39 0.36 0.16 0.21 1.08 1.05
Covid 0.61 0.66 0.30 0.31 0.31 0.35 1.05 1.10
SPGI 0.17 0.21 0.21 0.24 0.02 0.05 0.57 0.66

Table 2: Comparison of WER by dataset

Lower swf-WER for Complex Datasets. In
complex environments represented by Sawyer,
Cameron, and CHiME-5, swf-WER is consistently
lower than WER. This suggests that errors involv-
ing stop words, which are typically less acoustically
distinct, are more prevalent in noisy settings, thus
disproportionately affecting the perceived accuracy
of ASR systems. Removing these words from the
error calculation refocuses the metric on content
that significantly impacts comprehension.

Consistent Performance for Simpler Datasets.
Datasets like AMI, Covid, and SPGI, which exhibit
lower and more stable WERSs, reflect consistent
ASR performance. For these acoustically simpler
datasets, swf-WER is slightly higher than WER,
possibly indicating greater linguistic complexity
such as a greater variety of named entities in these
datasets.

6.2 Impact of Continuous Features on WER

We analyzed the impact of continuous audio fea-
tures including speaking rate (syllables per second),
speaker age, noise level, and audio duration by fit-

ting regression models. After visualizing the data,
we used cubic regression functions to model these
relationships. However, the results for noise level
and duration were not statistically significant, likely
due to data clustering within a narrow value range
and limited variability. Despite attempts to rescale
noise level using normalization, log transformation,
and standardization, the regression remained statis-
tically insignificant. This is likely due to data clus-
tering within a narrow value range, a similar issue
was observed with audio duration, where limited
variability was present due to the uniform sampling
of audio lengths. Therefore, this section focuses
on the impact of speaking rate and speaker age on
WER. Full regression equations, R? values, and p-
values are provided in the appendix (Section A.1).

6.2.1 Effect of Speaking Rate on WER

Table 3 shows the local minimizer, R? value, and
Bonferroni corrected p-value for the cubic coeffi-
cient for each ASR system. The local minimizer
represents the number of syllables per second that
achieves the local minimum WER according to the
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Local Corrected
System Minimizer R’ p-value
Kaldi 6.851 0.128 <0.01
Wav2Vec 6.832 0.176 <0.01
HuBERT 6.668 0.178 <0.01
Whisper 6.810 0.013 0.085
DWhisper 6.276 0.077 <0.01
NVIDIA 6.430 0.103 <0.01

Table 3: Impact of syllables per second on WER

Local Corrected
System  Minimizer = R? p-value
Kaldi 24.208 0.031 0.011
Wav2Vec 22.810 0.052 <0.01
HuBERT 28.148 0.070 <0.01
Whisper 32.274 0.012 1.000
DWhisper 31.898 0.036 0.035
NVIDIA 24.428 0.122 <0.01

Table 4: Effect of age on WER across systems

regression equation. We observe that most systems
achieve the minimum WER when the speaking rate
is between 6.4 and 6.8 syllables per second, indi-
cating optimal ASR performance around this range.

6.2.2 Effect of Speaker Age on WER

Speaker age significantly impacts ASR system per-
formance (Table 4). The local minimizer repre-
sents the age at which the ASR system achieves the
lowest WER according to the regression equation.
Most systems achieve optimal performance with
speakers in their 20s, aligning with previous studies
indicating lower WER for young to middle-aged
adults (Werner et al., 2019). However, we did not
obtain statistically significant results for DWhisper,
Whisper, or Kaldi, suggesting that these systems
are less sensitive to speaker age.

6.3 Impact of Discrete Features on WER

We analyzed the impact of discrete audio fea-
tures using the student’s t-test. To control for any
false discovery rate arising from multiple tests, we
applied Holm’s sequential Bonferroni procedure
(Benjamini and Hochberg, 1995).

6.3.1 Speaker Overlap and WER Variability

The data in Table 5 highlights the impact of speaker
overlap on ASR accuracy. The recent transformer-
based ASR systems, such as Whisper and DWhis-

Mean Corrected
System Difference  p-value
Kaldi -0.632 <0.01
Wav2Vec -0.620 <0.01
HuBERT -0.707 <0.01
Whisper -0.334 1.00
DWhisper -0.240 1.00
NVIDIA -0.065 1.00

Table 5: Effect of speaker overlap on WER

Mean Corrected
System Difference  p-value
Kaldi 0.636 <0.01
Wav2Vec 0.691 <0.01
HuBERT 0.725 <0.01
Whisper 1.040 0.04
DWhisper 0.417 <0.01
NVIDIA 0.291 <0.01

Table 6: Gender-related differences in WER

per, as well as the conformer-based NVIDIA sys-
tem, did not show a significant mean difference
under speaker overlap, indicating their robustness
in challenging conditions. In contrast, Kaldi,
Wav2Vec, and HuBERT exhibited significant mean
differences, suggesting lower performance when
dealing with overlapping speech.

6.3.2 Gender-Related Differences in WER

The analysis of gender-related differences in WER
demonstrates a bias in ASR system performance
against male speakers (coded as 1), with all ASR
systems showing higher WER for male voices com-
pared to female voices (coded as 0). There are
positive mean differences across the board in Table
6, which are statistically significant, except for the
Whisper model, suggesting that Whisper is more
robust to both male and female speakers.

6.3.3 Accent-Related WER Discrepancies

One would expect non-general American accents
(coded as 1) to be associated with higher WER
compared to the general American accent (coded
as 0). However, our results did not show this trend.
None of the ASRs showed statistical significance
in the mean WER between non-general American
and general American accents. This lack of signif-
icance could be due to the subtle nature of accent
differences or to the machine learning methods
used to classify these accents.
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Mean Corrected
System Difference  p-value
Kaldi 0.0165 1.00
Wav2Vec -0.088 1.00
HuBERT -0.075 1.00
Whisper 0.279 1.00
DWhisper 0.012 1.00
NVIDIA -0.014 1.00

Table 7: Effect of accent on WER

System 1
Hypothesis

Alignment Voting
Module Module

Best Scoring
Output

System 2
Hypothesis

System N
Hypothesis

Figure 3: ROVER

7 Transcription Error Correction

In this section, we evaluate three ASR error correc-
tion methods described in the literature (see Sec-
tion 2). For each method, we provide the one-best
hypothesis from each of the ASR systems described
in Section 3.

7.1 Recognizer Output Voting Error
Reduction (ROVER)

ROVER combines multiple ASR outputs into a sin-
gle word transition network (Fiscus, 1997). This
network is then processed through a voting mech-
anism that identifies the most reliable output se-
quence based on the lowest aggregate score (Fig-
ure 3). The "voting" or rescoring process reconciles
differences in ASR system outputs.

7.2 Fine Tuned T5 (Ft-T5)

We finetuned the T5 transformer model to perform
ASR error correction over transcripts from an en-
semble of ASR models, inspired by the approach
described in (Ma et al., 2023a). As described in
Section 5, we processed 400 audio turns from each
of the 6 datasets through each of the 6 ASR sys-
tems, leading to 6 ASR transcripts for a total of
2400 audio files. We split these ASR transcripts
into ten folds. In round-robin fashion, we then se-
lected each fold for testing, finetuning TS on the
rest. TS was finetuned using concatenated ASR
transcripts and their corresponding word-level con-
fidence scores, with the accurate transcription serv-
ing as the target output, as shown in Figure 4.

Corrected
Transcription

f

Decoder (T5)

f

Encoder (T5)

f

hyp1
conf

<end>

<sep> | hyp1l | <sep> <sep>

Figure 4: T5 fine-tuning

/ “Perform error correction on the outputs generated by\
Automatic Speech Recognition (ASR) systems. The ASR
hypotheses are as follows:

KALDI: XXX

Wav2vec: XXY
Please provide the corrected top 1 ASR transcription of
the given utterance only, do not add any explanations or
other words. DO NOT ADD ANY EXPLANATIONS OR

\ WORDS NOT IN THE HYPOTHESES.

<

Figure 5: Zero-shot error correction using GPT-4

73 GPT4

Following the work by (Ma et al., 2023c), we used
GPT-4 zero-shot to perform ASR error correction
over transcripts from an ensemble of ASR models.
Following limited experimentation, we used the
prompt shown in Figure 5. The capitalization in
the prompt is important for best results.

7.4 Error Correction Results

The results of the three transcription error correc-
tion methods are shown in Tables 8 and 9. We
present the results in two separate tables because
subsets of the datasets were used during the fine-
tuning process for the TS model, as described in
Section 7.2. Table 8 compares WER across differ-
ent datasets, illustrating the effectiveness of each
method per dataset. Table 9 provides an aggregated
view of WER across all methods, highlighting the
overall performance trends. These results include:
(1) Oracle performance: the lowest possible WER
achievable using all tokens from transcripts output
by the six ASRs; (2) Baseline performance: the
WER of the top-performing ASR for each audio
file; and (3) Mean: the average WER of the six
ASR systems. The baseline and mean values are
equivalent to the minimum and mean values in Ta-
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Oracle Baseline Mean ROVER GPT-4
Dataset WER swf-WER WER swf-WER WER swf-WER WER swf-WER WER swf-WER
Sawyer 0.49 0.53 0.65 0.64 1.98 1.83 0.99 0.97 6.60 4.79
Cameron 0.48 0.53 0.59 0.61 1.10 1.15 0.81 0.81 0.97 1.01
CHIiME-5 0.24 0.28 0.39 0.39 1.06 0.96 0.66 0.64 0.97 0.80
AMI 0.13 0.19 0.16 0.21 0.55 0.57 0.33 0.34 0.48 0.48
Covid 0.22 0.27 0.31 0.35 0.61 0.66 0.40 0.41 0.81 0.55
SPGI 0.01 0.05 0.02 0.05 0.17 0.21 0.05 0.07 0.04 0.07
Table 8: Comparison of WER across error correction methods by dataset

Metric Oracle Baseline Mean ROVER GPT-4 Ft-T5

WER 0.26 0.36 0.91 0.54 1.64 7.21

swf-WER 0.31 0.37 0.90 0.54 1.28 7.22

Table 9: Comparison of WER across error correction methods
ble 2. emphasize the need for ASR systems to account

ROVER Outperforms. Table 8 shows that
ROVER outperforms the mean WER across dif-
ferent datasets. This indicates ROVER’s effective-
ness in leveraging multiple ASR outputs to im-
prove transcription accuracy. Conversely, GPT-4
exhibits a higher WER, particularly for more com-
plex datasets like Sawyer, where it even underper-
forms compared to the mean WER. This suggests
that while GPT-4 shows promise for transcription
error correction of clean speech (as the literature
suggests with clean speech such as LibriSpeech), it
struggles with more complex audio scenarios.

Hallucinations in Fine-Tuned T5. Despite its
potential, the performance of Ft-T5 is significantly
worse than that of the other methods. Also, we ob-
served hallucinations in the output from the Ft-T5
model, where the same word was repeated multiple
times. This issue may be due to the limited amount
of data available for fine-tuning.

8 Conclusions and Future Work

In this study, we have provided a comprehensive
evaluation of the accuracy of state of the art open-
source ASR systems on naturally occurring hu-
man conversations covering a range of acoustic
and speaker characteristics. In contrast to its bench-
mark performances on various datasets, Whisper’s
performance on challenging audio conditions was
ineffective and exhibited hallucination issues.

Our analysis indicates a gender bias in ASR per-
formance for most systems, with male speakers ex-
periencing higher WER compared to female speak-
ers. Additionally, speaker age significantly impacts
ASR performance, with younger adult speakers
generally achieving lower WER. These findings

for demographic factors to improve accuracy.

Among the error correction methods evaluated,
ROVER consistently outperformed others, demon-
strating its effectiveness in leveraging ensembles
of ASR systems to enhance transcription accuracy.
Another advantage of ROVER is that the graph it
generates can be used to identify regions of speech
that likely need human editing, and potentially even
to prioritize which regions to focus on when one
has a limited budget or time for human editing. We
leave this idea for future work.

Furthermore, while our study focused on the
computational efficiency of a 1-best approach, we
acknowledge that an n-best approach could pro-
vide richer context. Future work could investigate
the benefits of incorporating n-best hypotheses to
further improve error correction strategies.

Our findings provide insights into the perfor-
mance of various ASR systems under complex au-
dio conditions and the challenges of error correc-
tion compared to ideal scenarios. Moreover, by re-
leasing 14,400 audio-hypothesis-transcription pairs
(2400 pairs per ASR, totaling 200 minutes of au-
dio) on less commonly used datasets, we aim to
foster open collaboration in the field.

9 [Ethical Discussion and Limitations

We used ML models to detect age, accent, and gen-
der when demographic information was unavail-
able. For example, age was provided in the Sawyer
and Cameron datasets, and gender was specified in
the AMI dataset. This raises ethical questions re-
garding the potential for misclassification. Relying
solely on automated methods for sensitive attribute
detection can perpetuate stereotypes, further em-
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bedding bias within ASR systems. Ethical practices
in this context necessitate transparency about the
limitations of these models and the incorporation
of human oversight to correct misclassifications.

In this paper, we focused on English speech pri-
marily from Western countries; our evaluation data
and most of the models we evaluated were English-
only. However, there are more than 7000 languages
spoken worldwide and many of these languages
have no language technology at all (Hou et al.,
2020; Conneau et al., 2023). There are compelling
social justice reasons to do much more research
on non-English ASR. Furthermore, the datasets we
used do not encompass all possible characteristics
of speakers of English language. The collection of
more varied datasets, especially including under-
represented dialects of English, would be necessary
to fully understand the scope of English ASR per-
formance disparities.

Another limitation is the focus on open-source
ASR systems may not fully represent the capabili-
ties of proprietary ASR technologies used in com-
mercial applications. The performance and biases
of these open-source systems may differ from those
of their commercial counterparts, potentially limit-
ing the generalizability of our findings.
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A Regression Plots
A.1 Regression Table

Table 10 on the next page presents the regression
table, including the regression equation, R? value,
and Bonferroni-corrected p-values for the cubic
coefficients analyzed in Section 6.2. This includes
each continuous feature: duration, syllables per
second, noise level and age.

A.2 Effect of speech rate on WER: syllables
per second

Cubic Regression: Wav2vec_WER vs syllables_per_second
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Figure 6: Syllables per second vs. Wav2Vec WER

A.3 Effect of speaker age on WER

Cubic Regression: Nemo_WER vs age
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Feature System Equation R-squared | Cubic p-value corrected
duration Hubert_WER 1.143847 — 0.050390z + 0.00332522 — 0.000044195532> 0.002007 1.000
duration Nemo_WER 0.742504 — 0.061052132 + 0.0024662% — 0.000026520362> 0.029774 0.054
duration Whisper_WER 1.254405 — 0.11381492 + 0.0076522% — 0.0001022212° 0.000810 1.000
duration DWhisper_WER 0.696095 — 0.052238932 + 0.0038122% — 0.000050639222:> 0.003690 0.162
duration Wav2vec_ WER 1.280726 — 0.09236164z + 0.00536622 — 0.0000685168623 0.007801 0.016
duration Kaldi_WER 1.316008 — 0.04138082z + 0.003508x% — 0.0000497712523 0.002428 0.623
syllables_per_second Hubert_ WER 3.062961 — 1.003102z + 0.09575022 — 0.00205453723 0.177675 <0.01
syllables_per_second | Nemo_WER 1.164577 — 0.310183z + 0.0303362% — 0.00064221862> 0.103088 <0.01
syllables_per_second | Whisper_WER 3.005466 — 0.9785362x + 0.0917932% — 0.0019506842° 0.013453 0.085
syllables_per_second | DWhisper_WER 1.717833 — 0.57262672 + 0.0569372% — 0.0011974552° 0.077001 <0.01
syllables_per_second | Wav2vec_ WER 2.890523 — 0.9004172z + 0.0843262% — 0.00179493123 0.175698 <0.01
syllables_per_second | Kaldi_ WER 2.996386 — 0.850825z + 0.07961322 — 0.0017009603 0.128006 <0.01
noise_level Hubert_WER 1.006434 + 8.550411 x 105z + 0.94132122 + 0.00000014341072° | 0.002240 0.490
noise_level Nemo_WER | 0.538853 + 3.193943 x 105z + 0.3516242% + 0.000000053570022% | 0.001956 0.726
noise_level Whisper_ WER | 0.988826 + 5.316402 x 105z + 0.585287x% + 0.0000000891687z% | 0.000067 1.000
noise_level DWhisper_WER | 0.576200 + 6.258136 x 10z + 0.688963z2 + 0.0000001049638z> | 0.001660 1.000
noise_level Wav2vec_WER | 1.033201 + 4.608494 x 105z + 0.507353x% + 0.0000000772954123 | 0.000774 1.000
noise_level Kaldi_WER 1.229745 + 7.710911 x 10%2 + 0.8489002 + 0.00000012933032> | 0.001764 0.951
age Hubert_ WER 2.278215 — 0.1313002z + 0.00359922 — 0.0000315035223 0.069813 <0.01
age Nemo_WER 1.189794 — 0.06417423x + 0.001680x2 — 0.00001438768x3 0.122077 <0.01
age Whisper_WER 2.919885 — 0.19561612 + 0.0049672% — 0.000040038032° 0.012023 1.000
age DWhisper_WER 1.340553 — 0.07641958z + 0.002053z% — 0.0000178721023 0.035992 0.035
age Wav2vec_WER 1.985948 — 0.10136802 + 0.0029502% — 0.000027340972> 0.052151 <0.01
age Kaldi_WER 2.093572 — 0.091499352 + 0.0026162% — 0.00002364298° 0.031291 0.011

Table 10: Regression analysis of continuous features on WER with cubic coefficients

B Violin Plots from Variance Analysis

B.1 Speaker overlap and WER variability

Overlap vs Mean WER

Mean WER

0 1 or more
Overlap

Figure 8: Overlapping speech

B.2 Gender-related WER differences

Gender vs Mean WER

Mean WER

Female Male
Accent

Figure 9: Gender

B.3 Accent-related WER discrepancies

10 Accent vs Mean WER

Mean WER

~

o <

General American English Not General American English
Accent

Figure 10: Accent
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