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Abstract

This study evaluates the effectiveness of Vision
Language Models (VLMs) in representing and
utilizing multimodal content for fact-checking.
To be more specific, we investigate whether in-
corporating multimodal content improves per-
formance compared to text-only models and
how well VLMs utilize text and image infor-
mation to enhance misinformation detection.
Furthermore we propose a probing classifier
based solution using VLMs. Our approach ex-
tracts embeddings from the last hidden layer
of selected VLMs and inputs them into a neu-
ral probing classifier for multi-class veracity
classification. Through a series of experiments
on two fact-checking datasets, we demonstrate
that while multimodality can enhance perfor-
mance, fusing separate embeddings from text
and image encoders yielded superior results
compared to using VLM embeddings. Fur-
thermore, the proposed neural classifier sig-
nificantly outperformed KNN and SVM base-
lines in leveraging extracted embeddings, high-
lighting its effectiveness for multimodal fact-
checking.

1 Introduction

Social media platforms are increasingly becom-
ing the primary source of news for many people.
However, these platforms are susceptible to the
rapid spread of fake stories, which can be used to
manipulate public opinion (Allcott and Gentzkow,
2017). Fabricated posts may include false text,
images, videos, or speech content (Alam et al.,
2022; Akhtar et al., 2023; Comito et al., 2023), de-
signed to deceive social media users. Therefore,
automated fact-checking systems should be able
to consider information from different modalities
(Abdali et al., 2024). For instance, on the Snopes
website, a claim1 about an edited image was proven

1https://www.snopes.com/fact-check/
hitler-trump-image-fake/

Figure 1: Example multimodal fact-checking from
Snopes

to be fake by providing the original image and ex-
plaining how it was fabricated to manipulate public
opinion about public figures. To verify the truthful-
ness of such content, it is essential to process both
text and image information (see Figure 1).

A vision language model (VLM) consists of an
image encoder, a text encoder and a mechanism
such as contrastive learning (Bordes et al., 2024)
and cross attention (Chen et al., 2022) to fuse text
and image information. By this way, the model
leverages the text and visual information while
generating a response text. VLMs consist of bil-
lions of parameters and fine-tuning these models
requires significant computational resources. Al-
though parameter-efficient fine-tuning approaches
(Hu et al., 2022; Liu et al., 2024c) have proven to
be very effective for large language models, VLMs
do not scale well horizontally. Consequently, such
VLMs cannot be fine-tuned with moderate batch
size and sequence length on a single GPU for prob-
lems like fact-checking that requires long text in-
puts.

Instead of fine-tuning, probing classifiers are
trained on the representations of a pre-trained
model (Kunz and Kuhlmann, 2020) to predict lin-
guistic features such as dependency parsing (Adel-
mann et al., 2021) and POS tagging (Kunz and
Kuhlmann, 2021). A key advantage of probing
classifiers is their ability to assess how well the

mailto:rfcekinel@ceng.metu.edu.tr
https://www.snopes.com/fact-check/hitler-trump-image-fake/
https://www.snopes.com/fact-check/hitler-trump-image-fake/
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pre-trained model has captured linguistic proper-
ties. In this study, we aim to evaluate how VLMs
leverage both text and images for the fact-checking
task by training a probing classifier. The following
research questions are addressed in the paper.

RQ1: Validating the need for multimodality:
Does incorporating multimodal data improve per-
formance in the fact-checking task or are text-only
models sufficient?

RQ2: Leveraging multimodal content: How
effectively do VLMs utilize both text and image in-
formation to enhance fact-checking performance?

RQ3: Evaluating probing classifiers: How
does a probing neural classifier compare to baseline
models in the context of the fact-checking task?

This study proposes a probing classifier that in-
volves extracting the last hidden layer’s representa-
tion and using it as input for a neural network. By
introducing this pipeline, we aim to elaborate on
the utilization of multimodal information, text and
image, compared to embeddings extracted from dis-
crete text-only and image-only models for the fact-
checking problem. The source code is available at
the following anonymous GitHub repository2

2 Related Work

Text-Based Fact-Checking Shared tasks such as
FEVER (Thorne et al., 2018), CLEF2018 (Nakov
et al., 2018) and AVeriTeC (Schlichtkrull et al.,
2023) evaluate fact-checking systems on textual
claims. Although LLMs achieved high success
rates on fact-checking with English data even in
zero-shot settings (Hoes et al., 2023), Zhang et al.
(2024) emphasize the need for language models
that are specifically pre-trained on the target lan-
guage. Similarly Cekinel et al. (2024) investigate
cross-lingual transfer learning using LLMs. Ad-
ditionally, Cheung and Lam (2023) incorporate
external evidence during instruction-tuning to en-
hance the knowledge of LLMs. Moreover, Yue et al.
(2023) focus on cross-domain knowledge transfer
with in-context learning. Tang et al. (2024) ver-
ify the factuality of synthetically generated claims
against grounding documents. LLMs are also used
for explanation generation (Bangerter et al., 2024;
Zeng and Gao, 2024; Mediratta et al., 2024) and
neuro-symbolic program generation (Pan et al.,
2023) for fact-checking. While these works primar-
ily focus on enhancing models’ knowledge, we aim

2https://github.com/firatcekinel/Multimodal-Fact-
Checking-with-Vision-Language-Models

to explore how they can leverage different modali-
ties.

Multimodal Fact-Checking While SpotFake+
(Singhal et al., 2020) concatenates extracted text
and image features for further processing through
feed-forward layers, CARMN (Song et al., 2021)
fuses multimodal information using a cross-modal
attention residual network. Pre-CoFactv2 (Du
et al., 2023) implements a multi-type fusion model
that uses cross-modality and cross-type relations.
COOLANT (Wang et al., 2023) implemented a con-
trastive learning based fusion method for image-
text alignment. Gao et al. (2024) incorporates the
information extracted from the tweet graph with
text and image embeddings for improving fake
news detection. Liu et al. (2024b) examined the
impact of audio in multimodal fact-checking by
proposing a framework that fuses text, video and
audio information with the cross-attention mech-
anism. Wang et al. (2024a) align news text with
images by cross-modal attention model.

Geng et al. (2024) propose an evaluation frame-
work for VLMs that assesses the pre-trained knowl-
edge of these models in fact-checking without ev-
idence. RAGAR (Khaliq et al., 2024) presents a
RAG-based model that reframes the problem as
question-answering for retrieved evidence pieces.
MMIDR (Wang et al., 2024b) trains a distilled
model to generate explanations. SARD frame-
work (Yan et al., 2024) applies multimodal seman-
tic alignment to integrate multimodal network fea-
tures. LVLM4FV (Tahmasebi et al., 2024) is an
evidence-ranking approach and was evaluated on
two benchmark datasets using LLMs and VLMs
with zero-shot setting.

Although recent studies have focused on devel-
oping multimodal models for fact-checking using
various fusion approaches, we aim to explore how
effectively VLMs utilize different modalities. Geng
et al. (2024) also evaluated the robustness of re-
cent VLMs for this problem by comparing the pre-
trained knowledge of selected models and their
prediction accuracy and confidence rates in zero-
shot and few-shot settings. In contrast, we aim
to leverage VLM representations by proposing a
pipeline that trains a classifier using these embed-
dings. Furthermore, our primary focus is on utiliz-
ing multimodal information. In the experiments,
we evaluate the intrinsic fusion of multimodal in-
formation against the extrinsic fusion of separate
text-only and image-only representations.

https://github.com/firatcekinel/Multimodal-Fact-Checking-with-Vision-Language-Models


4624

Figure 2: Overview of our probing fact-verification classifier. ReLU activation is applied after each linear layer with
dropout for better generalization. The dashed lines indicate optional embeddings. In other words, evidence text and
evidence image representations are optional in this pipeline.

3 The Proposed Method

3.1 Feed-Forward Veracity Classifier

We introduce a probing classifier to examine the
efficiency of multimodal embeddings compared to
separate embeddings extracted from text-only and
image-only models for veracity prediction. The
VLM embeddings fuse text and image modalities
intrinsically but distinct text and image encoder
embeddings are fused extrinsically by the probing
classifier as illustrated in Figure 2.

First, the last hidden layer representation is ex-
tracted from a VLM or a text/image encoder. The
neural classifier either receives the VLM represen-
tation or embeddings from the corresponding text
encoder and image encoder, then predicts veracity
classes. If multiple input tensors are fed to the neu-
ral classifier, they are processed by a linear layer
and after the first layer, all tensors are resized to a
"hidden_size" — a hyper-parameter determined by
validation experiments — and then concatenated.
We concatenate after the first layer because the text
and image embedding sizes vary significantly. To
utilize both types of information equally, we re-
size these embeddings to the same dimension and
concatenate them afterward. On the other hand,

if only the VLM embedding is given to the net-
work as input, two linear layers process the tensor
sequentially without any concatenation.

In both of the probing classifier architectures,
we implement a weighted cross-entropy loss, with
weights determined by inverse class ratios to pe-
nalize the majority class more. Since PyTorch’s
cross-entropy loss implementation combines soft-
max with negative log-likelihood loss, the output
tensor predicts class probabilities. Consequently,
the classifier predicts the class with the highest
probability for a given instance.

3.2 Models

The primary goal of this study is to examine
whether merging image and text information pro-
vides gains for the fact-checking problem. To this
end, we selected three multimodal models with
different fusion mechanisms, as explained below.

Qwen-VL (Bai et al., 2023b) is a multimodal
model introduced by Alibaba Cloud. Qwen-VL is
based on the Qwen-7B (Bai et al., 2023a) language
model and Openclip’s ViT-bigG (Ilharco et al.,
2021) vision transformer. The model leverages
both modalities through a cross-attention mecha-
nism. Information from the vision encoder is fused
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into the language model using a single-layer cross-
attention adapter with query embeddings optimized
during the training phase. In this study, we em-
ployed Qwen-VL-Chat-Int4 checkpoint which was
the 4-bit quantized version.

Idefics2 (Laurençon et al., 2024) is a general-
purpose multimodal VLM introduced by Hugging-
face. It is based on the Mistral-7B (Jiang et al.,
2023) language model and SigLIP’s vision en-
coder (Zhai et al., 2023) (SigLIP-So400m/14). The
model employs a vision-language connector that
takes the vision encoder’s representation as input,
using perceiver pooling and MLP modality projec-
tion. After these operations, the image information
is concatenated with the encoded text representa-
tion and fed into the language model decoder.

PaliGemma (Beyer et al., 2024) is introduced by
Google and is based on the Gemma-2B (Team et al.,
2024) language model and SigLIP’s vision encoder
(Zhai et al., 2023) (SigLIP-So400m/14). Since
Gemma-2B is a decoder-only language model, the
vision encoder’s representation is fed into a linear
projection, concatenated with text inputs, and then
fed into the Gemma-2B language model for text
generation. In this study, we employed paligemma-
3b-mix-448 checkpoint that was fine-tuned on a
mixture of downstream tasks.

3.3 Datasets

Mocheg (Yao et al., 2023) consists of 15K fact-
checked claims from Politifact3 and Snopes.4

These websites employ journalists to verify claims
who collect evidence documents and write ruling
comments. The Mocheg dataset includes both text
and image evidence which were crawled from the
reference articles linked on the fact-checked claims’
webpages. In cases where multiple evidence im-
ages were available for a claim, some collected
images were found to be irrelevant. Therefore, for
the experiments, only the first image was used as
the evidence image.

Factify2 (Suryavardan et al., 2023) is a chal-
lenge dataset containing 50K claims. The authors
collected true claims from tweets by Indian and US
news agencies and false claims from fact-checking
websites. They scraped text and image evidence
from external articles and also collected claim im-
ages from the headlines of the claims. The fact-
verification task was reformulated as an entailment

3https://www.politifact.com/
4https://www.snopes.com/

problem where claims were annotated to indicate
whether the claim text and image were entailed by
the evidence text and image.

4 Experiments

We conducted experiments on compute nodes with
4x40GB Nvidia A100 GPUs. While evaluating the
models on the datasets, we ignore the instances
that have missing text evidence or images. For the
Mocheg dataset, we used the original train-dev-test
splits. The dataset has three labels "supported",
"refuted" and "not enough info (NEI)" and we used
the labels as it is.

Regarding the Factify2 dataset, since the labels
in the test set were unavailable, the original valida-
tion data was kept for testing. Instead, we randomly
selected 10% of the training set for validation but
kept the same percentages of classes in each split.
Similar to (Tahmasebi et al., 2024), we reduced
the original five labels to three classes: Support
(Support_Multimodal & Support_Text), Refute and
Not enough info (Insufficient_Multimodal & Insuf-
ficient_Text) to evaluate the proposed approach.

During the training of the probing classifier us-
ing the embeddings, validation experiments were
conducted through grid search within the parameter
space detailed below. Note that only the best pa-
rameter settings are presented in Appendix A. Last
but not least, we reported F1-macro scores and F1
scores for each class in the following experiments.

4.1 Zero-Shot Inference

In this experiment, we evaluated the zero-shot in-
ference performance of text-only language models
and multimodal VLMs on selected datasets. The
text-only models were the same language models
used in the VLMs for text processing. The pur-
pose of reporting the results on text-only models is
to examine the necessity of image content for the
fact-checking problem.

For the text-only models, the claim and evidence
text were provided as a single prompt, as illustrated
in Figure 3. Similarly, for each claim statement,
the evidence text and evidence image were fed to
the VLMs using a similar prompt template. Note
that we reported results only for instances where
the models responded with "supported," "refuted,"
or "not enough info." In other words, if the models
did not provide a relevant justification, these cases
were excluded from the reported results.

We also reported the performance of two base-

https://www.politifact.com/
https://www.snopes.com/
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MOCHEG FACTIFY2
Models Inputs Support Refute NEI F1-macro Support Refute NEI F1-macro

Qwen-7B text 0.533 0.262 0.169 0.321 0.524 0.458 0.281 0.421
Mistral-7B text 0.505 0.281 0.216 0.334 0.575 0.561 0.093 0.409
Gemma-2b text 0.610 0.462 0.315 0.462 0.562 0.119 0.083 0.255
Qwen-VL text + image 0.168 0.472 0.186 0.275 0.463 0.460 0.369 0.431
Idefics2-8b text + image 0.619 0.547 0.385 0.517 0.586 0.644 0.303 0.511
PaliGemma-3b text + image 0.222 0.347 0.449 0.339 0.149 0.139 0.186 0.158
LVLM4FV text 0.575 0.542 0.439 0.519 0.593 0.581 0.560 0.578
LVLM4FV text + image 0.578 0.569 0.457 0.535 0.678 0.605 0.508 0.597
MOCHEG text + image 0.490 0.604 0.282 0.459 0.547 0.621 0.275 0.481

Table 1: Text-only and multimodal inference results

MOCHEG FACTIFY2
Models Inputs Support Refute NEI F1-macro Support Refute NEI F1-macro

PaliGemma-3b text + image 0.412 0.514 0.173 0.366 0.751 0.997 0.757 0.835

Table 2: PaliGemma-3b fine-tuning results

Assess the factuality of the following claim by
considering evidence. Only answer "supported",
"refuted" or "not enough info".
Claim: {claim}
Evidence: {evidence}

Figure 3: Prompt template

line models, LVLM4V (Tahmasebi et al., 2024)
and MOCHEG (Yao et al., 2023), for comparison.
MOCHEG concatenates the claim, evidence and
image to generate CLIP (Radford et al., 2021) rep-
resentations, employing attention mechanisms to
update the claim representation based on the ev-
idence. LVLM4V uses two-level prompting, for-
mulating the problem as two binary questions and
utilizing the Mistral (Jiang et al., 2023) and LLaVa
(Liu et al., 2024a) models.

F1-macro scores along with F1 scores for each
class are presented in Table 1 for both text-only
and multimodal models. The results show that
multimodality can enhance performance depend-
ing on the dataset and model configuration. For
example, both Idefics-8b and LVLM4FV consis-
tently outperformed their text-only counterparts,
while Qwen-VL performed slightly better on the
Factify2 dataset but worse on the Mocheg dataset.
In contrast, PaliGemma consistently responded
with, "sorry, as a base VLM I am not trained to
answer this question" to test queries, suggesting
that specific policies were implemented in the base
VLM to prevent responses to ambiguous queries.
As a result, PaliGemma’s inference performance
was significantly lower than that of its language

model counterpart, Gemma-2b (see Appendix B
for response frequencies). The inference scores of
Idefics2-8b suggest that images may provide ad-
ditional information for fact-checking, likely due
to its fine-tuning on a mixture of supervised and
instruction datasets, which could explain its suc-
cess on these datasets. Additionally, LVLM4V’s
prompting strategy appears more efficient, as it first
checks whether the evidence is sufficient for verifi-
cation before issuing a second prompt to verify or
refute the claim.

Qualitative Analysis. A qualitative analysis was
conducted to explore the types of claims that were
correctly predicted by multimodal models but in-
correctly predicted by text-only models. In this
analysis, the predictions from both the text-only
(Mistral-7B) and multimodal (Idefics2-8b) models
were employed on the Mocheg dataset. Although
for the fact-checking problem, textual contents are
the primary source, images are shown to be useful.
After examining the instances that are correctly pre-
dicted by the VLM but misclassified by the LLM,
we found that such instances required image infor-
mation to accurately verify the claims, as illustrated
in Figure 4.

Fine-tuning PaliGemma-3b. Fact-checking re-
quires long evidence with supporting images, mak-
ing it computationally challenging to fine-tune the
VLMs with moderate batch sizes and sequence
lengths on a single GPU. Therefore, we fine-tuned
only the PaliGemma-3b-pt-224 checkpoint using
claim, evidence and claim image as input. The
experimental details are given in Appendix C.
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(a) Supported claim (b) Unproven claim (c) Refuted claim

Figure 4: Qualitative examples for VLM and LLM inference predictions

Evidence in the Mocheg dataset was collected
from reference web articles. In contrast, Factify2
used the justifications provided by fact-checkers
as evidence. As a result, Factify2’s evidence is
more concise and self-explanatory. However, mod-
els should interpret the knowledge from Mocheg’s
evidence sources to make a final decision. Because
of the GPU memory considerations, evidence texts
were cropped if they exceeded 768 words.

Fine-tuning results, presented in Table 2, show a
significantly lower score of 0.366 on the Mocheg
dataset compared to inference results, due to crop-
ping of the evidence text. However, on the Factify2
dataset, the evidence texts were shorter and the
model leveraged the key information for making a
decision and achieved 0.835 F1-macro score. Note
that, on the Factify2 challenge the best-performing
model was Logically (Gao et al., 2021) which was
also fine-tuned on Factify2 dataset and it achieved
0.897 F1-macro score. Due to computational con-
straints, we were unable to utilize the long text
evidence, particularly in the Mocheg dataset. As a
result, we introduced a probing classifier instead of
fine-tuning the selected VLMs.

4.2 Intrinsic Fusion of VLM Embeddings
In this experiment, we examined whether inher-
ently multimodal models effectively utilize both
text and image information. First, we extracted
embeddings from selected VLMs and fed these
vector representations into a feed-forward multi-
class classifier. We extracted the last hidden states
and applied mean pooling to each token’s embed-
ding. In other words, the extracted embedding size
was (1, ntokens, ndim), where ntokens is the num-
ber of tokens and ndim is the dimension of each
token embedding. Mean pooling provided a single
embedding for each instance.

We provided two sets of inputs for extracting
embeddings: mm_claim and mm_evidence. The
mm_claim input consists of a claim and a corre-
sponding image while the mm_evidence input con-
sists of text evidence and an evidence image. For

the second setting, we fed two input vectors to
the classifier network: the mm_claim embedding
and the mm_evidence embedding. This is because
mm_evidence includes only the evidence represen-
tation - evidence image and evidence text - so we
provided the claim information by feeding a second
input to the classifier.

According to Table 3, the mm_evidence input set-
ting improved F1-macro scores consistently for all
models. This indicates that using both text and im-
age evidence improved classification performance
on both datasets. The results suggest that the se-
lected VLMs effectively leverage information from
evidence text and images on both the Mocheg and
Factify2 datasets.

4.3 Extrinsic Fusion of Language Model and
Vision Encoder Embeddings

Separate embeddings were extracted for text and
image information from the vision encoders and
language models, respectively. Afterward, we per-
formed mean pooling to obtain one-dimensional
vector representations for each instance. For this
experiment, we had four input setups:

Input1 (claim+image): The claim representation
was taken from the language model and the corre-
sponding image representation was taken from the
vision transformer.

Input2 (claim+claim_image+text+text_image):
In addition to Input1, the evidence text represen-
tation was extracted from the language model and
the evidence image representation was extracted
from the vision transformer.

Input3 (mm_claim+mm_image): The embed-
dings extracted when the claim text is given to the
VLM and the embeddings extracted when only the
claim image is given were used separately.

Input4 (mm_text+mm_image): The embed-
dings extracted when all textual content is given to
the VLM and the embeddings extracted when only
the images are given were used separately.
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MOCHEG FACTIFY2
Model Inputs Support Refute NEI F1-macro Support Refute NEI F1-macro
Qwen-VL mm_claim 0.467 0.459 0.463 0.463 0.238 0.505 0.513 0.418
Idefics2-8b mm_claim 0.522 0.535 0.399 0.485 0.427 0.516 0.471 0.471
PaliGemma-3b mm_claim 0.495 0.510 0.451 0.485 0.398 0.387 0.503 0.429
Qwen-VL mm_claim+mm_evidence 0.483 0.561 0.417 0.487 0.532 0.443 0.469 0.481
Idefics2-8b mm_claim+mm_evidence 0.501 0.572 0.429 0.501 0.339 0.674 0.560 0.524
PaliGemma-3b mm_claim+mm_evidence 0.522 0.592 0.444 0.519 0.307 0.604 0.575 0.495

Table 3: Intrinsic fusion of VLM embeddings: Feed-forward neural classification with VLM embeddings

MOCHEG FACTIFY2
Model Inputs Support Refute NEI F1-macro Support Refute NEI F1-macro
Qwen-7B+Vit-bigG claim+image 0.472 0.533 0.438 0.481 0.520 0.854 0.514 0.629
Mistral-7B+SigLIP claim+image 0.515 0.555 0.498 0.522 0.095 0.951 0.654 0.566
Gemma-2b+SigLIP claim+image 0.506 0.555 0.430 0.497 0.479 0.809 0.481 0.590
Qwen-7B+Vit-bigG claim+claim_image+text+text_image 0.486 0.577 0.413 0.492 0.398 0.788 0.558 0.581
Mistral-7B+SigLIP claim+claim_image+text+text_image 0.503 0.574 0.407 0.495 0.580 0.607 0.362 0.516
Gemma-2b+SigLIP claim+claim_image+text+text_image 0.500 0.584 0.378 0.487 0.580 0.607 0.362 0.556
Qwen-VL mm_claim+mm_image 0.528 0.515 0.462 0.502 0.318 0.806 0.642 0.589
Idefics2-8b mm_claim+mm_image 0.555 0.578 0.452 0.528 0.437 0.982 0.593 0.670
PaliGemma-3b mm_claim+mm_image 0.551 0.453 0.390 0.465 0.606 0.583 0.000 0.396
Qwen-VL mm_text+mm_image 0.499 0.612 0.431 0.514 0.519 0.812 0.530 0.620
Idefics2-8b mm_text+mm_image 0.526 0.541 0.458 0.509 0.319 0.825 0.547 0.564
PaliGemma-3b mm_text+mm_image 0.467 0.512 0.447 0.475 0.623 0.681 0.001 0.435

Table 4: Extrinsic fusion of embeddings: Feed-forward neural classification with distinct text and image embeddings

Inputs, except Input2, had two separate text and
image embeddings. Only the second setup had
four embeddings: claim embedding, claim image
embedding, text embedding, and text image embed-
ding. After extracting the embeddings, we trained
the proposed probing classifier as described in Sec-
tion 3.1 for multi-class veracity prediction. We
extracted the embeddings for Input1 and Input2
using the selected multimodels’ text and vision en-
coders that were also mentioned in Section 3.2.

According to Table 4, Idefics2 with the third
input setup outperformed the other models on both
datasets. Note that Idefics2 also performed better in
zero-shot evaluations which could indicate that the
model might have encountered similar data during
pre-training. Therefore, it may leverage its pre-
training knowledge while processing these claims.

4.4 Ablation Study

Our feed-forward classifier, illustrated in Figure
2, consists of two sequential linear layers. The
first layer resizes each input tensor to a "hidden
size" before concatenating the tensors. We chose
this approach because there was a significant differ-
ence between the image and text embedding sizes.
By reshaping each tensor to the same size before
concatenation, we aimed to utilize both types of
information more effectively.

However, this approach has some limitations. If
concatenation were performed before the first hid-

den layer, linear layers would be common for all
models and input setups. In our approach, only the
layers after concatenation are common so as the
number of inputs increases, the number of learned
parameters for the non-common layers also in-
creases. Additionally, we did not validate the depth
of the neural classifier and the network depth might
be too shallow for the veracity detection task.

To assess whether the neural classifier effectively
learns the intended task, we conducted an exper-
iment using KNN and SVM classifiers with the
same training embeddings as mentioned in Section
4.2. We set the number of neighbors (k), to seven
which was decided after exploring consecutive val-
ues. Similarly, we trained SVM classifier with a
linear kernel. As shown in Table 5, our approach
outperformed the baselines on both datasets which
implies that the proposed neural classifier lever-
aged the embeddings much better than the KNN
and SVM classifiers on both datasets.

5 Discussion

First, we addressed RQ1 by conducting a zero-
shot experiment to verify that multimodality im-
proves performance depending on the dataset and
model configuration, with models like Idefics-8b
and LVLM4FV outperforming their text-only coun-
terparts. Idefics2-8b benefits from image informa-
tion while LVLM4V’s efficient prompting strategy
further enhances verification accuracy.
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MOCHEG FACTIFY2
Method Model Inputs Support Refute NEI F1-macro Support Refute NEI F1-macro

KNN

Qwen-VL mm_claim 0.253 0.433 0.235 0.307 0.422 0.025 0.485 0.311
Idefics2-8b mm_claim 0.254 0.438 0.276 0.322 0.394 0.013 0.471 0.308
PaliGemma-3b mm_claim 0.237 0.435 0.250 0.307 0.410 0.009 0.471 0.293
Qwen-VL mm_claim+mm_evidence 0.207 0.433 0.160 0.267 0.417 0.023 0.484 0.299
Idefics2-8b mm_claim+mm_evidence 0.206 0.450 0.122 0.259 0.405 0.016 0.477 0.296
PaliGemma-3b mm_claim+mm_evidence 0.150 0.457 0.148 0.252 0.401 0.017 0.471 0.296

SVM

Qwen-VL mm_claim 0.375 0.453 0.273 0.367 0.234 0.156 0.512 0.301
Idefics2-8b mm_claim 0.432 0.491 0.284 0.402 0.268 0.238 0.479 0.217
PaliGemma-3b mm_claim 0.412 0.487 0.263 0.387 0.000 0.233 0.533 0.328
Qwen-VL mm_claim+mm_evidence 0.380 0.490 0.233 0.368 0.583 0.046 0.023 0.320
Idefics2-8b mm_claim+mm_evidence 0.392 0.514 0.231 0.379 0.592 0.187 0.181 0.255
PaliGemma-3b mm_claim+mm_evidence 0.383 0.521 0.256 0.387 0.558 0.141 0.276 0.325

Table 5: Baseline classifiers’ results

Additionally, the proposed intrinsic fusion
pipeline which utilizes VLM embeddings, outper-
formed the VLMs’ base inference performance (see
Table 1 and Table 3). The only exception was the
Idefics2 model on the Mocheg dataset, which had a
0.517 F1-macro inference score while the classifier
achieved only a 0.501 F1-macro score. Since the
probing classifier has only two layers, it might be
too shallow for this dataset and model. Note that
the primary goal of this study is not to achieve state-
of-the-art scores for the selected datasets. Instead,
we aim to evaluate whether recent VLMs improve
performance on the fact-checking problem through
multimodality or if fusing externally the informa-
tion from distinct models achieves superior results.

Secondly, we addressed RQ2 by assessing how
VLMs leverage text and image information. Ac-
cording to the results, for Idefics2-8b and Qwen-
VL, multimodal embeddings were outperformed by
discrete models (see Table 3 and Table 4). In other
words, extracting separate embeddings resulted in
higher F1-macro scores across all models. To be
more specific, on the Mocheg dataset, the high-
est F1-macro scores for Qwen-VL and Idefics-8b
were 0.514 and 0.528 respectively. Similarly, on
the Factify2 dataset, the highest F1-macro scores
were 0.629, 0.670 and 0.590 respectively. Although
the best results were achieved with different input
setups, for all of the best results, we extracted sepa-
rate text and image embeddings. In contrast, when
embeddings were extracted from inherently multi-
modal VLMs (as shown in Table 3), the maximum
F1-macro scores were lower except PaliGemma-
3b on Mocheg dataset. This indicates that for the
given evaluation framework, using discrete text and
image embeddings yielded higher F1-macro scores.

Besides, RQ3 was addressed by conducting an
ablation study to examine how the proposed classi-

fier leverages embeddings against KNN and SVM
baselines. According to our evaluations, the pro-
posed classifier utilized the extracted embeddings
significantly better than the baseline approaches.

Finally, on the Mocheg dataset, the selected mod-
els struggle more on "not enough info" cases, as
their lowest success rates, even in the best settings,
were consistently associated with this class. This
may be due to class relabeling, where the authors
of the Mocheg dataset reannotated the "Mixture,"
"Unproven," and "Multiple" cases as "Not Enough
Info" which may lead to confusion for the models.
In contrast, on the Factify2 dataset, the trained clas-
sifier was more successful in distinguishing fake
claims compared to other classes. This could be
linked to the difference of data domains, as the gen-
uine news was sourced from news agencies while
fake claims were crawled from fact-checking sites
and satirical articles.

6 Conclusion

In this study, we utilize VLMs for multimodal fact-
checking and propose a probing classifier-based
approach. The proposed pipeline extracts embed-
dings from the last hidden layer of selected VLMs
and fuses multimodal embeddings (extrinsic or in-
trinsic) into a simple feed-forward neural network
for multi-class veracity classification. The exper-
iments show that employing a probing classifier
is more effective than the base VLM performance
and extrinsic fusion usually outperforms the intrin-
sic fusion for the proposed approach. As future
work, we plan to employ VLMs as assistants rather
than as primary fact-checkers. To be more specific,
the VLM can be used as an assistant that reviews
the given text and image and returns a summary or
justification to guide the text-only model for the
fact-checking task. Since the LLMs are prone to
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hallucination and their accuracy depends on the
quality of their training data which may be out-
dated or biased, incorporating knowledge ground-
ing could be a more reliable strategy for real-world
deployment.

7 Limitations

We tested a limited number of models which may
not fully capture the variability across different
models and configurations. Additionally, the evalu-
ations were performed on English datasets, restrict-
ing the assessment of multilingual capabilities. Fur-
thermore, there is a potential risk that some dataset
instances may overlap with the training data of the
VLMs which could bias the evaluation results.

Moreover, while extracting embeddings from
the selected VLMs and corresponding LLMs, we
encountered some computational overhead. More
specifically, for some claims, the evidence field ex-
ceeded the sequence length of the models or could
not fit within our memory constraints. Therefore,
we cropped the evidence fields for such instances.
Furthermore, while LLMs and VLMs are prone to
hallucination, we did not perform any analysis on
this phenomenon within the scope of this study.
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Recep Firat Cekinel, Çağrı Çöltekin, and Pinar Karagoz.
2024. Cross-lingual learning vs. low-resource fine-
tuning: A case study with fact-checking in Turk-
ish. In Proceedings of the 2024 Joint International
Conference on Computational Linguistics, Language
Resources and Evaluation (LREC-COLING 2024),
pages 4127–4142, Torino, Italia. ELRA and ICCL.

https://arxiv.org/abs/2203.13883
https://arxiv.org/abs/2203.13883
https://aclanthology.org/2024.lrec-main.368
https://aclanthology.org/2024.lrec-main.368
https://aclanthology.org/2024.lrec-main.368


4631

Jun Chen, Han Guo, Kai Yi, Boyang Li, and Mohamed
Elhoseiny. 2022. Visualgpt: Data-efficient adapta-
tion of pretrained language models for image caption-
ing. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages
18030–18040.

Tsun-Hin Cheung and Kin-Man Lam. 2023. Factllama:
Optimizing instruction-following language models
with external knowledge for automated fact-checking.
In 2023 Asia Pacific Signal and Information Pro-
cessing Association Annual Summit and Conference
(APSIPA ASC), pages 846–853. IEEE.

Carmela Comito, Luciano Caroprese, and Ester
Zumpano. 2023. Multimodal fake news detection on
social media: a survey of deep learning techniques.
Social Network Analysis and Mining, 13(1):101.

Tim Dettmers, Artidoro Pagnoni, Ari Holtzman, and
Luke Zettlemoyer. 2024. Qlora: Efficient finetuning
of quantized llms. Advances in Neural Information
Processing Systems, 36.

Wei-Wei Du, Hong-Wei Wu, Wei-Yao Wang, and Wen-
Chih Peng. 2023. Team triple-check at factify 2:
Parameter-efficient large foundation models with fea-
ture representations for multi-modal fact verification.
Preprint, arXiv:2302.07740.

Jie Gao, Hella-Franziska Hoffmann, Stylianos
Oikonomou, David Kiskovski, and Anil Bandhakavi.
2021. Logically at factify 2022: Multimodal fact
verification. arXiv preprint arXiv:2112.09253.

Xingyu Gao, Xi Wang, Zhenyu Chen, Wei Zhou, and
Steven CH Hoi. 2024. Knowledge enhanced vision
and language model for multi-modal fake news de-
tection. IEEE Transactions on Multimedia.

Jiahui Geng, Yova Kementchedjhieva, Preslav Nakov,
and Iryna Gurevych. 2024. Multimodal large lan-
guage models to support real-world fact-checking.
Preprint, arXiv:2403.03627.

Emma Hoes, Sacha Altay, and Juan Bermeo. 2023.
Leveraging chatgpt for efficient fact-checking.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan
Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, and
Weizhu Chen. 2022. LoRA: Low-rank adaptation of
large language models. In International Conference
on Learning Representations.

Gabriel Ilharco, Mitchell Wortsman, Ross Wightman,
Cade Gordon, Nicholas Carlini, Rohan Taori, Achal
Dave, Vaishaal Shankar, Hongseok Namkoong, John
Miller, Hannaneh Hajishirzi, Ali Farhadi, and Lud-
wig Schmidt. 2021. Openclip.

Albert Q Jiang, Alexandre Sablayrolles, Arthur Men-
sch, Chris Bamford, Devendra Singh Chaplot, Diego
de las Casas, Florian Bressand, Gianna Lengyel, Guil-
laume Lample, Lucile Saulnier, et al. 2023. Mistral
7b. arXiv preprint arXiv:2310.06825.

M Abdul Khaliq, P Chang, M Ma, B Pflugfelder,
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MOCHEG FACTIFY2
Embedding Input Batch size Learning rate Hidden size Dropout Batch size Learning rate Hidden size Dropout
Qwen-VL mm_claim 32 0.01 128 0.1 64 0.001 128 0.1
idefics2-8b mm_claim 32 0.01 256 0.05 32 0.0001 128 0.1
PaliGemma-3b mm_claim 32 0.01 512 0.05 64 0.0001 128 0.05
Qwen-VL mm_claim + mm_evidence 64 0.01 256 0.05 32 1E-05 256 0.05
idefics2-8b mm_claim + mm_evidence 64 0.01 512 0.1 32 0.001 256 0.1
PaliGemma-3b mm_claim + mm_evidence 64 0.001 256 0.1 64 1E-05 512 0.1
Qwen-7B+Vit-bigG input1 128 0.01 512 0.1 32 0.001 128 0.1
Mistral-7B+SigLIP input1 64 0.001 512 0.1 128 0.001 256 0.2
Gemma-2b+SigLIP input1 64 0.01 512 0.1 128 0.001 128 0.1
Qwen-7B+Vit-bigG input2 32 0.001 256 0.4 64 0.001 128 0.1
Mistral-7B+SigLIP input2 64 0.01 512 0.1 64 0.001 256 0.4
Gemma-2b+SigLIP input2 64 0.001 512 0.2 64 0.001 256 0.4
Qwen-VL input3 32 0.001 512 0.2 128 0.001 512 0.1
Idefics2-8b input3 128 0.001 512 0.1 128 0.01 512 0.1
PaliGemma-3b input3 64 0.001 256 0.1 64 0.001 256 0.2
Qwen-VL input4 64 0.001 512 0.1 128 0.001 128 0.4
Idefics2-8b input4 128 0.001 128 0.4 128 0.001 128 0.1
PaliGemma-3b input4 64 0.001 256 0.2 32 0.001 512 0.4

Table 6: Parameter settings for the best models

Model Mocheg (1655) Factify2 (7273)
Qwen-7B 1366 (82.5%) 4335 (59.6%)
Mistral-7B 1361 (82.2%) 5756 (79.1%)
Gemma-2B 1617 (97.7%) 6136 (84.4%)
Qwen-VL 1646 (99.5%) 6483 (89.1%)
Idefics2-8b 1653 (99.9%) 5873 (80.7%)
PaliGemma-3b 320 (19.3%) 91 (1.2%)

Table 7: Zero-shot response frequencies

learning rate: { 0.00001, 0.0001, 0.001, 0.01, 0.1},
batch size: {32, 64, 128}, hidden size (h in Figure
2): {128, 256, 512 } and dropout: {0.05, 0.1, 0.2,
0.4}.

The parameter settings for the best results are
detailed in Table 6.

B Zero-shot Model Response Frequencies

We used the prompt template shown in Figure 3 for
all models in the zero-shot inference experiments.
We expected the models’ responses to contain ei-
ther "supported," "refuted," or "not enough info." If
a model’s response did not contain these labels, we
ignored those instances. Additionally, we observed
that PaliGemma consistently responded with "sorry,
as a base VLM I am not trained to answer this ques-
tion," which could be due to injected policies. The
frequencies of considered cases for each model
(with percentages in parenthesis) are given in Table
7.

C Fine-tuning Parameter Settings

We employed QLoRA (Dettmers et al., 2024)
adapter on top of attention weight matrices and
fine-tuned only the LoRA (Hu et al., 2022) adapters
for 3 epochs. The batch size was set to 2 with an

initial learning rate of 2e-5 using a cosine scheduler
and the Adam optimizer. We used the checkpoint
with the lowest validation loss. Additionally, we
set warm up to 0.02, gradient accumulation to 4
and evaluated on validation set 10 times during
fine-tuning. We set the rank of matrices for LoRA
adapters to 16, the scaling factor (lora_alpha) to
16 and the dropout rate for the adapters to 0.05.
Besides, 16-bit mixed precision, bfloat16, was
employed for memory efficiency and faster fine-
tuning.
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