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Abstract

Transformer-based language models (LMs)
have demonstrated remarkable performance on
many natural language tasks, yet to what ex-
tent LMs possess the capability of generalizing
to unseen logical rules remains not explored
sufficiently. In classical logic category, abduc-
tive, deductive and inductive (ADI) reasoning
are defined as the fundamental reasoning types,
sharing the identical reasoning primitives and
properties, and some research have proposed
that there exists mutual generalization across
them. However, in the field of natural language
processing, previous research generally study
LMs’ ADI reasoning capabilities separately,
overlooking the generalization across them. To
bridge this gap, we propose UniADILR, a novel
logical reasoning dataset crafted for assessing
the generalization capabilities of LMs across
different logical rules. Based on UniADILR,
we conduct extensive investigations from vari-
ous perspectives of LMs’ performance on ADI
reasoning. The experimental results reveal the
weakness of current LMs in terms of extrapo-
lating to unseen rules and inspire a new insight
for future research in logical reasoning.1

1 Introduction

Logical Reasoning (LR) refers to the cognitive pro-
cess of applying deterministic logical rules and
known facts to derive valid conclusions, can be
observed in diverse domains, such as scientific in-
quiry, decision-making, and everyday discourse
(Nunes, 2012). Recent research in language mod-
els (LMs) have achieved significant progress in
many natural language (NL) tasks, such as text sum-
marization (Jin et al., 2024), question answering
(Louis et al., 2024) and commonsense reasoning
(Krause and Stolzenburg, 2023). However, whether
LMs are proficient in grasping the underlying logi-

1The codes and datasets are available at
https://github.com/YuSheng-00/UniADILR
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Figure 1: ADI reasoning within specific contexts. The
sharing primitives motivates studying generalization
across them.

cal rules implied in complicated contexts have not
been explored adequately.

In the field of classic logic, LR is categorized
into three primary types: abductive reasoning, de-
ductive reasoning, and inductive reasoning (ADI)
(Peirce, 1974). This categorization has long been
widely recognized, providing a foundation for in-
vestigating different modes of logical reasoning.
Many studies on LMs have sought to evaluate
their proficiency in learning these reasoning rules
(Young et al., 2022; Saparov and He, 2023; Saparov
et al., 2023). However, there remains some limita-
tions of existing benchmarks. For real-world sce-
narios requiring LR, reasoners generally discern
underlying logic from complex contexts and select
sound facts as premises for reasoning. Yet, various
previous benchmarks are conditioned by providing
all logical premises explicitly (Clark et al., 2020;
Bostrom et al., 2021), where LMs are prone to draw
conclusion through shortcuts like directly splicing
premises, potentially resulting in an over-estimated
of the reasoning capability.

Moreover, as shown in Figure 1, we can observe
that ADI share fundamental reasoning primitives
(Rule, Fact, Hypothesis) from the point of a uni-

https://github.com/YuSheng-00/UniADILR
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fied framework grounded in classical logic. The
primitives constitute various logical rules via dif-
ferent direction of inference (Pauwels et al., 2012).
The distinctive characteristic motivates a potential
for investigating the generalization across them,
which has been discussed in the field of logic
(EGOIRE and Lakhdar, 1996; Rivera and Becker,
2007; Grégoire, 2001) but overlooked in LMs’ rea-
soning. Specifically, some valuable research ques-
tions, such as “For supervised learning, how per-
formance varying when the distribution of logical
rule in test datasets shifts from that in the training
phase” and “How logical rules presented in demon-
strations impacting the large LMs’ few-shot per-
formance” remains unexplored. In prior datasets,
logical rules either appear in isolation or are cou-
pled together in a way that makes them insepa-
rable, hindering the comprehensive evaluation on
comparison of different reasoning capabilities and
generalization.

To tackle these issues, we propose a novel
dataset serving as a unified benchmark to evaluate
ADI logical reasoning (UniADILR) capabilities of
LMs. We specify multiple reasoning primitive rules
and then expand them to obtain examples in NL to
imply different logical types. To alleviate the influ-
ence caused by various shortcuts, we define a uni-
fied domain involving fictional concepts and pred-
icates to construct reasoning examples. The rea-
soning rule appearing in each example is restrained
strictly to avoid logical confusion. UniADILR re-
quires the models to select premises which derive
the given hypothesis within a complicated context
including multiple distracting facts, reflecting the
capability of LMs to identify underlying logic and
perform reasoning.

To furnish a comprehensive understanding of
LMs’ proficiency on ADI reasoning and general-
ization across them, we conduct exhaustive exper-
iments from a wide range of perspectives. (1)
Different learning paradigm: We compare two
main-stream learning paradigms, in-context learn-
ing (ICL) and supervised fine-tuning (SFT), eval-
uating performance of various LMs with different
size when the logical type in testing datasets out-
side the distribution of (OOD) the learning stage.
Furthermore, we compare the respective strengths
and weakness of the two methods. (2) Number
of logical rules: We change the number of logical
rules appearing in the learning stage and analyse
the test accuracy achieved by LMs. (3) OOD Vo-
cabulary: To explore whether the LMs take hold of

the rationale of the reasoning rules or merely im-
itate the recurring pattern in the training data, we
manually annotate 1500 additional examples con-
taining more abundant vocabularies and context
closer to real-world for testing only. The results
reveal a significant decline in the performance of
LMs when the complexity of the vocab lifts in
the testing sets even if the logical rules remains
identical. (4) In addition, we conduct an in-depth
analysis of the reasoning bias and performance gap
in terms of the different logical types. Overall,
the investigations highlight the challenge faced by
LMs in emulating human-like generalization be-
tween similar inference rules, inspiring future work
to tackle this issue. Our contributions are outlined
as follows:

• A natural language logical reasoning dataset
encompassing abduction, deduction and in-
duction within the unified framework and do-
main.

• To the best of our knowledge, it is the first re-
search to propose the generalization across the
fundamental ADI reasoning types and assess
them on a unified benchmark.

• We conduct comprehensive experiments to
evaluate various LMs from a wide range of
axes and reveal their capabilities of general-
ization across ADI reasoning rules.

2 Preliminaries

2.1 Definition of ADI Reasoning

In this paper, we define a ternary reasoning frame-
work grounded in first-order logic (FOL), designed
to operate ADI reasoning rules based on the Rule-
Fact-Hypothesis primitives. Variables are repre-
sented by a lowercase letter X (To simplify, our
examples generally involve unary relation). And
we denote sets of defined predicates using upper-
case letters P = {F,G,H, . . . } and constants us-
ing lowercase letters K = {a, b, c, . . . }. A basic
rule takes the form of “∀x F (x) → G(x)” which
means if something satisfies F , then it can be in-
ferred that it satisfy G. Facts are known statements,
and hypotheses are conjectures to be proven, both
of which arise from instantiating variables within
predicates. Based on this structure, we define ADI
reasoning as follows:

Deductive Reasoning is a logical process that
substantiates specific hypothesis from general rules
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and known facts:

∀x F (x) → G(x) ∧ F (a) =⇒ G(a). (1)

Abductive Reasoning is the process of making
plausible explanation or hypothesis to account for
observed facts:

∀x F (x) → G(x) ∧ sup. G(a) =⇒ F (a), (2)

where F (a) is considered as the cause of G(a), and
sup. means supposing G(a) is observed.

Inductive Reasoning is the process of drawing
general rule or pattern based on specific observa-
tions or known facts:

∃a (f(a) ∧ g(a)) =⇒ ∀x F (x) → G(x). (3)

Notably, deductive reasoning aims to provide
logically valid results but inductive reasoning and
abductive reasoning does not guarantee absolute
certainty, but providing probable conclusions based
on available evidence.

2.2 ADI Generalization
It can be intuitively observed that under the uni-
fied reasoning framework, ADI reasoning share the
fundamental primitives and characteristics, with
the only difference being the direction of inference.
The conversion across ADI logical type can be
represented by a triangle with the vertices labeled
as rule, hypothesis and fact, which has been pro-
posed by Pierce as a logical cycle (Pauwels et al.,
2012). It is natural to discuss whether, after being
taught merely one or two rules, it is possible to au-
tomatically generalize to the others unseen. Several
studies in the field of philosophy and logic have
investigated this property. For instance, Grégoire
(2001) argue that certain characteristics between
inductive and abductive reasoning allow them to
be mutually convertible and EGOIRE and Lakhdar
(1996) observed that, in some cases, a deductive re-
sult could also be correctly interpreted by induction.
However, in the field of NL reasoning, whether
LMs can automatically generalize to other infer-
ence rules has not yet been researched. Therefore,
we propose ADI generalization and evaluate this
capability of LMs by creating a novel dataset using
the defined logical framework.

3 UniADILR Dataset and Evaluation

We construct a novel dataset, UniADILR, to eval-
uate the performance of LMs on ADI reasoning

and investigate the generalization between them.
Using the framework defined in Section 2.1, we
derive formal rules for each reasoning type and
programmatically extend the underlying logic into
natural language examples. Additionally, we manu-
ally annotate extra examples that are closer to real-
world language distribution, reserved specifically
for testing. Subsequently we conduct systematic
evaluation of LMs’ logical reasoning capabilities
from multiple dimensions.

3.1 Task Definition

UniADILR defines the proof generation task to
measure the reasoning capabilities of diverse LMs.
As shown below, the model is offered a state-
ment S and a NL context C = {fs, fd} consist-
ing of correct logical premises fs and distracting
sentences fd. UniADILR requests the reasoning
model to trace logical clues fs from C to sup-
port the statement S via performing ADI reason-
ing. The proof p is organized in the format of
“sent1 & sent2 & ... & sentk → S”.

An Example in UniADILR

▶ Context C:
sent1: Bright vumpuses are zumpuses. sent2: Sam is
bright. sent3: Sam is a sterpus. · · · sent6: Sam is a
vumpus. · · · sentk: Every kind vumpus is a brimpus.
▶ Statement S: Sam is a bright vumpus.
▶ Proof p: sent2 & sent6 → Sam is a bright vumpus.
▶ Reasoning Type: Deduction

3.2 Synthetic Data based on FOL Formulas

Formula Extension. We create FOL formu-
las implying logical rules according to the defined
framework. We define a domain consisting of pred-
icates P and constants K, which is uniformly orga-
nized based on virtualized concepts (e.g. “wum-
pus” instead of “cat”) to prevent the evaluating
bias caused by shortcuts of commonsense knowl-
edge. We apply P and K to instance each logical
formula to derive specific examples implying un-
derlying logic (e.g. ∀x Canidae(x) → Fur(x) ∧
Canidae(wumpus) =⇒ Fur(wumpus)). Af-
terward, the instantiated logical expressions are
programmatically expanded into NL sentences (e.g.
“Caidae family have thick fur; Wumpus is a member
of the canidae family; Wumpus have thick fur.”).

Adding Distractors. Distracting contexts are
developed by manipulating the predicates and con-
stants in the logical expressions. For example,
for the fact Canidae(wumpus), we transform the
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predicate to obtain Bright(wumpus) or the con-
stant to obtain Canidae(rifpist). Generally, we
do not modify all predicates and constants in a log-
ical statement simultaneously, ensuring a certain
degree of the similarity with the original statement.
This process generates misleading facts for LMs,
preventing the model from identifying reasoning
premises directly through heuristic shortcuts, such
as word overlap. For each example in UniADILR,
we create 10–20 distracting sentences.

3.3 Human Annotation

Furthermore, to explore whether the LMs grasp
the rationale of logical rules or just imitate the re-
curring pattern in the training datasets, we expand
UniADILR to include an additional manual subset
containing 1500 examples with more complex and
closer to real-world contexts. These examples are
reserved exclusively for test. We use an iterative,
human-in-the-loop process to annotate effectively.
Initially, human experts manually annotate some
examples demonstrating the corresponding reason-
ing rule as Dex. Then, we instruct a GPT-3.5 (Ope-
nAI, 2023a) to generate more examples involving
the consistent logical rule within the prompt, which
incorporates a brief task description and five data
points randomly selected from Dex. Following this,
human experts meticulously review and correct the
model’s output to ensure the accurate logical rela-
tionship and coherence. The refined examples are
then added into Dex and the process continues until
a total of 500 examples for each reasoning type are
obtained. Detailed examples for prompts and data
can refer to Appendix A.

Retrieval and Paraphrasing. Subsequently,
we augment annotated examples by a pre-trained
paraphrasing model PEGASUS (Zhang et al., 2020)
to improve the diversity and variability of our
dataset. Finally, we retrieve the distracting facts
fd from a corpus of English Wikipedia2 article text
regarding the S as the query. We employ term
frequency-inverse document frequency (TF-IDF)
(Sparck Jones, 1972) to search 10-20 sentences
presumed to most potentially confuse the LMs.

3.4 Statistics

Overall, UniADILR consists of two subsets:
program-synthesized UniADILR-PSy and human-
GPT annotated UniADILR-HGc. For each
type of ADI reasoning, we generate 3200 sam-

2https://en.wikipedia.org/wiki/Wikipedia

UniADILR -PSy -HGc
# Samples 9600 1500

Average Context Length 70.5 274.0
Vocab Size 417 9652

Gunning Fog Index 11.3 41.2
Retrieval Baseline 16.7% 8.7%

Table 1: The statistics of UniADILR.

ples, split into train/validation/test sets in a ra-
tio of 7:1:2 in UniADILR-PSy, and 500 ex-
amples with complex contexts in UniADILR-
HGc, solely for testing. In subsequent sec-
tions, we denote the data splits in the format
of [Reasoning Type Abbreviation]-[Split].
For example, Ab-In-train represents the training
split in UniADILR-PSy, which includes a mixture
of abductive and inductive reasoning. As shown
in Table 1, we comprehensively analyze the statis-
tics of the two subsets. Detailed illustrations can
be found in Appendix B. Intuitively, UniADILR-
HGc exhibits a more abundant lexicon compared
to UniADILR-PSy, enabling it more suitable for
evaluating whether an LM has merely memorized
patterns in the learning phase or instead mastered
the underlying logic.

3.5 Evaluation Settings

SFT. According to the reasoning type involved
in the examples, we split UniADILR into three test
subsets, which contains only one specific type of
ADI reasoning. Taking the Ab-test as an example,
we set four data splits to fine-tune the LMs: (a)
training set involving the consistent logical type
as the testing set, Ab-train; (b) training set in-
volving single one reasoning type inconsistent with
testing set, De-train and In-train respectively;
(c) training set involving mixed reasoning types of
ADI excluding which in testing set, De-In-train.
Such an extensive setting enables a clear investi-
gation of how the performance of SFT LMs will
evolve when the distribution of logical rules in the
training data shifts from that in the testing data.

ICL. For ICL, we delve into the LMs’ per-
formance by varying the rule distribution of the
sampled demonstration examples. The models
are provided with a query and a demonstration
set C which includes a task instruction I and
k demonstration examples. Therefore, C =
{I, s(x1, y1), · · · , s(xk, yk}, where s(xk, yk) is an
example randomly selected from the prompt set P .

https://en.wikipedia.org/wiki/Wikipedia
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We vary k and P to test how the demonstration
influences the models’ performance:

• k = 0: C = {I} only includes the task de-
scription.

• k = 1: C = {I, s(x1, y1)}; s(x1, y1) ∈
Ab-train, De-train, In-train respectively
for three different settings.

• k = 3: C = {I, s(x1, y1), s(x2, y2), s(x3,
y3)}; s(x1, y1) ∈ Ab-train, s(x2, y2) ∈
De-train and s(x3, y3) ∈ In-train.

Number of rules presented during the train-
ing stage. As for ADI reasoning can be viewed
as permutations of similar primitives in a triangular
direction, it is reasonable to expect an improvement
of the LMs’ generalization abilities to derive the
remaining reasoning rule when they have learned
along another two reasoning directions. To verify
this assumption, we control the number of reason-
ing types appearing in the SFT training stage and
demonstration examples for ICL. This allows us to
investigate whether increasing exposure to a greater
number of logical rules can enhance the generalisa-
tion across ADI reasoning.

OOD Vocabulary. Additionally, we test
the LMs fine-tuned with the synthesized data on
the UniADILR-HGc, which encompasses a wider
range of vocabulary distribution and more intri-
cate, longer contents. The results reveal the robust-
ness of the LMs’ reasoning capabilities acquired
by learning from synthesized datasets.

Comparison between different learning
strategies. Furthermore, we compare the over-
all performance of the LMs learning through the
SFT and ICL methods. Through the detailed com-
parison and further analysis, we summarize their
respective strengths and weakness in terms of the
reasoning accuracy and generalization capability.

4 Experiments and Analysis

4.1 Implementation Details
For SFT settings, we fine-tune the pretrained
Flan-T5-large (780M) and Flan-T5-XL (3B)
(Raffel et al., 2020) implementations from the
HuggingFace Transformers3 library. Experi-
ments of fine-tuning the pre-trained T5 models are
conducted on 8 NVIDIA A100 GPUs. We utilize
Adam optimizer and pick the model giving the best
proof accuracy on the dev set. As for ICL, we

3https://huggingface.co/

compare the reasoning capabilities of LLaMA2-
7B, LLaMA2-13B, LLaMA2-70B (Touvron et al.,
2023), GPT-3.5 and GPT-4 (OpenAI, 2023b) un-
der different demonstration settings. The detailed
hyper-parameters are illustrated in Appendix C. We
take the proof accuracy (PA) as the evaluation met-
ric in the following experiments. If premises Ppred

selected by the model match exactly with the label
Pgold, the prediction is signed as True.

4.2 Performance IND and OOD
SFT LMs internalize rules seen during training
very well but struggle to generalize to novel rea-
soning types. As demonstrated in Table 2, under
the SFT setting, the models that fine-tuned on the
training data involving the completely consistent
reasoning rule with the testing data exhibit excep-
tional performance with the PA nearly all reaching
100%. However, when the distribution of reasoning
type shifts from the training data, the performance
experiences a significant decline, with the worst
case even dropping below 10%. The results sug-
gest that models fine-tuned with supervision may
merely learn specific data patterns but struggle to
capture the intrinsic connections among the basic
logical reasoning primitives, making it challeng-
ing to generalize the reasoning rules to other types,
akin to the nuanced reasoning processes observed
in human cognition.

ICL large LMs performs stably when faced
with the distribution variation of the reasoning
type presented in the demonstration examples.
As shown in Figure 2, the PAs within each bar clus-
ter reflect the performance difference of each LM
when the demonstration examples sampled from
various distributions. We found that despite the
value of PA changed along with the reasoning rules
involved in the demonstration examples, the per-
formance fluctuation is not as dramatic as which
in SFT settings, generally not exceeding 5%. The
results demonstrate that larger LMs through ICL
can be more robust than smaller-scale LMs fine-
tuned when attempting to generalize directly to
OOD reasoning rules. Throughout a more meticu-
lous observation, we found that LLaMA2 performs
better with an increasing number of demonstration
examples, while GPTs seems to excel when the
reasoning type in the demonstration aligns consis-
tently with the testing set. Among all tested LMs,
GPT-4 significantly surpasses others and achieves
a competitive PA even under the few-shot settings
without any tuning compared to the models fine-

https://huggingface.co/
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Model Test/Train Ab-train De-train In-train Complement-train

T5-780M
Ab-test 100.0% 9.8%(↓90.2%) 11.2%(↓88.8%) 55.7%(↓44.3%)
De-test 32.3%(↓67.7%) 100.0% 48.8%(↓51.2%) 60.8%(↓39.2%)
In-test 10.7%(↓89.3%) 40.8%(↓59.2%) 100.0% 70.0%(↓30.0%)

T5-3B
Ab-test 100.0% 20.0%(↓80.0%) 29.7%(↓70.3%) 59.2%(↓40.8%)
De-test 66.9%(↓32.8%) 99.7% 55%(↓44.7%) 53.3%(↓46.4%)
In-test 28.6%(↓71.4%) 66.6%(↓33.4%) 100.0% 69.3%(↓30.7%)

Table 2: Proof accuracy on SFT T5-780M and T5-3B. A significant performance drop can be observed when the
reasoning type differs in the training and testing dataset.

Figure 2: Proof accuracy on ICL LMs under various
demonstration settings. GPT-4 performs best and the
influence brought by the reasoning type visible in learn-
ing stage are not as pronounced as observed in SFT.

tuned on the OOD rules. However, for our pre-
sented UniADILR, none of the tested LMs attain
a satisfactory level at extrapolating to unseen rea-
soning rules possessing the shared properties as we
expect.

4.3 Number of Logical Rules

Increasing exposure to a greater number of log-
ical rules during training can significantly en-
hance generalization among ADI reasoning for
fine-tuned LMs, but appears to have little im-
pact under the ICL settings. Comparing the PA
of LMs fine-tuned on the testing set involving com-
plementary reasoning types (in column 6 of Table
2) with that only involving the single OOD reason-
ing type (in column 4 and column 5 of Table 2),
we observe an increase ranging from about 10%
to 40%. Although the performance remains no-
tably lower than that training in-distribution, these
results suggest that incorporating a broader range

of reasoning types might enhance the LMs’ capa-
bility to generalize to other reasoning rules. We
consider the phenomenon may be attributed to the
combinationality nature of ADI reasoning. Addi-
tionally, we found better generalization between
deductive and inductive reasoning, aligning with
the findings in EGOIRE and Lakhdar (1996). How-
ever, as mentioned before, larger-scaled LMs under
the few-shot settings exhibit relatively much more
robustness to the number of learnable reasoning
rules, as the fluctuation of PA does not exceed 5%
along with the number of the logical rules presented
in the demonstration examples.

4.4 OOD Vocabulary
As demonstrated in Figure 3, the PA of the
fine-tuned T5 experiences a substantial drop on
UniADILR-HGc even if the logical rules involved
in the testing data remains consistent with that in
the training data. A similar conclusion also ap-
plies to LLaMA2. These findings highlight that
despite the fine-tuned LMs demonstrate a strong
fit to characteristics within the training set, the ac-
quired reasoning capabilities are exceptionally frag-
ile and struggle with generalization to more intri-
cate contexts. Surprisingly, we observed that GPT-
3.5 achieved an even higher PA on the UniADILR-
HGc compared with that on the UniADILR-PSy.
We consider this might be attributed to UniADILR-
PSy’s use of fictional names for all concepts, pre-
venting LMs from accessing commonsense knowl-
edge. This observation implicitly suggests that the
superior performance achieved by LMs on some
existing logical reasoning datasets may rely on the
commonsense context, instead of mastering the
logical skills actually.

4.5 Overall Comparison of SFT and ICL
As shown in Figure 4, we demonstrate the overall
performance of SFT and ICL for LMs and sum-
marize their respective advantages and disadvan-
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Figure 3: Performance of SFT T5-3B and ICL LLaMA2-
70B, GPT-3.5 on UniADILR-HGc.

Model/Type Ab De In Avg

SFT T5-780M 47.6 49.9 53.3† 50.3
T5-3B 65.1† 62.1 61.1 62.9

ICL

LLaMA2-7B 0.4 3.2 3.3† 2.3
LLaMA2-13B 0.9 4.1 7.6† 4.2
LLaMA2-70B 2.8 14.5† 11.3 9.5

GPT-3.5 2.9 15.5 33.1† 17.2
GPT-4 11.9 55.1 73.9† 46.7

Table 3: Average proof accuracy (%) of diverse mod-
els on ADI reasoning respectively. The bolded results
represent which LLM achieves the highest PA, and the
results with † indicate each LLM’s highest PA achieved
in which reasoning type.

tages. Firstly, ICL demonstrates more robustness,
as its overall performance don’t change dramat-
ically along with the various reasoning rules in-
volved in the demonstration examples. In contrast,
although SFT LMs effectively internalize seen log-
ical rules, its performance drops dramatically once
the data distribution shifts OOD. Another notable
advantage of ICL is its few-shot learning ability,
not requiring a large amount of supervised labels
costly in experts’ time and labor. However, its over-
all effectiveness still falls behind the supervised
settings. As which can be seen intuitively, only
the best-performing GPT-4 is comparable to the
supervised smaller-scaled models fine-tuned on the
complementary training set. The results suggest a
potential direction of integrating the two methods
for future work.

T5-XL IND                     T5-XL OOD
LLaMA2-70B  IND         LLaMA2-70B OOD
GPT-4 IND                    GPT-4 OOD

∆��� = 49.2 %

∆��� = 4.2 % 

Proof   Accuracy

∆��� = 5.6 % 

Figure 4: An intuitive representation demonstrates the
generalization ability and overall performance of the
SFT medium LM, open-source and close-source large
LMs.

4.6 Proficiency Gap in ADI Reasoning
The results in Table 3 reveals that the proficiency
of LMs in handling ADI rules varies indeed. Ab-
ductive reasoning emerges as the most challenging,
with the highest average accuracy on GPT-4 reach-
ing only 11.9%. In contrast, LMs tend to perform
better on deductive and inductive reasoning. We
attribute this phenomenon to the lack of available
abductive reasoning data extracted from the web.

4.7 Reasoning Type Bias
Futhermore, we discuss whether LMs can distin-
guish what kind of logical reasoning type employed
during their proofs. LMs are queried about the rea-
soning type used to substantiate the hypothesis in
parallel with the proof generation process, and the
response options include abduction, induction,
and deduction. Results in Figure 5 demonstrate
a noticeable bias in the distribution of predicted
reasoning types. Deductive reasoning appears most
frequently, particularly for GPTs. Additionally, we
observed that when the model is presented with
only one example, it is more inclined to predict the
reasoning type as that appeared in the demonstra-
tion example, underscoring the significant impact
of prompts on ICL performance, as noted in pre-
vious research (Zhao et al., 2021; Lu et al., 2022).
The obvious bias reveals that even if the large LMs
predict the reasoning clues successfully, they might
not be aware of the reasoning rationale they are
applying.

5 Related Work

5.1 Datasets of Textual Logical Reasoning
Logical reasoning is a fundamental reasoning abil-
ity and has attracted an increasing number of stud-
ies. LogicNLI (Tian et al., 2021) and FOLIO (Han
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Figure 5: Confusion matrices reflecting the prediction of reasoning types under ICL settings. LLMs are observed to
prefer generating deduction and the bias is particularly pronounced in GPTs.

et al., 2022) are two NLI-style datasets focusing on
the first-order logic. EntailmentBank (Dalvi et al.,
2021) proposes the proof generation task to rep-
resent the reasoning process explicitly, effectively
improving the interpretability of the textual reason-
ing. However, these datasets cover mixed logical
reasoning rules and are not intended to test ADI
reasoning in isolation, therefore not proper for our
evaluation.

Meanwhile, the significance of disentangling the
reasoning types has also attracted much attention in
recent years. RuleTaker (Clark et al., 2020) reason
deductively over first-order logic knowledge bases
expressed in natural language, determining the
truth or falsity of given statements. PARAPATTERN

(Bostrom et al., 2021) develop deductive sentence
pairs from Wikipedia corpus using dependency tem-
plate. PRONTOQA (Saparov and He, 2023) and
PRONTOQA-OOD (Saparov et al., 2023) generate
deductive examples according to propositional log-
ical rules. AbductionRules (Young et al., 2022)
compiles a synthesized dataset for training and
testing natural-language abduction and CLUTRR
(Sinha et al., 2019) is a dataset for inductive rea-
soning from text, but only induces family relations
as rules, something that transformers are already
proven to do well. By contrast, UniADILR in-
volves broader inductive rules and therefore are
more challenging.

However, these previous research have consis-
tently focused on an isolated aspect of the three
fundamental reasoning types defined in philos-
ophy, ignoring their inter-connections and con-
trasts. In comparison, to the best of our knowl-
edge, UniADILR stands out as the first benchmark
designed to assess ADI logical reasoning within
a unified domain and set of concepts. A detailed
comparison can refer to Appendix D.

5.2 Generalization Ability of LMs

A number of recent works have measured the gen-
eralization ability of LMs from varying perspec-
tives, involving length generalization (Anil et al.,
2022; Kazemi et al., 2023; Saparov and He, 2023),
width generalization (Saparov et al., 2023), compo-
sitional generalization (Wu et al., 2021; Kudo et al.,
2023) and systematic generalization (Sinha et al.,
2019) etc.. Diverging from previous works, our
experiments explore generalization from a novel
perspective — the generalization between different
logical reasoning types. Inspired by philosophy
research where ADI reasoning can be regarded as
permutations in the varying order of unified reason-
ing elements, it is essential to assess extrapolation
of learned reasoning skills by LMs to another one.
Moreover, Our exploration can also be viewed to
make contributions for investigating whether LMs
understand the logical relationship between reason-
ing primitives or merely mimic common patterns
in the training data (Xu et al., 2020).

6 Conclusion

We propose UniADILR, a natural language reason-
ing dataset containing examples demonstrating the
fundamental logical rules in ADI. Motivated by
evaluating the generalization across ADI reason-
ing, we design the subsets in UniADILR featuring
the same formalization and concepts except for the
specific reasoning rule. Experiments conducted on
UniADILR indicate that the LMs struggle to ex-
trapolate learned logic rules to a novel one in ADI
reasoning even if the unique ranging factor between
them is the reasoning direction. In addition, the re-
sults of SFT and ICL learning methods on LMs sug-
gest their respective strengths and weakness faced
with the reasoning rules out-of-distribution. Our
work provides a novel perspective and benchmark
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for assessing the LMs’ capability of generalizing
to unseen logical rules.

Limitations

In this paper, we pay emphasis on evaluating the
comparison and generalization of different ADI
reasoning types in this paper, so how to enhance
the prompt strategy to improve the proof accuracy
is not our focus. Therefore, we solely employ the
prompt in the plain form without delving into the
potential change in proof accuracy resulting from
an increase in demonstration numbers or meticu-
lous design of example selection and ordering.
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B Statistics

As shown in Table 1, we comprehensively ana-
lyze the statistics of the two subsets. The average
sentence length in UniADILR-HGc is four times
that in UniADILR-PSy. Unlike PSy, which uses a
monotonous vocabulary from a limited set of prede-
fined concepts, the vocabulary in HGC is sampled
from the distribution of GPT’s lexicon, resulting
in more abundant and realistic word choices. We
include additional visualizations of the dataset com-
plexity using the Gunning Fog Index (GFI), defined
as the proportion of sentence length to complex
words (words containing three or more syllables).
Intuitively, the proportion of complex vocabulary in
HGC is significantly higher than in PSy. A retrieval-
based naive baseline is provided for comparison
with LLMs. We test three approaches relying on
text overlap (Jaccard similarity (Thada and Jaglan,
2013) and TF-IDF (Sparck Jones, 1972)) or seman-
tic embeddings (Word2Vec (Mikolov et al., 2013)),
and calculate their average. These characteristics
demonstrate that UniADILR-HGc is suitable for
evaluating whether an LM has merely memorized
patterns in the training set or has truly mastered the
rules of logical reasoning.

C Parameters and Prompts

C.1 Parameters
Experiments of fine-tuning the pre-trained T5 mod-
els are conducted on NVIDIA A100 GPUs. We
utilize Adam optimizer and pick the model that
gives best proof accuracy on the dev set. During
training, the hyperparameters are set as follows:

• T5-780M: initial learning rate = 1 × 10−4,
epochs = 300, batch size = 8, max number of
input and output tokens = 1024/600 respec-
tively, warm-up steps = 500

• T5-3B: initial learning rate = 5×10−4, epochs
= 30, batch size = 1, max number of input and
output tokens = 1024/600 respectively, warm-
up steps = 500

As for LLaMA2, we use the official open-source
code provided by Meta4. The parameters for gener-
ation are set as follows: temperature = 0.9, top_p
= 0.9, max_seq_len = 2048, max_gen_len = 200.
For GPTs, we directly utilize the API provided by
OpenAI 5 and used the default parameters.

4https://huggingface.co/meta-llama
5https://platform.openai.com/docs/overview

C.2 Prompt Examples
A specific demonstration example for context learn-
ing (k=1) used in our experiments is illustrated in
Figure 8. The demonstration consists of a task
description, an example and a query question.

D Related Work: Datasets Comparison

In the field of NLR, several datasets have been
established to investigate the capabilities of LMs
in ADI logical reasoning. Deduction, acknowl-
edged as the most prevalent human reasoning abil-
ity, has garnered significant attention. RuleTaker
(Clark et al., 2020) reason deductively over first-
order logic knowledge bases expressed in natural
language, determining the truth or falsity of given
statements. PARAPATTERN (Bostrom et al., 2021)
develop deductive sentence pairs from Wikipedia
corpus using dependency template. PRONTOQA
(Saparov and He, 2023) and PRONTOQA-OOD
(Saparov et al., 2023) generate deductive exam-
ples according to propositional logical rules. Rel-
atively speaking, datasets dedicated to abductive
and inductive reasoning are relatively scarce. Ab-
ductionRules (Young et al., 2022) compiles a syn-
thesized dataset for training and testing natural-
language abduction, demonstrating that transform-
ers can perform abductive reasoning via fine-tuning.
CLUTRR (Sinha et al., 2019) is a dataset for in-
ductive reasoning from text, but only induces fam-
ily relations as rules, something that transformers
are already proven to do well. Previous research
have consistently focused on an isolated aspect of
the three fundamental reasoning types defined in
philosophy, ignoring their inter-connections and
contrasts. In comparison, to the best of our knowl-
edge, UniADILR stands out as the first benchmark
designed to assess ADI logical reasoning within
a unified domain and set of concepts. A detailed
comparison can refer to Table 4.

https://huggingface.co/meta-llama
https://platform.openai.com/docs/overview
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Figure 7: An example of the prompt we used to instruct GPT to generate reasoning examples involving the target
reasoning type.
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Dataset →
Property ↓

CLUTRR1 RuleTaker2 PARAPATTERN3 AbductionRules4 PRONTOQA
-OOD5

UniADILR
(Ours)

Reasoning Types Induction Deduction Deduction Abduction Deduction Abduction
Deduction
Induction

Task
Formalization

Question
Answering

Textual
Entailment

Conclusion
Derivation

Conclusion
Derivation

Proof
Generation

Proof
Generation

Data Source Program Program Wikipedia Program Program Program &
Human-annotated

Multiple Types ✗ ✗ ✗ ✗ ✗ ✓
Generalization
Between Types

✗ ✗ ✗ ✗ ✗ ✓

1Sinha et al. (2019); 2Clark et al. (2020); 3Bostrom et al. (2021); 4Young et al. (2022); 5Saparov et al. (2023).

Table 4: A comparison of UniADILR with other related datasets involving ADI.

Figure 8: Prompt example for ICL in our experiments.
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