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Abstract

Multimodal sentiment analysis(MSA) is mostly
used to understand human emotional states
through multimodal. However, due to the fact
that the effective information carried by mul-
timodal is not balanced, the modality contain-
ing less effective information cannot fully play
the complementary role between modalities.
Therefore, the goal of this paper is to fully
explore the effective information in modali-
ties and further optimize the under-optimized
modal representation.To this end, we propose a
novel Modal Feature Optimization Network
(MFON) with a Modal Prompt Attention
(MPA) mechanism for MSA. Specifically, we
first determine which modalities are under-
optimized in MSA, and then use relevant
prompt information to focus the model on these
features. This allows the model to focus more
on the features of the modalities that need op-
timization, improving the utilization of each
modality’s feature representation and facili-
tating initial information aggregation across
modalities. Subsequently, we design an intra-
modal knowledge distillation strategy for under-
optimized modalities. This approach preserves
the integrity of the modal features. Further-
more, we implement inter-modal contrastive
learning to better extract related features across
modalities, thereby optimizing the entire net-
work. Finally, sentiment prediction is carried
out through the effective fusion of multimodal
information. Extensive experimental results on
public benchmark datasets demonstrate that our
proposed method outperforms existing state-of-
the-art models.

1 Introduction

With the development of multimedia technol-
ogy, information existing forms have become more
and more diverse, for example, text modality, vi-
sual modality, and acoustic modality. In many re-
search areas people have shifted from using uni-
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Figure 1: Mult (Tsai et al., 2019) experiments results
on MOSI and MOSEI dataset for each unimodal (T, V,
A) and modal combinations (T+A+V).

modal data to using multimodal data for research,
such as recommender systems (Wei et al., 2023;
Fu et al., 2024; Zhong et al., 2024), video under-
standing (Buch et al., 2022; Ren et al., 2023) and
dialogue generation (Sun et al., 2022; Kong et al.,
2024). In addition, it has been shown that humans
are more inclined to understand the world from
multiple modalities, from which they perceive and
express emotions. Multiple modal features col-
lected from different sensors can complement each
other and help humans understand the world better.

Multimodal sentiment analysis (MSA) leverages
the relevance and complementarity of multimodal
data for emotion detection and analysis. Specifi-
cally, compared to traditional text-based sentiment
analysis, MSA utilizes additional information of
visual and acoustic modalities in addition to text,
whose core idea is more information resources can
enhance model performance. Existing works fo-
cus on two perspectives: designing complex fusion
methods (Zadeh et al., 2017; Mai et al., 2020) and
extracting effective modal representation (Colombo
et al., 2021; Yang et al., 2022; Zhang et al., 2023).

The above methods have achieved good results
and it has been proved to some extent that the use
of multiple modalities is indeed better than the
use of only a single modality. However, we ob-
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serve that in the MSA task, there is a big differ-
ence between the representations of multimodal
features, for which we first analyze the possible
problems. First, text modality is less disturbed by
noise and contains more emotional information,
while visual and acoustic modalities are suscepti-
ble to noise and contain less emotional information.
For example, visual images can be blurred by over-
illumination. Second, when the model is trained
using three modalities, text modality containing
more information is easy to optimize or overfit,
which may create a shortcut between the model’s
predictions and text features. As a result, the model
fails to fully integrate the emotional information
contained in visual and acoustic modalities. In
other words, visual and acoustic modalities are in
a state of under-optimization.

The above phenomenon is also reflected in exist-
ing studies, it is specifically shown in Fig. 1. In the
experiments of single modality, text performs better
compared to the results of the other two modalities,
from which we believe that text modality contains
more emotional information than non-text modal-
ity. Moreover, the results of combining single text
with three modalities are not much different, which
makes one wonder if the multimodal really plays a
complementary role. Obviously, the contribution
of non-text modalities is very limited in the current
example. For the above phenomenon, we believe
that due to the under-optimization of visual and
acoustic modalities, the information thus conveyed
does not play a complementary role effectively, and
may even affect the representation of text modality
in some cases.

Based on the above problems and inferences,
we believe that in order to achieve good sentiment
analysis results, we need to further optimize the
modalities with insufficient feature representations.
Based on this, we propose the Modal Feature Opti-
mization Network (MFON). First, to initially estab-
lish the information correlation between modalities
and facilitate the subsequent optimization, we de-
sign Modal Prompt Attention (MPA) to carry out
the information interaction between text modality
and modalities to be optimized. Specifically, text
modality is used as a guide, and modal prompts
to remind the model which of the current modal
needs to optimize, and to obtain a preliminary opti-
mized and linked modal feature representation by
this method. Then, in order to pay full attention to
intra- and inter-modal information mining, we de-
sign an intra-modal knowledge distillation, which

on the one hand ensures that the modal features
to be optimized obtain more effective information,
and on the other hand serves as a supervisory in-
formation to ensure that modal features to be opti-
mized continue even when the model loss is con-
verged. In addition, in order to further explore the
feature representations between optimized modali-
ties, we design inter-modal contrastive learning to
make better use of the information and thus opti-
mize the modal feature representations in the whole
model. Experimental results demonstrate the effec-
tiveness of our method. The code is released at
https://github.com/123sprouting/MFON/. In
summary, our contributions are as follows:

• We propose a modal feature optimization
network, which can effectively optimize the
multi-modal feature representations and can
further explore the correlation between modal
features.

• The Modal Prompt Attention (MPA) module
is designed to carry out the information inter-
action between text modal and the modal to be
optimized, through which the first optimiza-
tion of the modal to be optimized is realized.

• We optimize modal features by intra-modal
knowledge distillation to obtain more infor-
mation, and perform inter-modal contrastive
learning to further explore the relationship
between optimized modal features to obtain
a better representation of the optimized fea-
tures.

• Experimental results demonstrate that our
method achieves competitive performance on
MSA benchmarks.

2 Related Work

Multimodal sentiment analysis has become a
popular research topic that utilizes information
from text, visual, and acoustic modalities to com-
prehend human sentiment (Caschera et al., 2016).
Previous research focuses on multimodal fusion
and modal representation.

For multimodal fusion, early fusion methods in-
clude feature fusion and decision fusion. With
the development of deep learning, Zadeh et al.
(2017) develops the tensor fusion network that uses
outer product to model interactions between inter-
modality and intra-modality. Based on this tensor

https://github.com/123sprouting/MFON/
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Figure 2: The structure of MFON framework. First, we still follow the previous work (Tsai et al., 2019) to obtain
the modal features in the feature extraction part. Then we obtain modality-related prompt features first in order
to optimize the modal features, and then use the prompt features and the original modal features as inputs for
text-guided cross-modal information interaction in the MPA module. Then, in order to preserve the integrity of
the modal features, intra-modal knowledge distillation is designed. Finally, inter-modal contrastive learning is
employed to extract inter-modal correlation features, which enables further optimization of the entire network.

fusion network, Sun et al. (2020) uses deep canon-
ical correlation analysis to reduce dimension of
bimodal outer product. Considering that modal
features can serve as vertices of graphs and modal
interactions can be designed as edge relationships,
fusion methods based on dynamic graphs are also
explored (Zadeh et al., 2018b; Mai et al., 2020).

Modal Representation can be divided into three
categories: (i) Translation-based solutions assume
that the process of translating a modality into
a target modality generates a representation that
contains common information between modalities.
Pham et al. (2018) uses hierarchical seq2seq trans-
lation. Specifically, they translate modality A into
modality B, and then translate modality C using
the intermediate representation generated by A and
B. In practice, they find that modality A works best
when it is text modality, and in fact, this translation
order reuses text information. Pham et al. (2019)
and Tang et al. (2021) perform cyclic translations
between two modalities to learn consistency infor-
mation.

(ii)Distribution-based solutions aim to learn a
consistent representation of all modalities (Pok-
lukar et al., 2022; Mai et al., 2022; Colombo et al.,
2021; Li et al., 2023). However, some works sug-
gest that learning specific representations of modal-
ities is equally important. Wu et al. (2021) takes
text as central modality and performs text-to-visual
and text-to-acoustic translation. They think fea-

tures with high attention weights during translation
process belong to shared features, and features with
high translation losses belong to modality-specific
features.

(iii)Attention-based solutions model interaction
processes of modalities using importance. Tsai et al.
(2019) extends transformer (Vaswani et al., 2017)
to multimodal domain, which utilizes bidirectional
cross-modal attention to capture interactions be-
tween multimodal sequences across different time
steps. Lv et al. (2021) introduces a message center
to achieve cross-modal attention with each modal-
ity, solving the problem that attention can only be
executed between two modalities.

3 Method

In this section, we describe in detail the modal
feature optimization network to address the prob-
lem of under-optimization of modal features.
Specifically, we design modal prompt attention to
perform the first optimization of modal features
(Sec. 3.2), and then we perform intra-modal knowl-
edge distillation (Sec. 3.3) and inter-modal con-
trastive learning (Sec. 3.4) to further optimize the
feature representations. Finally, we fuse the opti-
mized features to do sentiment analysis. The de-
tailed model structure is shown in Figure 2.
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Figure 3: The structure of MPA module.

3.1 Problem State

Given a multimodal video clip that contains three
modal information, denoted as S = [ua, ut, uv],
where ut ∈ RTt×dt , ua ∈ RTa×da , uv ∈ RTv×dv

are text, acoustic and visual modalities, respec-
tively. Tm,m ∈ {t, a, v} denotes the length of the
sequence for each modality, and dm denotes the
feature dimension of each modality. We take the
three modalities as inputs to obtain the emotional
polarity of the current utterance. To align with pre-
vious work methods (Yu et al., 2021; Wu et al.,
2024), we also consider MSA as a regression task
to ensure fair comparisons.

3.2 Modal Prompt Attention

As we all know, different modalities are col-
lected by different sensors and the information con-
tained in them is not necessarily the same. In order
to give full play to the modal complementarity be-
tween multiple modalities, we need to first mine the
amount of effective information in each modality
according to the task. But the amount of informa-
tion that each modality needs to contribute varies
according to the task. We first need to determine the
modal features that can be used as a guide among
multiple modalities, i.e., the modality whose fea-
ture representation is already better among multiple
modalities.

In MSA, through mutual information calculation,
text modality contains the most effective informa-
tion, and it can predict the other modal information
to a certain extent. And we choose text modality
as the guiding modality to perform the modality-
guided attention for the information interaction be-

tween the text modality and the modality to be
optimized.

First, we encode the original data input, for text
we use BERT for encoding, for the other two modal-
ities we follow the methodology of previous studies
to encode, thus obtaining the feature representation
of multiple modalities:

f t = MLP (BERT (ut)) ∈ RTt×d (1)

fv = MLP (uv) ∈ RTv×d (2)

fa = MLP (ua) ∈ RTa×d (3)

where d is the feature dimension after alignment,
the feature extraction method for three modalities
still follows the previous work (Tsai et al., 2019).

In the field of Natural Language Processing
(NLP), prompt-based learning methods have made
good progress, especially in pre-training models,
where the pre-training model does not need to fine-
tune the whole model after having prompt learning.
Specifically, prompts are generally pre-positioned
in the input, and the main purpose is to guide the
model to pay more attention to the details of the
features through the prompt signals, so as to get
better result prediction. To this end, we design spe-
cial prompt signals pm,m ∈ {a, v}, for the modal
features to be optimized, to guide the MPA to better
guide the initial interactions between modalities,
the module detail shown in Figure 3. We use visual
modality as an example for modal optimization and
information interaction. We fuse the prompt signal
pv first with our feature representation obtained via
the encoder.

f̂v = fv + pv (4)
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After adding prompt signals, the model guides
which modality should be further optimized for
better information interaction. In MPA, f t, f̂v will
be used as input to perform attention. We denote
Query as Qt = f tW t

Q , Key as Kv = f̂vW v
K ,

and Value as Vv = f̂vW v
V . To capture deep se-

mantic information, we use multilayer attention to
obtain preliminary results for multimodal interac-
tions, computed as follows:

Zv = softmax(
QtK

T
v√

dk
)Vv

= softmax(
f tW t

Q(f̂
v)TW v

K
T

√
dk

)f̂vW v
V

(5)

3.3 Intra-modal Knowledge Distillation
When using label prediction loss as a training

objective, the optimization process for visual and
acoustic modalities is susceptible to the influence
of the guiding modality, text. To address this prob-
lem, we introduce an additional loss to supervise
the non-text modalities, i.e., by performing intra-
modal knowledge distillation to obtain more useful
information. Specifically, distillation is used to add
unimodal knowledge obtained from a pretrained
model to the interaction process of multimodal
features, thereby effectively enhancing visual and
acoustic features.

First, we train two unimodal pretrained encoders,
one for vision and the other for acoustic, by the la-
bel predict loss. The unimodal network consists of
an MLP, an encoder, and an MLP predictor. For
multimodal training, we use only the MLP with
frozen parameters and the transform encoder. Then,
during multimodal training, we input visual and
acoustic features into parameter-frozen pretrained
encoders to obtain features xv and xa, respectively.
Finally, considering that fm contains text informa-
tion in addition to unimodal m, we choose the KL
loss to allow the model to focus more on the in-
formation distribution than on specific numerical
values. The KL divergence between the pretrained
unimodal features and the text-guided modal fea-
tures is calculated as follows:

Lva = Lv + La

= KL(Zv||xv) +KL(Za||xa)
(6)

3.4 Inter-modal Contrastive Learning
Although relevant modal interactions have been

performed by MPA, allowing under-optimized

modal features to access relevant information from
text modality with better feature representations,
such interactions have not explored the number of
effective complementary relationships. So the pur-
pose of Inter-modal Contrastive Learning (ICL) is
to learn the dynamic relationship between modali-
ties through contrastive learning, so as to establish
more discriminative boundaries in the feature space,
which can further help the model to make a better
prediction of emotional polarity. We therefore fol-
low (van den Oord et al., 2018) and use the score
function Score(·) with normalized prediction and
truth vectors to measure the relationship between
modalities:

Score(f t, Zm) = exp(f
t
(Zm)T )

Zm =
Zm

||Zm||2
, f

t
=

f t

||f t||2

(7)

where || · ||2 is the Euclidean norm. We treat all
other representations of the modality in the same
batch as negative samples, and thus calculate the
loss between text modality and non-text features:

L(Zm, f t) = −Es

[
log

Score(Zm, f t
i )∑

f t
j∈f t Score(Zm, f t

j )

]
(8)

Finally, the loss function of ICL consists of the
losses between the non-text features Zm and text,
respectively:

LICL = Ltv + Lta (9)

3.5 Fusion & Predict
To do the final sentiment polarity prediction,

we combine the optimized three modal features to
obtain a multimodal fusion feature representation
for each sentence, and then co-optimize the mul-
timodal optimization network using the multiple
losses mentioned above.

Ffusion = [Za; f
t;Zv] (10)

ŷ = predictor(Ffusion) (11)

Ltask =
1

N

N∑
i=1

(yi − ŷi)
2 (12)

Finally, minimizing L is our training goal:

L = αLva + βLICL + Ltask (13)

where α, β are hyperparameters that control each
module’s importance to the overall loss L.
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Dataset #Train #Valid #Test #All
MOSI 1284 229 686 2199
MOSEI 16326 1871 4659 22856
CH-SIMS 1368 456 457 2281

Table 1: The statistics of MOSI, MOSEI, and CH-SIMS.

4 Experiments

4.1 Datasets and Metrics

Datasets. We evaluate our model on three
datasets that are popularly used to benchmark mul-
timodal sentiment analysis1. The statistics are
shown in Table 1. MOSI (Zadeh et al., 2016) ex-
tracts 2199 video clips from YouTube videos. Each
clip includes visual frames, acoustic segments, and
text transcripts, and is manually labeled with a
-3 (strongly negative) to + 3 (strongly positive)
emotion label. MOSEI (Zadeh et al., 2018b) is
the larger version of MOSI which contains 22856
video clips, with more utterances, more topics, and
more samples. These clips come from 5000 videos,
with 1000 different speakers and 250 different is-
sues. Each clip has an emotion label from -3 to 3.
CH-SIMS (Liu et al., 2022) is a Chinese dataset
containing 2281 video clips. Each clip not only
provides a multimodal label from -1 (strongly neg-
ative) to 1 (strongly positive) but also provides a
specific label for each modality, which also ranges
from -1 to 1.

Metrics. Following existing works (Yu et al.,
2023; Wu et al., 2024), we report results in two
forms: regression and classification. For regres-
sion, we focus on Pearson correlation(Corr) and
Mean Absolute Error (MAE). For classification,
we calculate weighted F1 score (F1) and binary
classification accuracy (Acc2). Specifically, we cal-
culate Acc2 and F1 in negative/positive (exclude
zero) and negative/non-negative (include zero) and
accuracy in seven-class classification (Acc7) on
MOSI and MOSEI. The larger value of all metrics
except for MAE represents better results.

4.2 Baseline

We evaluate our model with some state-of-the-
art models in MSA:

TFN (Zadeh et al., 2017) uses tensor outer prod-
ucts to capture uni-, bi-, and tri-modal interactions
and perform feature fusion.

1These datasets can be found from https://github.com/
thuiar/Self-MM

LMF (Liu et al., 2018) addresses low computa-
tional efficiency for high-dimensional tensors by
low-rank tensor decomposition.

Mult (Tsai et al., 2019) performs cross-modal
attention in each of the two modalities to capture
alignment relationships.

MISA (Hazarika et al., 2020) decomposes
modality features into shared and private repre-
sentations and supervises their learning by various
losses.

Self-MM (Yu et al., 2021) uses a self-supervised
strategy to construct a label generation module
and uses generated labels to promote extraction
of modality-specific information.

MMIM (Han et al., 2021) hierarchically maxi-
mizes mutual information within unimodal features
and between multimodal fusion features and uni-
modal features to obtain emotion-related informa-
tion.

FDMER (Yang et al., 2022) introduces a modal-
ity discriminator for modality-invariant and -shared
features, guiding parameter learning of a general
encoder and a private encoder in an adversarial
manner.

AMML (Sun et al., 2023) obtains better uni-
modal representation via meta-training on uni-
modal tasks and fusion unimodal representation
via adding distribution transformation layers.

ConKI (Yu et al., 2023) uses the adapter ap-
proach to inject specific knowledge into each
modality and combines it with general knowledge
learned by the model to promote MSA effects.

HyDiscGAN (Wu et al., 2024) builds acous-
tic and visual generators based on shareable de-
identified text data to generate multimodal features,
and regulates the learning process through discrim-
inators.

4.3 Implementation Details
For text encoder, we use bert-base-chinese2 on

CH-SIMS and bert-base-uncase3 on MOSI and
MOSEI. We use COVAREP (Degottex et al., 2014)
and Facet4 to extract acoustic and visual expression
features respectively.

All experiments are conducted on a single
NVIDIA RTX 4090 GPU. During experiments, we
use the Adam optimizer and set batch size of 128.
To determine the best-performing hyperparameters,
we conduct 100 random grid searches and save the

2https://huggingface.co/bert-base-chinese
3https://huggingface.co/bert-base-uncased
4https://imotions.com/

https://github.com/thuiar/Self-MM
https://github.com/thuiar/Self-MM
https://huggingface.co/bert-base-chinese
https://huggingface.co/bert-base-uncased
https://imotions.com/
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Models
MOSI MOSEI

Acc2↑ F1↑ Acc7↑ Corr↑ MAE↓ Acc2↑ F1↑ Acc7↑ Corr↑ MAE↓
TFN -/80.8 -/80.7 34.9 0.698 0.901 -/82.5 -/82.1 50.2 0.700 0.593
LMF -/82.5 -/82.4 33.2 0.695 0.917 -/82.0 -/82.1 48.0 0.677 0.623
Mult 81.5/84.1 80.6/83.9 - 0.711 0.861 -/82.5 -/82.3 - 0.703 0.580
MISA 80.79/82.10 80.77/82.03 - 0.764 0.804 82.59/84.23 82.67/83.97 - 0.724 0.568
Self-MM 82.54/84.77 82.68/84.91 45.79 0.795 0.712 82.68/84.96 82.95/84.93 53.46 0.767 0.529
MMIM 84.14/86.06 84.00/85.98 46.65 0.800 0.700 82.24/85.97 82.66/85.94 54.24 0.772 0.526
FDMER -/84.6 -/84.7 44.1 0.788 0.724 -/86.1 -/85.8 54.1 0.773 0.536
AMML -/84.9 -/84.8 46.3 0.792 0.723 -/85.3 -/85.2 52.4 0.776 0.614
ConKI 84.37/86.13 84.33/86.13 48.43 0.816 0.681 82.73/86.25 83.08/86.15 54.25 0.782 0.529
HyDiscGAN 84.1/86.7 83.7/86.3 43.2 0.782 0.749 81.9/86.3 82.1/86.2 54.4 0.761 0.533
MFON 84.84/86.89 84.75/86.86 44.90 0.797 0.725 82.70/86.32 83.13/86.29 53.72 0.780 0.528

Table 2: Results on MOSI and MOSEI. In Acc2 and F1, the left of “/” is “negative/non-negative” and the right
means “negative/positive”. Results of FDMER,AMML, HyDiscGAN come from Yang et al. (2022), Sun et al.
(2023), Wu et al. (2024) respectively, and results of other baseline come from Yu et al. (2023).

Models Acc2↑ F1↑ Corr↑ MAE↓
TFN 75.27 75.56 0.496 0.488
LMF 75.36 75.78 0.502 0.487
Mult 75.62 75.84 0.504 0.485
MISA 75.49 75.85 0.542 0.472
Self-MM 77.37 77.54 0.535 0.458
MMIM 69.37 58.00 - 0.607
ConKI 77.94 78.17 0.542 0.454
MFON 78.56 78.51 0.594 0.420

Table 3: Results on CH-SIMS. Baseline results come
from Yu et al. (2023).

hyperparameter settings that achieve the best re-
sults. After the grid search, each model is retrained
five times with the same optimal hyperparameters,
and we save the average result as the final result.

4.4 Results

Result comparisons of all methods are reported
in Table 2 and Table 3. We find that our model
achieves better or comparable results to the state-
of-the-art models, which indicates the effectiveness
of our approach in multimodal sentiment analysis.

Specifically, MFON is significantly better than
other models in Acc2 and F1 on MOSI. Corr and
MAE indicators are in a sub-optimal position, and
Acc7 result is also comparable. On MOSEI dataset,
MFON outperforms the other models in Acc2, F1,
and MAE metrics, and the remaining metrics rank
second. On CH-SIMS, MFON outperforms other
models in all metrics, with particularly significant
improvements in Corr and MAE.

We notice that our model has a significant im-

provement in binary classification, while the seven-
class classification is not so effective. We speculate
that during multimodal feature fusion, using text
modality to guide the extraction of shared emo-
tional features from visual and acoustic modalities
may, to some extent, weaken the performance in the
seven-class classification. Compared with MOSI,
MOSEI contains more training data and has a better
Acc7 result. We propose that the inter-modal distil-
lation guidance provides more information related
to modality-specific emotion. The improvement in
MAE and Corr also shows that our model learns
more optimized visual and acoustic features.

4.5 Ablation Study

To show the benefits of our proposed module,
we carry out some ablation experiments on three
datasets. Results under different ablation settings
are reported in Table 4 and Table 5.

4.5.1 Unimodal Study
We use unimodal data to conduct sentiment anal-

ysis and results are reported in the first three rows
of Table 4 and Table 5. Compared to multimodal
results, the performance drops sharply when using
visual or acoustic while the performance reduction
is insignificant when using text modality.

This result supports our hypothesis that text
modality contains more emotional information and
is easier to learn good representations. Visual and
acoustic modalities contain less information and
are more challenging for representation learning
and they are in an under-optimized state. There-
fore, we need to fully utilize the information from
text modality and design reasonable methods to
extract more emotional information from visual
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Models
MOSI MOSEI

Acc2↑ F1↑ Acc7↑ Corr↑ MAE↓ Acc2↑ F1↑ Acc7↑ Corr↑ MAE↓
T 82.36/84.45 82.27/84.43 43.21 0.790 0.734 82.27/85.83 82.75/85.83 52.21 0.763 0.534
V 59.48/59.42 59.02/59.09 18.95 0.211 1.383 65.23/65.63 65.74/64.84 40.48 0.272 0.820
A 51.89/49.47 50.76/48.51 16.03 0.143 1.445 67.31/65.49 64.69/61.5 41.15 0.205 0.827
w/o Lva 82.51/84.62 82.44/84.58 43.73 0.787 0.752 82.17/86.16 82.45/86.07 49.77 0.773 0.565
w/o LICL 82.36/84.45 82.33/84.49 41.25 0.793 0.746 82.76/86.09 83.21/86.12 52.72 0.778 0.530
w/o LICLLva 81.92/83.84 81.84/83.83 42.75 0.785 0.751 82.22/85.94 83.47/85.81 48.94 0.773 0.571
w/o prompt 81.49/83.23 81.39/83.2 43.10 0.789 0.734 81.22/86.05 81.84/86.09 53.61 0.769 0.536
Visual as query 82.65/84.76 82.59/84.76 41.63 0.794 0.730 82.72/85.28 83.06/85.20 52.61 0.756 0.549
Acoustic as query 83.53/85.52 83.47/85.51 43.15 0.792 0.737 81.63/85.31 82.14/85.31 51.32 0.756 0.559
MFON 84.84/86.89 84.75/86.86 44.90 0.797 0.725 82.70/86.32 83.13/86.29 53.72 0.780 0.528

Table 4: Ablation experiments on MOSI and MOSEI.

Models Acc2↑ F1↑ Corr↑ MAE↓
T 74.40 74.85 0.534 0.461
V 67.61 57.65 0.238 0.618
A 67.83 54.83 0.093 0.543
w/o Lva 78.77 78.31 0.519 0.488
w/o LICL 75.71 76.21 0.573 0.463
w/o LICLLva 77.24 77.15 0.521 0.484
w/o prompt 77.68 77.89 0.575 0.455
Visual as query 75.93 75.93 0.568 0.429
Acoustic as query 75.93 76.19 0.559 0.466
MFON 78.56 78.51 0.594 0.420

Table 5: Ablation experiments on CH-SIMS.

and acoustic modalities in multimodal sentiment
analysis tasks.

4.5.2 Effect of Multiple Loss Learning

Lines 4, 5, and 6 of Table 4 and Table 5 present
experimental results when removing intra-modal
distillation loss, inter-modal contrastive loss, and
both removed. The model performance decreases
when the intra-modal distillation loss is removed
indicating that the model learns useful visual and
acoustic features from the pretrained model. When
the inter-modal contrastive loss is removed, perfor-
mance drops due to the lack of implicit cross-modal
interactions. These results suggest that minimizing
both intra-modal and inter-modal losses helps the
model learn emotion-related features and ensures
continuous feature optimization.

Additionally, the performance metrics on MOSI
that show a larger decline are Acc2 and F1, while
on MOSEI and CH-SIMS, the larger decline is
Acc7. The performance degradation of inter-modal
contrastive loss is more pronounced compared to
intra-modal loss on Acc7 with multiple data, which
suggests that we have designed intra-modal con-
trastive learning to capture relevant sentiment in-

formation between modalities, and thus effectively
optimize the informative representation of the fused
features based on similar features learned by con-
trastive learning, which can lead to better results
in terms of multiclassification accuracy at a finer
level of granularity.

4.5.3 MPA Analysis
The MPA module contains two key components

in its implementation: prompt signal and text
modality guide.

We first investigate prompt signal’s impact(w/o
prompt). We note that removing the prompt sig-
nal leads to a significant decrease in model perfor-
mance. This indicates that the added prompt infor-
mation guides under-optimized visual and acoustic
modalities to pay more attention to emotion-related
information. Removing this component may cause
the model to focus on under-optimized features
when fusing text and non-text modalities, thus caus-
ing irrelevant noise to affect the final performance.

When we use non-text modality as the query
(Visual as query, Acoustic as query), model perfor-
mance degrades. This phenomenon demonstrates
the effectiveness of using text modality to guide
non-text modality learning. It also shows the emo-
tional representation of acoustic and visual modal-
ities is in an under-optimized state. They do not
provide enough emotional information and may in-
troduce irrelevant noise when used as the query. In
contrast, text modality contains clear information
which effectively guides visual and acoustic modal-
ities to focus on emotion-related information.

4.5.4 Modal Representations Analysis
In Figure 4, we use t-SNE (Hinton and Roweis,

2002) to visualize the visual modality feature rep-
resentations extracted by the model in 3D space on
the MOSI test sets. In the clustering results for the
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Figure 4: Visualization of the visual modality’s feature
representation in 3D space using t-SNE on the MOSI
test sets. (a) Three-class emotion clustering results of
the visual feature extracted using the model that re-
moves modal prompt attention modules, intra-modal
distillation loss modules, and inter-modal contrastive
loss modules. (b) Three-class emotion clustering re-
sults of the visual feature representation extracted using
MFON which includes all modules.

three emotion classes (neutral, positive, and nega-
tive), the visual modality features extracted by the
model without modal prompt attention modules,
intra-modal distillation loss modules, and inter-
modal contrastive loss modules show significant
overlap between the features of neutral and neg-
ative emotions. This indicates that the features
from visual and acoustic modalities are not fully
extracted. However, when the complete set of mod-
ules is added to the MFON model, the performance
of visual emotion classification improves signifi-
cantly, with the three emotion categories becom-
ing clearly separable and the overlapping regions
reduced. This demonstrates that MFON extracts
emotion-related features from the visual modal-
ity, addressing the under-optimization issue in the
acoustic and visual modalities.

5 Conclusion

In this paper, we propose MFON to address the
problem of under-optimized emotional represen-
tation of visual and acoustic modalities in MSA.
We leverage a modal prompt attention mechanism
to guide the model to focus on under-optimized
modalities and facilitate initial information aggre-
gation across modalities. Then we design intra-
modal distillation and inter-modal contrastive learn-
ing for under-optimized modalities. Experimental
results prove our approach achieves comparable to
state-of-the-art models.

Limitations

Our approach explores the under-optimization
of visual and acoustic in MSA, but it still has some
limitations. Specifically, our method considers that
text is the dominant modality while visual and

acoustic are in an under-optimized state, but does
not strictly consider which modality is most sup-
pressed by the dominant modality. In future work,
we will investigate the problem of different degrees
of under-optimization in visual and acoustic.

Acknowledgements

This work was supported in part by the National
Natural Science Foundation of China under Grant
No. 62276110, No. 62172039 and in part by
the fund of Joint Laboratory of HUST and Pingan
Property & Casualty Research (HPL). The authors
would also like to thank the anonymous reviewers
for their comments on improving the quality of this
paper.

References
Shyamal Buch, Cristóbal Eyzaguirre, Adrien Gaidon,

Jiajun Wu, Li Fei-Fei, and Juan Carlos Niebles. 2022.
Revisiting the "video" in video-language understand-
ing. In IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pages 2907–2917.

Maria Chiara Caschera, Fernando Ferri, and Patrizia
Grifoni. 2016. Sentiment analysis from textual to
multimodal features in digital environments. In Pro-
ceedings of the 8th International Conference on Man-
agement of Digital EcoSystems, pages 137–144.

Pierre Colombo, Emile Chapuis, Matthieu Labeau, and
Chloé Clavel. 2021. Improving multimodal fusion
via mutual dependency maximisation. In Proceed-
ings of the 2021 Conference on Empirical Methods
in Natural Language Processing, pages 231–245.

Gilles Degottex, John Kane, Thomas Drugman, Tuomo
Raitio, and Stefan Scherer. 2014. Covarep—a collab-
orative voice analysis repository for speech technolo-
gies. In 2014 ieee international conference on acous-
tics, speech and signal processing (icassp), pages
960–964. IEEE.

Junchen Fu, Xuri Ge, Xin Xin, Alexandros Karatzoglou,
Ioannis Arapakis, Jie Wang, and Joemon M. Jose.
2024. IISAN: efficiently adapting multimodal repre-
sentation for sequential recommendation with decou-
pled PEFT. In Proceedings of the 47th International
ACM SIGIR Conference on Research and Develop-
ment in Information Retrieval, SIGIR 2024, Wash-
ington DC, USA, July 14-18, 2024, pages 687–697.
ACM.

Wei Han, Hui Chen, and Soujanya Poria. 2021. Im-
proving multimodal fusion with hierarchical mutual
information maximization for multimodal sentiment
analysis. In Proceedings of the 2021 Conference on
Empirical Methods in Natural Language Processing,
pages 9180–9192.

https://doi.org/10.1109/CVPR52688.2022.00293
https://doi.org/10.1109/CVPR52688.2022.00293
http://dl.acm.org/citation.cfm?id=3012089
http://dl.acm.org/citation.cfm?id=3012089
https://doi.org/10.18653/v1/2021.emnlp-main.21
https://doi.org/10.18653/v1/2021.emnlp-main.21
https://doi.org/10.1145/3626772.3657725
https://doi.org/10.1145/3626772.3657725
https://doi.org/10.1145/3626772.3657725
https://doi.org/10.18653/v1/2021.emnlp-main.723
https://doi.org/10.18653/v1/2021.emnlp-main.723
https://doi.org/10.18653/v1/2021.emnlp-main.723
https://doi.org/10.18653/v1/2021.emnlp-main.723


4620

Devamanyu Hazarika, Roger Zimmermann, and Sou-
janya Poria. 2020. Misa: Modality-invariant and
-specific representations for multimodal sentiment
analysis. Proceedings of the 28th ACM International
Conference on Multimedia, pages 1122–1131.

Geoffrey E Hinton and Sam Roweis. 2002. Stochastic
neighbor embedding. Advances in neural informa-
tion processing systems, 15.

Fanheng Kong, Peidong Wang, Shi Feng, Daling Wang,
and Yifei Zhang. 2024. TIGER: A unified gen-
erative model framework for multimodal dialogue
response generation. In Proceedings of the 2024
Joint International Conference on Computational
Linguistics, Language Resources and Evaluation,
LREC/COLING 2024, 20-25 May, 2024, Torino, Italy,
pages 16135–16141. ELRA and ICCL.

Dongyuan Li, Yusong Wang, Kotaro Funakoshi, and
Manabu Okumura. 2023. Joyful: Joint modality fu-
sion and graph contrastive learning for multimoda
emotion recognition. In Proceedings of the 2023
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 16051–16069.

Yihe Liu, Ziqi Yuan, Huisheng Mao, Zhiyun Liang,
Wanqiuyue Yang, Yuanzhe Qiu, Tie Cheng, Xiaoteng
Li, Hua Xu, and Kai Gao. 2022. Make acoustic
and visual cues matter: Ch-sims v2. 0 dataset and av-
mixup consistent module. In Proceedings of the 2022
International Conference on Multimodal Interaction,
pages 247–258.

Zhun Liu, Ying Shen, Varun Bharadhwaj Lakshmi-
narasimhan, Paul Pu Liang, AmirAli Bagher Zadeh,
and Louis-Philippe Morency. 2018. Efficient low-
rank multimodal fusion with modality-specific fac-
tors. In Proceedings of the 56th Annual Meeting of
the Association for Computational Linguistics (Vol-
ume 1: Long Papers), pages 2247–2256.

Fengmao Lv, Xiang Chen, Yanyong Huang, Lixin Duan,
and Guosheng Lin. 2021. Progressive modality rein-
forcement for human multimodal emotion recogni-
tion from unaligned multimodal sequences. In IEEE
Conference on Computer Vision and Pattern Recog-
nition, CVPR 2021, virtual, June 19-25, 2021, pages
2554–2562.

Sijie Mai, Haifeng Hu, and Songlong Xing. 2020.
Modality to modality translation: An adversarial rep-
resentation learning and graph fusion network for
multimodal fusion. In The Thirty-Fourth AAAI Con-
ference on Artificial Intelligence, AAAI 2020, pages
164–172.

Sijie Mai, Ya Sun, and Haifeng Hu. 2022. Curricu-
lum learning meets weakly supervised multimodal
correlation learning. In Proceedings of the 2022 Con-
ference on Empirical Methods in Natural Language
Processing, pages 3191–3203.

Hai Pham, Paul Pu Liang, Thomas Manzini, Louis-
Philippe Morency, and Barnabás Póczos. 2019.

Found in translation: Learning robust joint repre-
sentations by cyclic translations between modalities.
In The Thirty-Third AAAI Conference on Artificial
Intelligence, AAAI 2019, pages 6892–6899.

Hai Pham, Thomas Manzini, Paul Pu Liang, and Barn-
abás Poczós. 2018. Seq2Seq2Sentiment: Multimodal
sequence to sequence models for sentiment analysis.
In Proceedings of Grand Challenge and Workshop
on Human Multimodal Language (Challenge-HML),
pages 53–63.

Petra Poklukar, Miguel Vasco, Hang Yin, Francisco S.
Melo, Ana Paiva, and Danica Kragic. 2022. Geomet-
ric multimodal contrastive representation learning.
In International Conference on Machine Learning,
ICML 2022, 17-23 July 2022, Baltimore, Maryland,
USA, volume 162, pages 17782–17800.

Shuhuai Ren, Linli Yao, Shicheng Li, Xu Sun, and
Lu Hou. 2023. Timechat: A time-sensitive multi-
modal large language model for long video under-
standing. CoRR, abs/2312.02051.

Qingfeng Sun, Yujing Wang, Can Xu, Kai Zheng, Yam-
ing Yang, Huang Hu, Fei Xu, Jessica Zhang, Xiubo
Geng, and Daxin Jiang. 2022. Multimodal dialogue
response generation. In Proceedings of the 60th An-
nual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 2854–
2866.

Ya Sun, Sijie Mai, and Haifeng Hu. 2023. Learning
to learn better unimodal representations via adaptive
multimodal meta-learning. IEEE Trans. Affect. Com-
put., 14(3):2209–2223.

Zhongkai Sun, Prathusha Sarma, William Sethares, and
Yingyu Liang. 2020. Learning relationships between
text, audio, and video via deep canonical correlation
for multimodal language analysis. In Proceedings
of the AAAI Conference on Artificial Intelligence,
volume 34, pages 8992–8999.

Jiajia Tang, Kang Li, Xuanyu Jin, Andrzej Cichocki,
Qibin Zhao, and Wanzeng Kong. 2021. CTFN: Hi-
erarchical learning for multimodal sentiment anal-
ysis using coupled-translation fusion network. In
Proceedings of the 59th Annual Meeting of the Asso-
ciation for Computational Linguistics and the 11th
International Joint Conference on Natural Language
Processing (Volume 1: Long Papers), pages 5301–
5311.

Yao-Hung Hubert Tsai, Shaojie Bai, Paul Pu Liang,
J. Zico Kolter, Louis-Philippe Morency, and Ruslan
Salakhutdinov. 2019. Multimodal transformer for un-
aligned multimodal language sequences. In Proceed-
ings of the 57th Annual Meeting of the Association
for Computational Linguistics, pages 6558–6569.

Aäron van den Oord, Yazhe Li, and Oriol Vinyals. 2018.
Representation learning with contrastive predictive
coding. CoRR, abs/1807.03748.

https://doi.org/10.1145/3394171.3413678
https://doi.org/10.1145/3394171.3413678
https://doi.org/10.1145/3394171.3413678
https://aclanthology.org/2024.lrec-main.1403
https://aclanthology.org/2024.lrec-main.1403
https://aclanthology.org/2024.lrec-main.1403
https://aclanthology.org/2023.emnlp-main.996
https://aclanthology.org/2023.emnlp-main.996
https://aclanthology.org/2023.emnlp-main.996
https://doi.org/10.1145/3536221.3556630
https://doi.org/10.1145/3536221.3556630
https://doi.org/10.1145/3536221.3556630
https://aclanthology.org/P18-1209
https://aclanthology.org/P18-1209
https://aclanthology.org/P18-1209
https://openaccess.thecvf.com/content/CVPR2021/html/Lv_Progressive_Modality_Reinforcement_for_Human_Multimodal_Emotion_Recognition_From_Unaligned_CVPR_2021_paper.html
https://openaccess.thecvf.com/content/CVPR2021/html/Lv_Progressive_Modality_Reinforcement_for_Human_Multimodal_Emotion_Recognition_From_Unaligned_CVPR_2021_paper.html
https://openaccess.thecvf.com/content/CVPR2021/html/Lv_Progressive_Modality_Reinforcement_for_Human_Multimodal_Emotion_Recognition_From_Unaligned_CVPR_2021_paper.html
https://doi.org/10.1609/aaai.v34i01.5347
https://doi.org/10.1609/aaai.v34i01.5347
https://doi.org/10.1609/aaai.v34i01.5347
https://aclanthology.org/2022.emnlp-main.209
https://aclanthology.org/2022.emnlp-main.209
https://aclanthology.org/2022.emnlp-main.209
https://doi.org/10.1609/aaai.v33i01.33016892
https://doi.org/10.1609/aaai.v33i01.33016892
http://arxiv.org/abs/1807.03915
http://arxiv.org/abs/1807.03915
https://proceedings.mlr.press/v162/poklukar22a.html
https://proceedings.mlr.press/v162/poklukar22a.html
https://doi.org/10.48550/ARXIV.2312.02051
https://doi.org/10.48550/ARXIV.2312.02051
https://doi.org/10.48550/ARXIV.2312.02051
https://aclanthology.org/2022.acl-long.204
https://aclanthology.org/2022.acl-long.204
https://doi.org/10.1109/TAFFC.2022.3178231
https://doi.org/10.1109/TAFFC.2022.3178231
https://doi.org/10.1109/TAFFC.2022.3178231
https://doi.org/10.1609/aaai.v34i05.6431
https://doi.org/10.1609/aaai.v34i05.6431
https://doi.org/10.1609/aaai.v34i05.6431
https://aclanthology.org/2021.acl-long.412
https://aclanthology.org/2021.acl-long.412
https://aclanthology.org/2021.acl-long.412
https://aclanthology.org/P19-1656
https://aclanthology.org/P19-1656
https://arxiv.org/abs/1807.03748
https://arxiv.org/abs/1807.03748


4621

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. Advances in neural information processing
systems, 30.

Wei Wei, Chao Huang, Lianghao Xia, and Chuxu Zhang.
2023. Multi-modal self-supervised learning for rec-
ommendation. In Proceedings of the ACM Web Con-
ference 2023, pages 790–800.

Yang Wu, Zijie Lin, Yanyan Zhao, Bing Qin, and Li-
Nan Zhu. 2021. A text-centered shared-private frame-
work via cross-modal prediction for multimodal sen-
timent analysis. In Findings of the Association
for Computational Linguistics: ACL-IJCNLP 2021,
pages 4730–4738.

Zhuojia Wu, Qi Zhang, Duoqian Miao, Kun Yi, Wei
Fan, and Liang Hu. 2024. Hydiscgan: A hybrid dis-
tributed cgan for audio-visual privacy preservation
in multimodal sentiment analysis. In Proceedings of
the Thirty-Third International Joint Conference on
Artificial Intelligence, IJCAI-24, pages 6550–6558.
International Joint Conferences on Artificial Intelli-
gence Organization. Main Track.

Dingkang Yang, Shuai Huang, Haopeng Kuang, Yang-
tao Du, and Lihua Zhang. 2022. Disentangled repre-
sentation learning for multimodal emotion recogni-
tion. In Proceedings of the 30th ACM International
Conference on Multimedia, page 1642–1651.

Wenmeng Yu, Hua Xu, Ziqi Yuan, and Jiele Wu. 2021.
Learning modality-specific representations with self-
supervised multi-task learning for multimodal sen-
timent analysis. In Proceedings of the AAAI con-
ference on artificial intelligence, volume 35, pages
10790–10797.

Yakun Yu, Mingjun Zhao, Shi-ang Qi, Feiran Sun,
Baoxun Wang, Weidong Guo, Xiaoli Wang, Lei Yang,
and Di Niu. 2023. ConKI: Contrastive knowledge
injection for multimodal sentiment analysis. In Find-
ings of the Association for Computational Linguistics:
ACL 2023, pages 13610–13624.

Amir Zadeh, Minghai Chen, Soujanya Poria, Erik Cam-
bria, and Louis-Philippe Morency. 2017. Tensor
fusion network for multimodal sentiment analysis.
In Proceedings of the 2017 Conference on Empiri-
cal Methods in Natural Language Processing, pages
1103–1114.

Amir Zadeh, Rowan Zellers, Eli Pincus, and Louis-
Philippe Morency. 2016. Mosi: multimodal cor-
pus of sentiment intensity and subjectivity anal-
ysis in online opinion videos. arXiv preprint
arXiv:1606.06259.

AmirAli Bagher Zadeh, Paul Pu Liang, Soujanya Poria,
Erik Cambria, and Louis-Philippe Morency. 2018b.
Multimodal language analysis in the wild: CMU-
MOSEI dataset and interpretable dynamic fusion
graph. In Proceedings of the 56th Annual Meeting of
the Association for Computational Linguistics (Vol-
ume 1: Long Papers), pages 2236–2246.

Haoyu Zhang, Yu Wang, Guanghao Yin, Kejun Liu,
Yuanyuan Liu, and Tianshu Yu. 2023. Learning
language-guided adaptive hyper-modality representa-
tion for multimodal sentiment analysis. In Proceed-
ings of the 2023 Conference on Empirical Methods
in Natural Language Processing, pages 756–767.

Shanshan Zhong, Zhongzhan Huang, Daifeng Li,
Wushao Wen, Jinghui Qin, and Liang Lin. 2024.
Mirror gradient: Towards robust multimodal recom-
mender systems via exploring flat local minima. In
Proceedings of the ACM on Web Conference 2024,
WWW 2024, Singapore, May 13-17, 2024, pages
3700–3711. ACM.

https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://doi.org/10.1145/3543507.3583206
https://doi.org/10.1145/3543507.3583206
https://aclanthology.org/2021.findings-acl.417
https://aclanthology.org/2021.findings-acl.417
https://aclanthology.org/2021.findings-acl.417
https://doi.org/10.24963/ijcai.2024/724
https://doi.org/10.24963/ijcai.2024/724
https://doi.org/10.24963/ijcai.2024/724
https://doi.org/10.1145/3503161.3547754
https://doi.org/10.1145/3503161.3547754
https://doi.org/10.1145/3503161.3547754
https://doi.org/10.1609/aaai.v35i12.17289
https://doi.org/10.1609/aaai.v35i12.17289
https://doi.org/10.1609/aaai.v35i12.17289
https://aclanthology.org/2023.findings-acl.860
https://aclanthology.org/2023.findings-acl.860
https://aclanthology.org/D17-1115
https://aclanthology.org/D17-1115
http://arxiv.org/abs/1606.06259
http://arxiv.org/abs/1606.06259
http://arxiv.org/abs/1606.06259
https://aclanthology.org/P18-1208
https://aclanthology.org/P18-1208
https://aclanthology.org/P18-1208
https://aclanthology.org/2023.emnlp-main.49
https://aclanthology.org/2023.emnlp-main.49
https://aclanthology.org/2023.emnlp-main.49
https://doi.org/10.1145/3589334.3645553
https://doi.org/10.1145/3589334.3645553

	Introduction
	Related Work
	Method
	Problem State
	Modal Prompt Attention
	Intra-modal Knowledge Distillation
	Inter-modal Contrastive Learning
	Fusion & Predict

	Experiments
	Datasets and Metrics
	Baseline
	Implementation Details
	Results
	Ablation Study
	Unimodal Study
	Effect of Multiple Loss Learning
	MPA Analysis
	Modal Representations Analysis


	Conclusion

