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Abstract

KG-based fact verification verifies the truthful-
ness of claims by retrieving evidence graphs
from the knowledge graph. The faithful infer-
ence chains, which are precise relation paths
between the mentioned entities and evidence
entities, retrieve precise evidence graphs ad-
dressing poor performance and weak logic for
fact verification. Due to the diversity of relation
paths, existing methods rarely extract faithful
inference chains. To alleviate these issues, we
propose Multi-view Heterogeneous Graph with
Causal Intervention (MHGCI): (i) We construct
a Multi-view Heterogeneous Graph enhancing
relation path extraction from the view of dif-
ferent mentioned entities. (ii) We propose a
self-optimizing causal intervention model to
generate assistant entities mitigating the out-
of-distribution problem caused by counterfac-
tual relations. (iii) We propose a grounding
method to extract evidence graphs from the KG
by faithful inference chains. Experiments on
the public KG-based fact verification dataset
FactKG demonstrate that our model provides
precise evidence graphs and achieves state-of-
the-art performance. Our code is available at
https://github.com/CarlosChen1999/MHGCI.

1 Introduction

With the growing false information, such as un-
founded rumors, fake news (Zhou and Zafarani,
2020; Guo et al., 2022), and false generation in
large language model (Guan et al., 2024), people’s
daily lives and social stability can be profoundly
affected. Fact verification (FV) is a valuable task
to automatically retrieve evidence in public data
to verify claims as SUPPORTED or REFUTED.
Most current studies are based on the text or table
evidence (Thorne et al., 2018; Aly et al., 2021a), re-
sulting in unreliable reasoning between the claims
and the judgments. Kim et al. (2023b) introduce
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Figure 1: Examples of KG-based fact verification in
existing work. Solid arrows represent the faithful infer-
ence chains. Green arrows represent factual relation
paths, while red arrows represent counterfactual rela-
tion paths.

a knowledge graph, structured with factual knowl-
edge as edges and nodes, as evidence for transpar-
ent reasoning for the fact verification, shown in
Figure 1.

In the current research, the FV task is primarily
divided into two stages (Guo et al., 2022): Evi-
dence Retrieval (ER) and Verification Prediction
(VP). As a coherent task, the quality of evidence af-
fects the verification prediction and the credibility
of the FV system. In previous KG-based evidence
retrieval methods, evidence classification models
cost substantial computational resources, which
classify multi-hop evidence in the KG (Liu et al.,
2024). Therefore, retrieval path extraction methods
are considered valuable work, which extract rela-
tion paths to obtain the evidence graphs. Specifi-
cally, these methods extract relation paths like [Lan-
guage], [Capital] and [City, isPartOf ] as retrieval
paths for ’Italy’ to retrieve evidence graphs in the
KG. Therefore, extracting the faithful inference
chains, which are precise relation paths between

https://github.com/CarlosChen1999/MHGCI
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mentioned entities and evidence entities, could ob-
tain precise evidence graphs. Kim et al. (2023b)
employs a relation classifier and a hop classifier
to extract relation paths on a single entity and the
claim. Due to various path directions and lengths,
their method fails to extract precise relation paths,
leading to noisy evidence graph generation. KG-
GPT (Kim et al., 2023a) uses a Large Language
Model (LLM) few-shot approach to divide claim
sentences by entity pairs and extract relation paths
by these segments. Due to training data limitation,
the LLM method struggles to extract counterfactual
relation paths, which are beyond the real-world dis-
tributions. However, the current dataset is hard to
contain sufficient counterfactual samples for multi-
label classification tasks. Thus, counterfactual rela-
tions extraction is considered an out-of-distribution
(OOD) problem.

Based on the above findings, we introduce a
Multi-view Heterogeneous Graph with causal in-
tervention (MHGCI), a framework to extract faith-
ful inference chains in the counterfactual environ-
ment. (i) To achieve precise relation path extraction,
we construct a Multi-view Heterogeneous Graph
(MHG) that incorporates distinct views for differ-
ent mentioned entities and augmentes reasoning
through assistant entities. (ii) To address the OOD
problem caused by counterfactual relations, we pro-
pose a self-optimizing causal intervention model
for assistant entities. Unlike previous causal inter-
vention methods based on data augmentation (Zhou
et al., 2023; Zhu et al., 2023; Lv et al., 2022), our
model trains a causal intervention model through
invariant risk minimization to remove the spurious
association between entities and labels. (iii) Finally,
we propose a grounding procedure to transform
the relation path into retrieval paths to obtain the
evidence graph. Our experiments on the FactKG
dataset demonstrate that our model improves the
accuracy of fact verification by 4.43% compared
to the state-of-the-art methods. For evidence re-
trieval performance, the precision of relation path
extraction reached 74.58%. To summarize, our
contributions are as follows:

• We introduce a Multi-view Heterogeneous
Graph to ensure precise relation path extrac-
tion to reduce noise evidence graphs negative
effects.

• We introduce a self-optimizing causal inter-
vention model to address the OOD problem
without data augmentation.

• Our experiments demonstrate that our method
could provide precise evidence graphs and
outperforms the current SOTA methods.

2 Related Work

2.1 Evidence Retrieval for Fact Verification

Evidence retrieval, as a critical part of fact verifica-
tion, affects the performance and credibility of the
fact verification. In this work, the FV task uses var-
ious types of knowledge as evidence, such as text,
table, and knowledge graph. For text evidence, key-
word matching and sentence classification methods
are widely used in fact verification (Hanselowski
et al., 2018; Zhou et al., 2019; Wan et al., 2021). To
obtain precise text evidence, the current research
classifies potential evidence texts by the claim, in-
cluding DQN-base approach (Wan et al., 2021),
information bottleneck approach(Paranjape et al.,
2020), and graph learning models (Chen et al.,
2022). Due to the unique structure, structured ev-
idence poses challenges for retrieval. For table
evidence extraction, current research is classified
as table-level table extraction (Aly et al., 2021b;
Hu et al., 2022) and cell-level evidence extraction
(Gi et al., 2021; Acharya, 2021). FactKG (Kim
et al., 2023b) is the first dataset for fact verification,
utilizing knowledge graphs as evidence. Knowl-
edge graphs involve complex structures, making
it challenging to extract effective evidence. Our
approach is the first precise evidence extraction in
the KG-based fact verification task.

2.2 Causal Inference

The causal inference has been widely used in var-
ious fields such as medicine, sociology, and eco-
nomics for many years (Balke and Pearl, 1995;
Richiardi et al., 2013). It provides a method for
analyzing data features and estimating potential
causal effects to achieve desired objectives. In
current work, they apply the Structural Causal
Model (SCM) (Schölkopf et al., 2012) in various
tasks such as out-of-distribution problem (Lv et al.,
2022), graph neural network classification (Wu
et al., 2022), and debiased tasks (Zhou et al., 2023;
Zhu et al., 2023). The current NLP methods pri-
marily ensure invariant learning across different
environments through data augmentation (Zhou
et al., 2023; Zhu et al., 2023). However, creat-
ing reasonable and sufficient enhancement data
for multi-label classification tasks is difficult. In
this work, we introduce SCM into fact verification
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and propose a self-optimizing causal intervention
model based on invariant risk minimization (Ar-
jovsky et al., 2019) to mitigate the OOD problem.

3 Method

In this section, we introduce our framework, Multi-
view Heterogeneous Graph with causal interven-
tion (MHGCI) (Figure 2). Firstly, we obtain the en-
tity embedding from claims and construct a multi-
view heterogeneous graph (Sec.3.2). Then we use a
self-optimizing causal intervention model for assis-
tant entity generation (Sec.3.3) and extract relation
paths (Sec.3.4). Finally, we design a grounding
method to obtain evidence graphs from the knowl-
edge graph (Sec.3.5).

3.1 Problem Definition
The evidence retrieval task aims to find evidence
graphs from the knowledge graph K = {(esi

ri−→
eoi )|esi , eoi ∈ E , ri ∈ R}

nk
i=1 to verify whether

the FV system can SUPPORTED or REFUTED
the claim C. In this work, we aim to take the
claim C and mentioned entities {ei}ni=1 as input
to extract relation paths {ri}mi=1 between the men-
tioned entities and evidence entities. The men-
tioned entities ei and their relation paths {ri}mi=1

are used to construct retrieval paths P̂ei = {ei
r1−→

o1 ... om−1
rm−−→ om|e ∈ E , r ∈ R} for obtaining

evidence graphs Êvi ⊂ K, where o is potential
evidence entities.

3.2 Entity Encoding and Graph Construction
Entity Encoding Given a claim C = {ci}li=1,
where l is the length of the claim. First, we add spe-
cial tokens to represent the sentence feature in C in
the format: C = {[CLS], c1, c2, ...cl}. We input
C into the pre-trained model BERT (Devlin et al.,
2019) to obtain embedding of the claim sentences:

Hc = BERT ([[CLS], c1, c2, ..., cl]) (1)

To obtain entity embedding with contextual in-
formation, we extract the mentioned entity embed-
ding from the claim embedding. Firstly, The entity
position Posei in the claim sentence c is obtained
by the longest common substring matching algo-
rithm. Then we obtain the entity embedding based
on the position information and smooth it by aver-
aging the entity embedding across different posi-
tions. This process is described as follows:

Posei =

{
1, where c[i : i+ lei ] = ei
0, otherwise

(2)

hei =
1

lei

∑l
i=1Hc ◦ Posei (3)

where lei is the length of the entity token in the
sentence, ◦ denotes element-wise multiplication.
Graph Construction To extract faithful infer-
ence chains, we construct a Multi-view Hetero-
geneous Graph (MHG), as illustrated in Figure
2. According to the different mentioned entities,
we construct different views to predict potential
relation paths. Specifically, MHG constructs n
views, each view consisting of n nodes and n− 1
edges. Each view selects a different entity as
the central entity. We define each view in MHG:
Gei = {(Vec ∪ {Vea}, E)|ei = ec, ec ̸= ea}.

Nodes For each view, it focuses on one men-
tioned entity, extracting all the relation paths asso-
ciated with it. According to the role represented in
relation extraction, we define two node types: Cen-
tral Entity ec is a key node in each view. This view
is designed to predict all the relation paths associ-
ated with it. Each view selects a unique mentioned
entity as the central entity. The node embedding
is directly derived from the entity embedding. As-
sistant Entity ea is used to assist relation path ex-
traction around the central entity. For claims with
multiple entities, We choose the other mentioned
entities, apart from the central entity ec, as assistant
entities ea. In particular, for claims with a single
entity, we use the sentence feature as the assistant
entity. Considering the impact of counterfactual
relations, we regenerate the assistant entity embed-
ding based on causal intervention. This procedure
will be described in the next section.

Edges In this graph, we build the edges as poten-
tial relation paths around the central entity. Specif-
ically, the central entity connects to all assistant
entities, forming n − 1 edges in each view. Each
edge represents a relation path extraction problem,
which can solve the precise path extraction.

3.3 Assistant Entity Generation
Causal Analyse Counterfactual relations, being
beyond real-world distribution, are more likely to
become OOD data. Due to the wide range of hypo-
thetical changes in entity pairs, these samples tend
to exhibit diverse characteristics to disturb the rela-
tion path extraction in OOD data. To address this,
we use assistant entities with causal intervention to
guide the model to learn similar features. We uti-
lize the Structural Causal Model (SCM)(Schölkopf
et al., 2012) to characterize the causal effect of the
assistant entities in relation path extraction. As
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Figure 2: The framework of MHGCI. On the left side, we show the data processing, including constructing the
MHG, building the retrieval path, and obtaining the evidence graph. On the right side, we show the main model
architecture, including self-optimizing causal intervention and relation path extraction.
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Figure 3: SCM illustrates the causal effect of the assis-
tant entities in relation path extraction. The assistant
entity Xa is mixed by thematic factor T and distinctive-
ness factor D. Only thematic factor T can affect the
relation paths extraction.

shown in Figure 3, there are four variables in the
SCM: assistant entity features Xa, relation path
label Yr, thematic factor T and distinctiveness fac-
tor D. Among these variables, thematic factor T
and distinctiveness factor D are latent variables for
assistant entity features Xa. For entity pairs within
the same relation, entities share some similar fea-
tures called thematic factor T (e.g., context infor-
mation or entity type), while their distinctiveness
factor D (e.g., entity unique feature) differentiates

them from other entities. In the SCM, the nodes
represent these variables, and the edges between
nodes denote the causality. Therefore, we will ex-
plain the details of the SCM:

• T → Xa ← D. The input assistant entity
feature Xa is mixed by two factors: thematic
factor T and distinctiveness factor D.

• T → Yr. In causal analysis, the relation path
Yr is determined by T , which is the common
element for the same relation.

• T ↔ D. The double sided arrow indicates
the additional probability dependencies (Pearl
et al., 2016, 2000) between the thematic factor
T and the distinctiveness factor D.

The ideal relation path mining is predicted by
T without D. However, D ↔ T → Yr repre-
sents a causal path where D negative impacts on
Yr through T . D creates a spurious association be-
tween entities and labels, causing the relation path
extraction to fail in the OOD data. We analyze the
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cause inference by using Bayes rule:

P (Yr|T ) =
∑
D

P (Yr|T,D)P (D|T ) (4)

To prevent D from creating spurious association,
we construct a causal intervention for causal factor
D, which will cut the edge D ↔ T as shown
in Figure 3. Based on the backdoor adjustment
proposed by Zhu et al. (2023), we use the causal
intervention P (Yr|do(D)) to replace the likelihood
P (Yr|T ):

P (Yr|do(D = d̂)) =
∑
D

P (Yr|D = d̂, T = t)P (T = t)

(5)

where d̂ denotes a causal intervention that ensures
T → Yr is invariant across different D. Due to
the difficulty of enhancement data for multi-label
classification tasks, we propose a self-optimizing
causal intervention m(·) to implement do(·). We
are inspired by invariant risk minimization (Ar-
jovsky et al., 2019; Chang et al., 2020; Zhou et al.,
2023) to implement our causal intervention model.
We train m(·) through invariant risk minimization,
ensuring that D remains independent of T to avoid
spurious association. The goal of the training pro-
cess is as:

min
m,f
L(f(xc,m(xa))), yr), s.t. Yr ⊥ D | T (6)

where m(·) : D ↮ T mitigates the spurious as-
sociation resulting from the influence of the dis-
tinctiveness factor D on the thematic factor T ,
f(·, ·) : T → Yr denotes the relation paths ex-
traction by T corresponding to Eq.11 and Eq.12,
L(·, ·) is the loss function Eq.15.
Self-optimizing Causal Intervention Based on
SCM analysis, we propose self-optimizing causal
intervention for the assistant entity. To achieve
separate the hT and hD in hea , we map entity em-
bedding into higher-dimensional spaces:

Hc = σWchc = [h1c , h
2
c , ..., h

k
c ] (7)

Ha = σWaha = [h1a, h
2
a, ..., h

k
a] (8)

where Wc ∈ Rk×1, Wa ∈ Rk×1 are learnable pa-
rameters, σ represents the activation function, k is
the dimension of the mapping space. We assume
that assistant entity embedding encompasses two
dimensions: thematic factor hT and distinctiveness
factor hD. We posit that hT should exhibit similar-
ity under the same relation. Therefore, We set this

potential association matrix ST for the thematic
factor T . The ST calculates attention weight by the
entity pairs:

ST = softmax(
HaH

T
c√

d
) (9)

where d is the embedding dimension size. In the
ST , higher scores indicate more thematic factor T
that we aim to retain, while lower scores indicate
more distinctiveness factor D that we aim to dis-
card. We use random noise following a uniform
distribution U(0, 1) to intervene in the distinctive-
ness factor in higher dimensions, with ST control-
ling the extent of noise intervention. Back to Eq.5,
we intervene in the embedding of different dimen-
sional features:

m(ha) = σW ′
a(ST ×Ha + (1− ST )×N)

(10)
where W ′

a ∈ R1×k controls dimension reduction
parameters, N is the random noise that intervenes
in the distinctiveness factor D.

3.4 Relation Path Extraction
To obtain relation paths, we use the central entity
ec and assistant entity ea in MHG for extraction.
We map the entity pair (ec,ea) to the hidden state
Zanchor. We assess the correlation likelihood be-
tween the relation path r and Zanchor through a
learnable linear layer. The process is as follows:

Zanchor = σ(Wzconcat[hc,m(ha)]) (11)

P (r|ec, ea) = sigmod(WrZanchor + br) (12)

where Wz ∈ Rd×2d, Wr ∈ RnR×d, and br ∈ R are
the model parameters, nR is the number of rela-
tion category. The sigmoid function constrains the
output values to [0, 1] as the probability of relation
categories.

We use a contrastive learning method (Zhou
et al., 2021) to design a path length controller, set-
ting a learnable threshold TH class to filter potential
relation paths. Positive classesPr are those relation
paths with which the central entity is concerned.
Negative classes Nr are those noise relation paths.

L1 = −
∑
r∈Pr

log

(
exp (logitr)∑

r′∈Pr∪{TH} exp (logitr′)

)
(13)

L2 = − log

(
exp (logitTH)∑

r′∈Nr∪{TH} exp (logitr′)

)
(14)
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L = L1 + L2 (15)

where L1 is calculated as the sum of cross-entropy
losses for positive classes, which push the positive
classes logit higher than the TH class, enabling
the extraction of relation paths associated with the
central entity. L2 computes the cross-entropy loss
for negative classes to prevent noise paths in the
retrieval path. Two parts are simply summed for
the total loss.

3.5 Grounding
Utilizing entity and their relation paths to extract ev-
idence graph from the knowledge graph is defined
as ’grounding’. For each view of MHG, the central
entity anchor ec serves as the starting point for ev-
idence retrieval. We obtain a set of relation paths
{R1, R2, ...Rn−1}, where Rj = {r1, r2, ..., rm} is
one edge in MHG, n,m is the number and length
of relation path. The retrieval path candidates are
generated through the random permutations of Ri:

pi = {ei, {shuffle(Rj)}n−1
j=1 } (16)

where shuffle(·) represents a method for ran-
domly permuting according to path length. We
apply this method for every view of MHG to get
the final retrieval path P̂ . We use P̂ to obtain evi-
dence graphs Êvi in K.

4 Experimental Setup

4.1 Datasets

Type Written
Colloquial

Total
Model Presup

One-hop 2,106 15,934 1,580 19,530
Conjuction 20,587 15,908 602 37,097
Existence 280 4,060 4,832 9,172
Multi-hop 10,239 16,420 603 27,262
Negation 1,340 12,466 1,807 15,613

Total 34,462 64,788 9,424 108,674

Table 1: Dataset characteristics of FactKG.

FactKG (Kim et al., 2023b) is a large fact verifi-
cation via knowledge graph dataset. To our knowl-
edge, this dataset is the first to utilize KG evidence
to verify unstructured claims. The dataset has
108,674 claims which can be verified by DBpedia
(0.1 billion triples) (Lehmann et al., 2015). FactKG
possesses a rich variety of claim grammar types, in-
cluding both written and colloquial language styles.
The claims in FactKG are classified into five types,
each corresponding to different forms of relation

path reasoning: One-hop, Multi-hop, Conjunction,
Existence, and Negation. Specific details are avail-
able in the table 1.

4.2 Baseline
In the claim only setting, the baseline models only
use the claims as input to determine the truthful-
ness label. We select the three models as baselines:
BlueBERT (Peng et al., 2019), BERT (Devlin
et al., 2019) and Flan-T5 (Chung et al., 2022).
While BlueBERT and BERT make predictions
based on fully supervised training, Flan-T5 makes
predictions using a zero-shot setting. In this setting,
we evaluate the performance of pre-trained mod-
els that rely solely on claim information and their
pre-trained knowledge.

In the with evidence setting, the baseline models
use both claims and retrieved KG evidence as input
to predict the truthfulness label. KELP (Liu et al.,
2024) constructs a path selection encoder to clas-
sify multi-hop evidence for the mentioned entity,
obtaining the relevant evidence for LLM-based fact
verification. KG-GPT (Kim et al., 2023a) is based
on a few-shot LLM approach with prompt engi-
neering to divide claim sentences by entity pairs
and extract relation paths from these segments, en-
hancing LLM-based fact verification. GEAR (Kim
et al., 2023b)is a fully supervised baseline from the
FactKG dataset. GEAR employs two independent
BERT models to construct retrieval relation paths,
using a top-k strategy to retain the most promising
candidate paths. Then, they directly employed the
fact verification model(Zhou et al., 2019) with the
KG setting to verify the truthfulness label.

4.3 Implementation Details
For the evidence retrieval model, MHGCI is im-
plemented based on the Huggingface Transform-
ers framework for the pre-trained model. MHGCI
uses the basic model of the hidden dimension 768
dimensions in all experiments. For learning rate
scheduling, we respectively set the learning rate
for the pre-trained model layers and other layers to
5e-5 and 1e-4. MHGCI is optimized using AdamW
with a linear warm-up applied for the first 10%
of steps. We train the model for 15 epochs with
a batch size of 64, selecting the best model af-
ter each epoch based on performance on the DEV
set. All experiments are conducted on NVIDIA
GeForce RTX 4090. The model training cost is
approximately 3 hours. For the verification pre-
diction, we remain consistent with the previous
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Model One-hop Multi-hop Conjunction Existence Negation Total Accuracy
Fact Verification w/o Evidence
BlueBERT 60.03 57.79 60.15 59.89 58.90 59.93
BERT 69.64 70.06 63.31 61.84 63.62 65.20
Flan-T5 62.17 69.66 55.29 60.67 55.02 62.70
LLM-Base Fact Verification w/ Evidence
KG-GPT12-shot 79.10 58.33 76.84 64.00 70.73 71.00
KELP12-shot - - - - - 69.20
Fully Supervised Fact Verification w/ Evidence
GEAR (top-3) 80.88 62.38 83.06 89.20 80.88 78.58

⌞ (top-5) 80.93 69.00 85.37 83.10 79.57 79.98
⌞ (top-10) 79.41 72.08 88.43 73.68 74.25 79.68

our model 84.12 72.09 87.88 98.16 85.20 84.41
w/o SCIA 82.50 70.49 86.54 98.05 84.19 83.12
w/o MHG+SCIA 81.24 63.71 70.51 95.98 80.42 75.25

Table 2: Overall performance of FV task and ablation experiment in FactKG dataset. The dataset metrics include
sub-task accuracy and total accuracy. The sub-tasks are one-hop, multi-hop, conjunction, existence, and negation.

work GEAR(Kim et al., 2023b). For fairness, we
construct the model based on the recommended
parameters of the baseline model.

5 Result and Analysis

5.1 Overall Performance

The table 2 shows the overall performance for the
fact verification task on the blind TEST set. We
evaluate the framework capabilities based on five
reasoning sub-tasks. The evaluation metric is the
accuracy of the truthfulness label for each claim.

Comparison with the claim only methods. Al-
though BERT exhibits better performance com-
pared to BlueBERT and Flan-T5, indicating that
the knowledge embedded in model weights is ef-
fective for the reasoning task. However, our model
substantially exceeds the claim only baseline by
19.21%. Retrieving evidence is a more effective
strategy for the FV task than claim only methods.

Comparison with the LLM-Base method in
with evidence setting. For this setting, the FV task
performance depends on the evidence retrieval per-
formance and the verification performance. Com-
pared to KG-GPT, a few-shot LLM framework,
our model exhibits an 11.73% improvement. Our
model consistently exceeds this baseline model
across all sub-tasks of reasoning. Due to train-
ing cost limitations, we compare the total accuracy
with KELP. While KELP improved path selection,
their method still performs worse than ours. In sum-
mary, the LLM approach does not perform well in
KG-based FV tasks.

Model Setting Precision Recall F1
KG-GPT top-5 18.400 47.347 26.501

GEAR
top-3 39.502 73.391 51.360
top-5 25.411 78.685 38.416
top-10 13.324 82.518 22.944

our model threshold 74.583 62.728 68.143

Table 3: The evidence retrieval experiment in FactKG.
The experiment compared the relation path extraction
performance between KG-GPT, GEAR and our model.

Comparison with the fully supervised method
in with evidence setting. In this setting, all veri-
fication models are consistent, indicating that the
performance of the FV task only depends on evi-
dence retrieval performance. For the GEAR model,
top-k retrieval strategies produce diverse evidence.
As the number of relation paths increases, overall
performance generally improves, though this im-
provement is not unlimited. For the multi-hop and
conjunction claims, more paths enhance evidence
recall, leading to improved reasoning performance
of the model. For one-hop, existence and negation
tasks, excessive relation paths decrease model per-
formance, with the maximum impact reaching up
to 15.52%. This indicates that extracting faithful
inference chains is crucial for optimizing verifica-
tion performance. Compared to the best results in
GEAR, our model shows a 4.43% improvement
in accuracy. Our model maintains the best perfor-
mance in most sub-tasks, especially in tasks with
precise path requirements, with the highest met-
ric improvement reaching up to 8.96%. Despite
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MHGCI weaker performance in conjunction tasks
with a 0.55% decrease, we remain close to the cur-
rent SOTA level. This demonstrates that the faithful
inference chains we extracted effectively support
the verification model’s reasoning process.

5.2 Evidence Retrieval Performance
Table 3 presents a comparison experiment of re-
lation path retrieval on the FactKG DEV set1.
We utilize the metrics of Precision, Recall, and
F1 score to evaluate the evidence retrieval perfor-
mance. MHGCI surpasses the GEAR best F1 score
by 16.78%. In terms of precision, our model also
achieves the best results, surpassing the best perfor-
mance of the GEAR by 35.08%. It indicates that
MHGCI can extract faithful inference chains to ob-
tain precise evidence for the FV task. We observe
that as the recall increases, the precision decreases
rapidly, which may explain the poor performance
of the top-10. We list some retrieval paths and evi-
dence graphs by MHGCI, the case study details are
shown in the Sec.5.5.

5.3 Ablation Experiment
To investigate the effectiveness of the MHGCI mod-
ules, we construct ablation experiments are shown
in Table 2. Firstly, we use the original entity em-
bedding to replace the self-optimizing causal in-
tervention for the assistant entity (SCIA). In the
setting without SCIA, the accuracy decreases by
1.29%. The performance decrease across various
sub-tasks is similar, indicating that SCIA is effec-
tive in all sub-tasks. Then we remove the assistant
entity, which causes both MHG and SCIA to mal-
function. In the setting without MHG and SCIA,
the accuracy drops significantly by 9.16%. This
indicates that the assistant entity is crucial. The ex-
periment results show that the modules in MHGCI
are effective and necessary.

5.4 Analyzing Counterfactual Influence in
Long-Tail Experiment

We observe a training data imbalance across differ-
ent relation categories in the FactKG dataset. We
believe that insufficient training data exacerbates
the out-of-distribution (OOD) problem. Therefore,
we can design a long-tail experiment to verify our
model performance on the OOD problem. We use
the FactKG DEV set to design experiments with the
fully supervised baseline GEARtop-3. In the Figure

1The TEST set lacks ground truth for relation path, so we
utilize the DEV set to evaluate results.
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Figure 4: Compare the long-tail relation extraction per-
formance between GEARtop-3 and our model. In the
figure, the x-axis represents the minimum amount of re-
lation training data volume, with parentheses indicating
the proportion of relation categories.

4, we use the F1-score as the metric to observe evi-
dence retrieval performance across different train-
ing data volumes. As the training data volume
decreases, the performance of the GEAR model
continuously decreases, indicating that OOD data
can harm their model performance. However, our
model exhibits a different performance. Although
our model performance also declines, the rate of
degradation is slower than that of the GEAR model.
When the training data volume exceeds 65, our
model maintains the highest performance, indicat-
ing that it effectively mitigates the OOD problem
in the evidence retrieval task. Especially, when the
training data volume is below 65, our model F1-
score is worse than GEAR. This may result from
the inability to identify entity embedding spaces for
causal interventions with low training data volume,
which affects the thematic factors.

5.5 Case Study

In Figure 5, we present several retrieval path ex-
amples and evidence graph cases obtained by the
MHGCI framework. In the one-hop task, MHGCI
can retrieve faithful inference chains even when
the relation is counterfactual. In the conjunction
task, MHGCI can retrieve faithful inference chains
across multiple directions. In the multi-hop task,
MHGCI can retrieve multi-hop relation paths with
precise hops and classifications. Although many
noisy retrieval paths are generated due to the shuf-
fle method, this approach is necessary since the
relation order cannot be derived directly from the
claim. For the existence and negative tasks, the
differences lie in the claim style rather than the
evidence style, so they are similar to these tasks.
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Claim Retrieval Path Evidence Graph
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Figure 5: Several MHGCI retrieval cases on FactKG. The orange font represents the mentioned entities, while the
blue font represents the evidence entities in the KG.

6 Conclusion

In this work, we propose Multi-view Heteroge-
neous Graph with Causal Intervention (MHGCI)
to extract faithful inference chains for fact verifi-
cation. Specifically, MHG achieves precise rela-
tion path extraction through a multi-view heteroge-
neous graph. In addition, this method effectively
addresses the OOD problem caused by counterfac-
tual relations through self-optimizing causal inter-
vention. In summary, our model provides precise
evidence graphs for fact verification. Experiments
on the FactKG dataset demonstrate the MHGCI
outperforms all baseline models.

Limitations

The MHGCI introduces a method for extracting
faithful inference chains, reducing the volume of
evidence graphs. In the evidence retrieval, we
observed that MHGCI recall is lower than the
SOTA method. This could lead to missing cru-
cial evidence, resulting in overall reasoning errors
in fact verification. In addition, we observe that
the MHGCI becomes ineffective when the training
volume is below 65 instances. The added noise dis-
rupts the original effective embeddings, showing a
limitation of this approach.
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A Cross Styles of Claim Experiment

Input Type Model W →W W → C C → C C →W

Claim Only
BlueBERT 64.76 56.28 58.77 63.92

BERT 71.75 63.85 68.10 69.43

With Evidence
GEAR 81.00 75.43 80.81 78.80

Our Model 83.76 75.48 84.38 83.73

Table 4: Diversity cross style claim experiments for
MHGCI. W refers to the written style claims and C
refers to the colloquial style claims. W → C means
that only train by written styles sub-dataset to predict
the colloquial style claims.

Table 4 analyzes the performance of our model
across various styles of claims. We divided the
dataset into two disjoint parts based on the gram-
matical style of the claims: written style and col-
loquial style. We trained the model on different
sub-datasets to validate its generalization ability
across various types of claims. Our model achieved
the best results across all settings, with an average
increase of 2.83% compared to the SOTA. In ad-
dition, we also discovered some interesting varia-
tions in the experimental data. In different styles
of claim, the model tends to adapt to the training
language style, leading to performance degradation
in cross-style settings. However, in the C → W
setting, we noticed that the claim only model would
unexpectedly show an improvement in the experi-
ment. Hence, we think colloquial style claims are
more prone to causing performance bottlenecks,
which can be alleviated by integrating colloquial
style corpora during training. This viewpoint is fur-
ther supported by the W → C experiments, where
our model performance decrease is more than the
baseline, compared to the W →W .
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