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Abstract

The rise of large language models (LLMs) has
created a need for advanced benchmarking sys-
tems beyond traditional setups. To this end, we
introduce QUENCH, a novel text-based English
Quizzing Benchmark manually curated and
transcribed from YouTube quiz videos. QUENCH
possesses masked entities and rationales for the
LLMs to predict via generation. At the intersec-
tion of geographical context and common sense
reasoning, QUENCH helps assess world knowl-
edge and deduction capabilities of LLMs via
a zero-shot, open-domain quizzing setup. We
perform an extensive evaluation on 7 LLMs
and 4 metrics, investigating the influence of
model size, prompting style, geographical con-
text, and gold-labeled rationale generation. The
benchmarking concludes with an error analysis
to which the LLMs are prone.

1 Introduction

The ubiquitous rise of large language models
(LLMs) has driven the need for diverse benchmark-
ing and evaluation systems (Chang et al., 2024;
Peng et al., 2024). Examining the logical reason-
ing and world knowledge capabilities of the LLMs
(Qiao et al., 2023; Lu et al., 2023) has been an
active area of research. On one hand, world knowl-
edge is primarily adjudged subject-wise (History,
Law, STEM etc) via MMLU (Hendrycks et al.,
2021), GSM-8k (Cobbe et al., 2021) or via deduc-
tive multichoice (MCQ) question banks such as
JEEBench (Arora et al., 2023) or ScienceQA (Lu
et al., 2022). The subject-specific questions fail
to capture the multi-themed nature of real-world
knowledge and reasoning, which involves relating
concepts from multiple different “subject" areas.
Furthermore, the MCQ setup already provides a
plausible answer and restricts the answering do-
main to a closed-source one. Meanwhile, the com-
monsense understanding is broadly examined via

*Equal Contribution

the likes of pragmatism (Sravanthi et al., 2024),
syllogism (Wu et al., 2023), and truthfulness (Lin
et al., 2022) with minimal references to real-world
historical events and entities. Parallelly, researchers
have also been proving the efficacy of LLMs as
evaluation tools, such as G-Eval (Liu et al., 2023).

Another frequently overlooked issue with bench-
marks is their tendency to be “global" or “western-
centric" (Santurkar et al., 2023; Durmus et al.,
2024). For a language model to understand com-
plex cultural queries, it must first be acquainted
with the specific entities and concepts of those cul-
tures. While efforts like Seth et al. (2024) have
been made, to the best of our knowledge, none
present an open-world, clue-based guessing game
where disjoint clues rely on linguistic hints or re-
quire combining multiple concepts to arrive at the
answer. To address this gap, we propose a quiz
trivia-based framework to probe LLMs’ deductive
reasoning skills across multiple themes and enti-
ties. Our work focuses on world knowledge and
commonsense reasoning, with an emphasis on geo-
graphical context (Table 1).

Benchmark Dataset. To support our investiga-
tion, we curate QUENCH, a Quizzing Benchmark. It
is a novel text-only dataset obtained from manually
annotated YouTube quiz videos in English. The
primary entity to be predicted is hidden in the form
of “X” and can occur multiple times in the ques-
tion along with multiple entities as well (example
# 2 in Table 1). We also provide a manually cu-
rated free-text explanation/rationale for the correct
answers. The non-trivial coreference resolutions
across entities uniquely position QUENCH to access
the deduction capabilities of the LLMs with respect
to the world and commonsense knowledge.

Benchmarking and Evaluation Setup. We
benchmark entity and rationale prediction for
QUENCH across seven different LLMs, including
both closed and open-weight models. These mod-
els vary significantly in terms of the number of pa-
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Quiz Prompt: Consider yourself a participant in a quiz show where I am the quizmaster. I will ask you a question that can be from
any general theme. You need to provide me with the correct answer. The question can have multiple variables to answer, and you
need to provide me with the answer for variables X, Y, and Z. Hence, use the following format strictly in your response: ‘The answer
is <X: answer>.’ You will lose points if you fail to follow the format.
Question: The primary protagonist of X, one of China’s classic epics, derived his literary name from items he carried and shared it
with a rather famous mudra gesture. However, he is less well-known than Y, a secondary protagonist in the original text who was an
allegory for the restless human mind. Z is the protagonist of one of the most famous manga ever, adapted to over 20 movies and
spawned many memes thanks to its unique transformations. Z shares his name and characterization with Y.

O
ut
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ts

Predicted entities: <X: Journey to the west>; <Y: Sun Wukong>; <Z: Son Goku>;
Rationale: X is Journey to the West, which features the protagonist Sun Wukong, who is known as the Monkey King. He carries a
staff and is associated with the mudra gesture. Y is Sun Wukong, who is the Monkey King and secondary protagonist in Journey to
the West. He represents the restless human mind. Z is Son Goku from the Dragon Ball series. He shares his name and monkey-like
characterization with Sun Wukong, the Monkey King from Journey to the West. Dragon Ball has spawned over 20 movies and many
memes.
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Quiz Prompt: Consider yourself a participant in a quiz show where I am the quizmaster. I will ask you a question that can be
from any general theme. You need to provide me with the correct answer. The question can have multiple variables to answer, and
you need to provide me with the answer for variable X. Hence, use the following format strictly in your response: ‘The answer is
<X: answer>.’ You will lose points if you fail to follow the format.
Question: Karondi is a remote village near Jabalpur. X of India was moved to Karondi from Nagpur after the partition. X was
established during the Great Trigonometrical Survey of India in 1907 in Nagpur. The project, basically, was to demarcate the British
territories in India.

O
ut

pu
ts Predicted entities: <X: Centre Point of India>;

Rationale: The Centre Point of India was moved post the partition due to a change in the boundaries of the country. It was
established during the Great Trigonometrical Survey of India in 1907 in Nagpur.

Table 1: An overview of the quiz evaluation setup with zero-shot prompt (without CoT in this case) for predicting
the masked entities (X, Y, Z) in a quiz question taken verbatim from QUENCH. The prompt and question are provided
to an LLM, and the expected generations are to be the missing entities in the form <X: answer>. For the CoT
setup, the above “quiz prompt" is suffixed with the phrase ‘Let’s think step by step.‘ Each question has the required
masked entities (for instance, ‘X’ or ‘X, Y, Z’) in the text, and we simply refer to each of them via “The question
can have multiple variables to answer, and you need to provide me with the answer for variable <variable>".

rameters, knowledge cutoff dates, context lengths,
and pretraining characteristics. We employ the stan-
dard metrics – BLEU, BERTScore, and ROUGE-L,
as well as a GEval-based strategy to evaluate the
performance under zero-shot prompting both with
and without chain-of-thought (CoT) as outlined in
Table 1. The Indic subset (example # 1 in Table 1)
in QUENCH further allows for examining the Indian
knowledge representation in the LLMs.

Observations. Based on GEvals, our analy-
sis reveals that zero-shot entity prediction accu-
racy improves from 72% to 87% when upgrad-
ing from GPT-3.5 to GPT-4. As expected, GPT-4
leads across all four metrics. Meanwhile, the open-
weight LLaMA-3-70B performs on par with GPT-
3.5 and stands out as a strong alternative, mainly
due to its lower variability across subsets (12 points
compared to GPT-3.5’s 23-point difference). Con-
sistent with existing literature, we see larger models
outperforming their 7B counterparts and an overall
performance decline across LLMs in the Indian
context. A significant disparity persists between
the Indic and non-Indic subsets, with GPT-4-Turbo
showing a 12-point difference between the two.
Gemini 1.5 Flash exhibits an even more consid-

erable gap, with a 32-point difference between
the subsets. Additionally, in rationale prediction,
LLMs tend to favor gold labels over their predic-
tions when nudged for explanations. Interestingly,
contrary to popular literature, we find the impact of
chain-of-thought (CoT) prompting to be insignifi-
cant, reinforcing the challenging nature of QUENCH.

Contributions: Through this work1:
• We develop a novel open-domain quiz trivia

dataset, QUENCH, accompanied with rationales for
each question.

• We benchmark QUENCH on seven LLMs across 4
evaluation metrics and 2 prompting setups.

• We perform extensive analyses examining the
influence of model size, prompting strategy, the
role of indic vs. non-indic context, and highlight
the most common prediction errors.

2 Related Work

Benchmarking and evaluating LLM is an active
and evolving area of research (Chang et al., 2024;
Peng et al., 2024). Benchmarks such as MMLU
(Hendrycks et al., 2021), SuperGLUE (Wang et al.,

1Code and dataset available at https://github.com/
aflah02/QUENCH

https://github.com/aflah02/QUENCH
https://github.com/aflah02/QUENCH
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2019), HELM (Lee et al., 2023), PromptBench
(Zhu et al., 2023) and LMSys (Zheng et al., 2024)
provide a holistic suite of tasks to access the real-
world adaptability of LLMs.

Dedicated benchmarks have been proposed to
access the mathematical (Lu et al., 2023), symbolic
(Zhang et al., 2024a), commonsense/social (Davis,
2023; Gandhi et al., 2023), and logical (Pan et al.,
2023; Giadikiaroglou et al., 2024; Sanyal et al.,
2022) reasoning of LLMs. Datasets such as GSM-
8k (Cobbe et al., 2021), JEEBench (Arora et al.,
2023), MMLU (Hendrycks et al., 2021), MaScQA
(Zaki et al., 2024), ScienceQA (Lu et al., 2022),
and LogiQA (Liu et al., 2020) have been designed
to evaluate LLMs’ knowledge across various sub-
jects like mathematics, material science, and his-
tory. Most of these datasets utilize multiple-choice
questions and focus on single themes per ques-
tion. Concerns have been raised about the potential
leakage of LLM pretraining data due to the pub-
lic availability of these datasets (Xu et al., 2024).
Additionally, there are datasets aimed at assess-
ing commonsense reasoning (Zellers et al., 2019;
Lourie et al., 2021), entity resolution (Sakaguchi
et al., 2021), and perceptiveness (Lin et al., 2022).

Given that reasoning involves combining latent
information of varying concepts (Wu et al., 2023),
modality (Zhang et al., 2024b; Liu et al., 2022),
assessments in terms of knowledge-graph, and neu-
rosymbolic (Olausson et al., 2023) reasoning have
also been proposed. However, these setups, too,
tend to operate in an MCQ or cloze manner. Our
work addresses the closed-knowledge gap by inte-
grating world knowledge and commonsense reason-
ing into a quiz-based framework. This framework
requires LLMs to infer masked entities within ques-
tions and generate rationales for their predictions.

Meanwhile, for datasets specific to Indic cul-
tures, such as (Seth et al., 2024; Watts et al., 2024),
there is a notable scarcity of challenging, open-
ended, quiz-style benchmarks. Our work con-
tributes to evaluating the performance of the LLMs
under Indic and non-Indic setups. In the future,
this can be extended to evaluate more fine-grained
geographical and cultural setups.

3 QUENCH: Proposed Benchmark

QUENCH is a collection of 400 English questions
from quiz competitions encompassing the 11
themes in Figure 1. Each question consists of
a paragraph talking about some event related to

Subset # Q # E Avg. QL Avg. EL Avg. RL
Indic 70 80 77.03 1.85 39.48
Non-Indic 330 379 84.82 1.96 40.52
Over All 400 459 83.46 1.94 40.33

Table 2: Dataset statistics of QUENCH enlisting the num-
ber of questions (Q) and masked entities in the questions
(E). We also report the average length of questions (QL),
masked entities (EL), and the annotated rationale (RL).

31.8%

0.4%
19.7%

1.3%

14.5%

3.1%

10.8%
4.2%5.4%

4.2%

4.6%

Themes
Art, Music & Style
Education & Co-Curricular
Discovery & Design
Nature
Business and Economics
Mythology & Religion
Literature
Places
World Events, Issues and Entities
Sports
STEM

Figure 1: Themes and their distribution in QUENCH.

one of the themes. In each question, some entities
are masked with ‘X.’ The aim is to connect the
concepts in the question to predict ‘X.’ The ques-
tions contain adequate cues to deduce the entities.
The questions in the quiz already have the entities
masked, and we have not modified these. However,
we manually annotate the explanations/rationale
to arrive at the answer. Some sample questions,
answers, and rationales are provided in Table 1.

Data Sources. Our primary source of questions
is YouTube quizzing competitions videos 2, with
a tiny portion (7%) from a website that publishes
quizzing challenges3. Upon exploring these two
sources, we find that the videos provide more co-
herent reasoning and answers, better facilitating
the annotation process.

Annotation Process. The data annotation pro-
cess is carried out by two male expert annotators
(A1 and A2) aged 20-23. Both annotators possess
previous experience with cryptic hunts, quizzes,
and similar activities. The annotators spend 8-10
minutes per question listening to the questions in
the video. Working with the Text-Grab OCR tool4,
the annotators extract the question text and answers

2https://www.youtube.com/@KumarVarunOfficial
3https://donquizote.wordpress.com/
4https://learn.microsoft.com/windows/powertoys/text-

extractor
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(a) (b)

Figure 2: Screenshots showing the upper (a) and lower (b) half of the custom annotation tool’s landing page has
6+ 2 ·N sections to fill, where N is the number of masked entities in the question. The metadata section is optional.

for the masked entities. The annotators manually
rectify any issues that arise. Based on the tran-
scribed content of the video, the annotators para-
phrase the rationale into coherent, point-wise sen-
tences that outline how the correct entity can be
deduced once the rationale is read. In cases where
the rationale is not discussed in the video, the an-
notators are free to access the internet to obtain
the explanations. The annotators then populate the
following fields:

• Passage: A passage with some entities/ob-
jects masked

• List of Masked Entities: The list of masked
entities to be predicted. The questions are
constructed to predict these entities.

• List of Answers: There is one answer for
every mask entity.

• List of Rationales: The rationales behind
each entity.

• Themes: A list of themes the passage fits in.
• Source: A URL to the question source.

Custom Annotation Tool. The annotation pro-
cess is carried out online without the need to scrape
any videos. Once the transcription is obtained, the
annotators compile the above information for each
sample. We use a custom annotation tool with the
help of Streamlit5. A screenshot of the annotation
process is highlighted in Figure 2. The themes are
multi-choice and subjective to the annotator’s rea-
soning if not pre-defined. The variables section
is constrained by the number of comma-separated

5https://streamlit.io/
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Figure 3: The number of masked entities in QUENCH.

variables inserted by the annotator. We also store
the question’s source so that anyone can proof-
check these annotations if needed.

Curated Dataset. The annotation process span-
ning 4 months is completed via a custom annotation
tool as described below. We observe that a subset
of questions exclusively pertains to Indian entities.
Thus, we further tag each question as Indic or Non-
Indic. The dataset statistics are outlined in Table
2. As a result of the annotations, the distribution
of the number of masked entities across different
questions is illustrated in Figure 3.

Inter-annotator Agreement. Since the rationale
annotations are performed in a free-text manner, we
carry out an inter-annotator evaluation to adjudge
the quality of the rationale text. We randomly pro-
vide one annotator with 10 samples compiled by
the other. Both rank the free-text rationale on a
5-point Likert scale, with five being the highest
quality of annotation. Based on this assessment,
we obtain an inter-annotator agreement of 4.9 from
A1 to A2 and 4.85 from A2 to A1.
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Unique Characteristics of QUENCH. Firstly, a
critical aspect of our dataset is its objective yet
open-domain nature. While the answers to the quiz
question are objective (one word/one phrase), the
queries do not have fixed gold labels (for example,
‘Barack Hussein Obama,’ ‘Barack Obama,’ and
‘Obama’ are all correct answers to the question ‘X
was a civil rights attorney turned 44th President
of USA’). Further, unlike the popular quiz show
(Who Wants to Be Millionaire), we do not provide
multiple-choice (MCQ) answers, which increases
the difficulty of predicting the entities as the range
of possibly correct entities is unrestricted. Simply
removing the options in MCQ questions to pro-
duce a new dataset is not sufficient, as many of
those questions depend on or refer to the options,
such as, “Which of the following is closest to X?".
Secondly, the multi-hop reasoning and multiple
co-reference resolution setup in QUENCH spans in-
tersectional themes within a question. It provides a
challenging environment to assess the world knowl-
edge and entity recall capabilities of the LLMs.
Thirdly, it is also noteworthy that a subset of the
quiz questions pertains to India-specific entities, al-
lowing us to judge the indic-specific knowledge of
the LLMs. The questions mention sufficient Indian-
specific concepts to nudge the deduction toward
an India-specific answer without an explicit hint.
Lastly, the dataset allows for a multifold assess-
ment of LLMs covering both entity recall as well
as rationale-building capabilities. Overall, based
on the above characteristics, it is evident QUENCH
provides a novel and challenging benchmark to
access both world knowledge and recall capabil-
ities of the LLM as well as establish the efficacy
of the systems under open-domain setups beyond
standardized NLP tasks. To ensure the quiz ques-
tions curated in QUENCH are not already present in
LLM pretraining datasets, we also conduct a data
contamination check (Appendix A).

4 Benchmarking Setup

This section outlines the models we employ for
benchmarking QUENCH along with the prompting
and evaluation setups.

Benchmarked LLMs. We experiment with var-
ious open-weight and closed-sourced instruction-
tuned LLMs. Non-instruct LLMs are excluded
from our assessment as they generate incoherent
outputs. Similarly, formatting issues were regis-
tered from the Pythia family (Biderman et al., 2023)

Model CW Knowledge Cutoff
GPT-4-Turbo* (gpt-4-turbo-2024-04-09) 128K Dec’23
GPT-3.5-Turbo* (gpt-3.5-turbo-0125) 16k Sep’21
Gemini-1.5-Flash* 1M Nov’23
Gemma-1.1-7B-Instruct† 8K Unknown
Mixtral-8x7B-Instruct-v0.1† 32k Unknown
Meta-Llama-3-8B-Instruct† 8k Mar’23
Meta-Llama-3-70B-Instruct† 8k Dec’23

Table 3: Details of LLMs employed in this study. CW
captures the context window based on token length.
Star(*) refers to closed-sourced LLMs and the dagger
(†) signifies open-weight LLMs.

models. Our model shortlisting was performed
on 2xH100 and 2xA100 machines. The LLMs
eventually shortlisted for benchmarking QUENCH
are furnished in Table 3. Amongst the closed-
sourced models, we use the ones supported via
APIs. Here, we employ GPT-4-Turbo, GPT-3.5-
Turbo, and Gemini-1.5-Flash. For open-weighted
models, we run inference via the free tier pro-
vided by Groq6. This setup allows fast infer-
ence at minimal infrastructural cost. Here we em-
ploy, Meta-Llama-3-70B-Instruct, Meta-Llama-
3-8B-Instruct, Mixtral-8x7B-Instruct-v0.1 and
Gemma-1.1-7B-Instruct.

Prompting Predictions from LLMs. Given a
quiz question and a list of missing entities, we
prompt LLMs to predict the masked entities in the
question. In the next stage of the pipeline, we
use the predicted entities to prompt the model to
provide a free text reason/rationale for why the ex-
pected entity correctly fits the context in the ques-
tion. To separately examine the role of predicted
entities in nudging the rationale, we also repeat
the rationale prediction task with the gold-labeled
entity to generate rationales. Here, we explore
zero-shot prompting both with and without chain-
of-thought (CoT) prompting (Wei et al., 2022). For
CoT prompting, we add the phrase “Let’s think
step by step" similar to Arora et al. (2023) to the
prompts outlined in Appendix B.

Evaluation Metrics. We employ a suit of natural
language generation (NLG) based metrics for eval-
uation. Among the standard ones, we report BLEU
(Papineni et al., 2002), ROUGE-L (Lin, 2004), and
BERTScore (Zhang* et al., 2020) for semantic
similarity. The standard automated metrics, how-
ever, will penalize the open-ended responses with
variations like ‘U.S.A.’ versus ‘United States’ or
‘United States of America’. For fairer and more
comprehensive analysis, we also explore LLM-

6https://console.groq.com/
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Model Category
Without Chain-of-Thought With Chain-of-Thought

Answer Rationales with Predicted Answer Answer Rationales with Predicted Answer
BS GEval BS GEval BS GEval BS GEval

Gemini 1.5 Flash

Indic 91.7 40 86.8 56.2 91.3 38 86.7 56.4
Non-Indic 93.6 71 86.9 76 93.7 70 87.1 75.4
All 93.3 66 86.9 72.6 93.3 64 87.1 72.2
±∆(N − I) +1.9 +31.0 +0.1 +19.8 +2.4 +32.0 +0.4 +19.0

Gemma-1.1-7B-it

Indic 89.2 14 86 38.6 87.5 20 86.2 43.6
Non-Indic 90.8 41 85.9 58.2 89.3 43 86.1 59.6
All 90.6 36 86 54.8 89 39 86.1 56.8
±∆(N − I) +1.6 +27.0 −0.1 +19.6 +1.8 +23.0 −0.1 +16.0

GPT-3.5-Turbo

Indic 95 53 87.4 67.2 94.6 54 87.6 66.2
Non-Indic 95.9 76 87.6 83 96 77 87.6 82.6
All 95.8 72 87.5 80.2 95.8 73 87.6 79.8
±∆(N − I) +0.9 +23.0 +0.2 +15.8 +1.4 +23.0 0.0 +16.4

GPT-4-Turbo

Indic 96.8 78 87.5 86.8 97 77 87.5 82.8
Non-Indic 97.4 88 87.3 91 97.5 89 87.3 91
All 97.3 86 87.3 90.4 97.4 87 87.3 89.6
±∆(N − I) +0.6 +10.0 −0.2 +4.2 +0.5 +12.0 −0.2 +8.2

Meta-Llama-3-8B-Instruct

Indic 94 29 86.3 48.8 93.3 25 86.5 46.6
Non-Indic 95.3 46 86.4 60.8 95.4 47 86.4 62.6
All 95.1 43 86.3 58.6 95 43 86.4 59.8
±∆(N − I) +1.3 +17.0 +0.1 +12.0 +2.1 +22.0 −0.1 +16.0

Meta-Llama-3-70B-Instruct

Indic 95.4 58 87 70.8 95.7 62 87 71.8
Non-Indic 96.7 73 87.3 82 96.7 74 87.3 82.4
All 96.5 70 87.3 80 96.5 72 87.2 80.6
±∆(N − I) +1.3 +15.0 +0.3 +11.2 +1.0 +12.0 +0.3 +10.6

Mixtral-8x7B-Instruct-v0.1

Indic 86.1 43 87 61.4 86 42 86.9 59.2
Non-Indic 88 68 87 79.4 88.4 71 87.1 78.4
All 87.7 64 87 76.2 88 66 87 75
±∆(N − I) +1.9 +25.0 0.0 +18.0 +2.4 +29.0 +0.2 +19.2

Table 4: LLM performances on QUENCH with and without Chain-of-Thought prompting. Here, ∆(N − I) is the
difference in performance between the Non-Indic and Indic subset. BS: BERTScore; GEval: Jury Evaluation.

driven evaluations. Recent works have shown
that LLMs favor their own outputs (Panickssery
et al., 2024) during LLM-based evaluations. To
address this, Verga et al. (2024) proposed using
multiple LLMs as a jury. We, thus, employ the
most robust models (GPT-4-Turbo, Mixtral-8x7B-
Instruct-v0.1, and Meta-Llama-3-70B-Instruct) as
our judges. Each judge individually scores the
responses of every other benchmarked LLM, re-
sulting in 21 judge-model combinations. In the
case of entity prediction, we employ a binary
scale to determine whether or not the entity is
correct. For rationale prediction, we use a more
granular 5-point Likert scale to capture seman-
tics and handle nuances in lengthy texts. Since
each question may contain multiple masked enti-
ties, we treat each entity as a distinct prediction.
We aggregate the results across all entities for each
question (

∑num_q
i=1

∑num_ent(qi)
j=1 score(qi, entj))

where num_ent(qi) counts how many masked en-
tities are present in the question qi and finally scale
the aggregated results to 100. The rationales are as-
sessed under both predicted and gold entities. The
evaluation prompts are outlined in Appendix C.

5 Results and Discussion

Comprehensive results for all metrics are provided
in Appendix D, with a shorter aggregate provided

in Table 4 for reference here. In each table, we
refer to ∆(N−I) as the difference in performance
between the Non-Indic and Indic subsets.

5.1 Entity Prediction
In terms of standard metrics, we observe that GPT-
4-Turbo is the best-performing model on QUENCH,
with Meta-Llama-3-70B-Instruct performing com-
parably well as the second-best model in terms of
overall BERTScore. In Table 4, GPT-4-Turbo pro-
duces the highest BERTScore of 97.3 (97.4) when
prompted without (with) CoT. Meta-Llama-3-70B-
Instruct lags only by ≈ 1 point with scores of 96.5
(96.5) when prompted without (with) CoT. Simi-
larly, in terms of LLM-Juries, we observe (Figure
4 (a)) that GPT-4-Turbo outperforms other models
with a score of 86 (87) when prompted without
(with) CoT. Here again, the second-best models
trail by ≈ 14 points, with GPT-3.5-Turbo and Meta-
Llama-3-70B-Instruct scoring 72 (73) and 70 (72)
respectively when prompted without (with) CoT.

5.2 Rationale Prediction
Based on the entity predicted in the previous step,
the LLMs are then prompted to explain how the
predicted entities can be deduced/thought through.
Interestingly, from Table 4, we observe GPT-3.5-
Turbo performs slightly better than the rest of the
models, beating GPT-4-Turbo and Meta-Llama-3-
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Figure 4: Figures (a) and (b) display our aggregated results comparing scenarios with and without Chain-of-Thought
(CoT) prompting. Figures (c) and (d) present a comparison between Indic and Non-Indic languages. The results are
evaluated across three types of metrics: (i) the correctness of the predicted answer, and (ii) the correctness of the
rationale for the prediction. All metrics are scaled from 0 to 100.

70B-Instruct by ≈ 0.2% (0.3%) and 0.2% (0.4%)
BERTScores respectively, in terms of without
(with) CoT. On the contrary, in terms of LLM-
metrics (Figure 4 (b)), we observe that GPT-4-
Turbo outshines other models in terms of produc-
ing coherent and correct rationals with scores as
high as 90.41 (89.62) for rationales generated with-
out (with) CoT. The second-best systems trail by
≈ 10 points, with GPT-3.5-Turbo and Meta-Llama-
3-70B-Instruct scoring 80.32 (79.91) and 80.15
(80.7), respectively for without (with) CoT.

Note on standard metrics. BERTScore is rela-
tively more helpful than n-gram metrics like BLEU
and ROUGE. Specifically, for rationale generation,
syntactic metrics fail to convey meaningful informa-
tion. This is because the generated rationales can
vary significantly in structure, format, and length
while conveying the same reasoning.

5.3 Factors Influencing the Performance of
Benchmarked LLMs

We comment on the performance w.r.t standard and
LLM-based metrics in terms of the training parame-
ters, prompting strategy, the non-western context in
the question, as well as the role of predicted/human
entities in generating rationales.

Number of Parameters. Across both standard
and LLM-based metrics, there is a clear distinc-
tion in terms of the number of model parame-
ters. Within the same family, Meta-Llama-3-70B-
Instruct outperforms Meta-Llama-3-8B-Instruct on
both entity and rationale predictions. However, this
performance drop is not consistent even among
models with a similar number of parameters. The
variation among models with similar parameter
sizes reiterates that not only just the number of
parameters but also the pretraining strategy plays
a role in the downstream reasoning ability of the
LLMs.

Impact of Indic Subset. All the benchmarking
LLMs perform poorly at questions with an Indic
context for both entity and rationale generation
tasks. It is vital to reiterate that the only difference
between indic and non-indic questions is the con-
text, as the dataset and predictions are curated in
English. The performance variation is significantly
noticeable across all metrics, as evident from Table
4. In terms of GEval, the difference in performance
is ≈ 21% on average for predicting the correct en-
tity (Figure 4 (c)) and ≈ 14.7% for predicting the
rationale (Figure 4 (d)) for the expected answer for
non-Indic vs Indic entities. We hypothesize this
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is because the pretraining datasets for LLMs have
a predominantly North American context (Zhou
et al., 2022). It also means that cultural cues are
critical while answering open-domain questions
(Lee et al., 2024).

Rationale Predictions with Gold Labels. In the
case of generating a rationale for a given question,
we alternatively provided the list of correct masked
entities instead of the predicted ones. As expected,
inserting gold labels in the prompts dramatically
improves the quality of the rationale generated by
the model. This difference is highest for Gemma-
1.1-7b at ≈ 32% (Tables 7 and 8). Similar behavior
is observed even within Indic and non-Indic subsets.
It shows that LLMs are capable of reasoning the
path between the correct answer and question much
better than generating the rationale behind their
own predicted answers (Huang et al., 2024).

CoT Prompting. Contradictory to expected be-
havior, we observe via Figure 4 (a), (b) that the
influence of CoT is inconsistent on QUENCH. It may
be a result of the challenging nature of the quiz-
based task. LLMs need improvements in reasoning
to make connections between multiple entities in
the real world. In line with prior studies, we, too,
observe that CoT optimization requires LLMs with
parameters > 7B (Chowdhery et al., 2023).

6 Human Benchmarking

To highlight the competitive nature of our bench-
mark, we also perform a human benchmarking.

Setup. Given the resource-intensive nature of
generating explainations, we randomly sample 20
questions for this assessment. We sample equal
numbers from both subsets and across all themes.
In total, we have 10 Non-Indic and 13 Indic ques-
tions, with some questions having more than one
mask to predict. The participants answered both the
missing entities and the rationale for the entities.
The questions are distributed via a Google form
(Appendix E). The participants are given the option
to respond with "NA" if they do not have an answer
for an entity or rationale. This setup allows us to
analyze refusal rates effectively. We recruit 18 par-
ticipants for benchmarking. The participants con-
sist of college students pursuing a range of degrees,
from Bachelor’s to Master’s and PhD programs.

Observations. Based on the number of unan-
swered questions, Figure 5 (a) demonstrates the

Error Types Counts
w/o CoT w/ CoT

Unrelated to theme 5 0
Unrelated but same theme 10 0
Similar entities in same theme 45 1
Wrong entity predicted but correct in rationale 5 9
Correct Answer 35 11

Table 5: Error analysis to classify each sample into one
of the five error types (a-e, respectively).

difficulty humans face with questions from QUENCH.
Moreover, both the task of predicting the correct
answer and providing a rationale for it prove chal-
lenging, with the highest scores reaching only 30%.
Additionally, Figure 5 (b-c) reveals that participants
generally find Indic questions more difficult to an-
swer. Interestingly, there are more instances where
Indic rationales receive higher scores, which might
suggest that writing rationales for Indic questions
is easier once an answer is known. However, due
to the limited number of participants, we refrain
from making any broad conclusions.

7 Error Analysis

Even the best-performing LLM (GPT-4-Turbo in
our case) is prone to generative errors. In this sec-
tion, we focus on the incorrect predictions arising
from entity recognition and reasoning.

Incorrect Entity Recognition. The model strug-
gles with identifying the correct entities, even when
using Chain-of-Thought (COT) reasoning. It be-
comes evident when, in 90.19% of cases, the model
receives the same jury score for both CoT and non-
CoT generations.

When prompted to identify entities within a spe-
cific domain, the model tends to favor well-known
figures over the correct but less famous ones. For
example, when asked about an Indian singer, it
incorrectly identifies a widely recognized singer
(e.g., “Sonu Nigam”) instead of the correct and
lesser well-known individual (e.g., “Lucky Ali”).
Consequently, the model has a tendency to link
entities to more common or prominent organiza-
tions within a field rather than accurately identi-
fying the rare entity. For instance, in a scenario
where the correct answer is “Amrutanjan” (a patent
medicine business), the model incorrectly identifies
“All India Radio,” possibly due to the mention of a
journalist in the question. The model can provide
misinformed entities, revealing significant gaps in
its knowledge and ability to differentiate between
similarly categorized entities. For example, it in-
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Figure 5: Analysis of human benchmarking split across the indic and non-indic subsets capturing the distribution.

Correct Rationale for incorrect prediction?
Yes No

Counts (w/o CoT) 17 83
Counts (w/ CoT) 8 2

Table 6: Assessing when LLMs produce a correct ratio-
nale despite making an incorrect entity prediction.

correctly identifies “Yogi Adityanath” (the Chief
Minister of Uttar Pradesh) as the Chief Minister of
Odisha instead of “Naveen Patnaik.”

Despite the shortcomings in specific entity recog-
nition, the model shows a surprising proficiency in
identifying high-level relationships. Suppose the
answer involves identifying a cricketer. In that case,
the model generally generates a name within the
correct category (i.e., a cricketer), even if it does
not pinpoint the exact individual. It suggests that
while the model has a reasonable grasp of broad cat-
egories, roles, and domain leaders within that role,
it may struggle with precise identification within
those categories. Some other examples are pre-
dicting “Waheeda Rehman” in place of “Bhanu
Athaiya,” who are both famous Indian actresses.

Incorrect Rationale Generation: LLMs can
also struggle to generate specific rationales. We
conduct a 2-dimensional analysis of GPT-4 over
100 randomly sampled predictions and record:

1. The type/category of error in the generations
outlined in (Table 5).

2. If the model is able to generate the correct ra-
tionale even if the entity predicted is incorrect
as outlined in (Table 6).

Table 5 shows the statistics for the categorical
error analysis. We highlight that the CoT sample
count does not total 100 because we only mark
samples where the reasoning differed significantly
between the two experiments (without and with
CoT). We see that most of the errors are of type
c, where the theme is correct, but the LLM gets
confused between two very similar entities from
the same domain (possibly due to differences in

entity popularity/richness of embeddings or their
closeness in terms of semantic overlap).

Through manual assessment, we also notice that
CoT may not be effective in the entity prediction
part. When employed for rationale generation, it
can rectify the mistakes in initial entity predictions.
Table 6 shows that for ≈ 20% of the subset of
samples, the model is able to predict the rationale
correctly without needing first to predict the correct
entity, and for 80% of the anomalous cases in CoT,
we see that the rationales are correct. These obser-
vations show that LLMs are incredibly sensitive to
the way prompts are framed, and predicting entities
in a subjective fashion is a relatively more complex
challenge than in an MCQ setting.

8 Conclusion

We devise a novel benchmark, QUENCH of about
400 quizzing questions in English from a diverse
set of themes. QUENCH helps evaluate the deduc-
tive reasoning capabilities of LLMs. Interestingly,
by accessing CoT and without CoT prompting
techniques, we recorded the non-consequent dif-
ferences between the two setups for our dataset.
We also find that LLMs are much better at answer-
ing questions that have a general/non-indic context.
Overall, we observe QUENCH to be a challenging
benchmarking necessitating future research in the
area of open-domain deductive reasoning. In the fu-
ture, we would like to extend our assessment under
multilingual settings and benchmark other reason-
ing techniques such as tree-of-thoughts, question
decomposition, and self-consistent CoT.

Limitations

Despite our best efforts, we could not evaluate a
broader range of models and prompting techniques
due to resource constraints. This study examines
the behavior of entity and rationale predictions in
a 2-step fashion, and the real impact of CoT may
come into play if both tasks are prompted in a
single prompt with the liberty first to rationalize
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and then predict the entities. However, parsing
such responses will be complex as a strict format
may not be followed, and it may require increased
human efforts for evaluation. While a jury can lead
us to a better assessment, each jury-LLM incurs a
cost in terms of hardware resources and API.

Ethical Considerations

Human annotators play a crucial role in the devel-
opment of our dataset. We ensure that all anno-
tators are fairly compensated for their work and
provided with clear instructions to minimize sub-
jectivity and bias in their annotations. Further, the
annotators were offered sufficient time to annotate
so as not to burden them. Annotators were also
given the option to decline participation without
any repercussions. We maintained a respectful and
supportive work environment throughout the anno-
tation process. Secondly, we source all our data
from public platforms and test both closed-source
and open-weight models, which allow for a fair
benchmarking of LLMs. Lastly, we also make min-
imal use of LLMs for re-writing and grammatical
corrections and, in some cases, Copilot for code
completion during experiments.
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A Data Leakage Analysis

Due to the potential for benchmark leakage into
pretraining corpora, we investigate several popu-
lar data sources to ensure our benchmark remains
unaffected.

Phase 1: Checking for presence of data sources
in pretraining corpora

Specifically, we examine youtube.com (YT) and
donquizote.wordpress.com (DQ), which are pri-
mary sources using Elazar et al. (2024), to deter-
mine if data from these sources has been used in
pretraining. We check for contamination in the C4
(Raffel et al., 2019), mC4-en (Chung et al., 2023),
OSCAR (Abadji et al., 2022), RedPajama (Com-
puter, 2023), LAION-2B-en (Schuhmann et al.,
2022) and Dolma (Soldaini et al., 2024) datasets.

We observe a negligible presence of both data
sources across all public pretraining corpora, with
a maximum of around 22K tokens, and most in-
stances below 1K tokens. Notably, older datasets
like OSCAR and C4 show a slightly higher pres-
ence of DQ, with 23K tokens ( 0.0000046% of total
tokens) and 9K tokens ( 0.00000032% of total to-
kens), respectively. In contrast, newer datasets such
as Dolma contain only 40 tokens ( 0.00000091%
of total tokens). Other datasets show no trace of
the site.

Similarly, YT follows the same pattern.
WIMBD’s prefix search also picks up other URLs
like youtube.comactivate.org, which share the
"youtube.com" prefix, but their presence is mini-
mal (<0.00000001%). The highest YT presence is
found in mC4-en with 22.3K tokens ( 0.00000081%
of total tokens), indicating that both sources have
an insignificant presence in the pretraining corpora.

Phase 2: Checking for exact match count in
pretraining corpora

We utilize the Infinigram API (Liu et al., 2024) to
search for exact question matches within the fol-
lowing pretraining corpora: Dolma (Soldaini et al.,
2024), RedPajama (Computer, 2023), Pile (Gao
et al., 2020), and C4 (Raffel et al., 2019). Our anal-
ysis shows zero contamination across all corpora,
confirming that our dataset has not been leaked
and any model performance on it is unrelated to
memorization.

B Prediction Prompts

• For predicting entities: Consider yourself
a participant in a quiz show where I am the
quizmaster. I will ask you a question that can
be from any general theme. You need to pro-
vide me with the correct answer. The question
can have multiple variables to answer, and
you need to provide me with the answer for
variable {}. Hence, use the following format
strictly in your response: ‘The answer is <X
answer>.’ You lose points if you fail to follow
the format.

• For generating rationale using prediction:
Consider yourself a participant in a quiz show
where I am the quizmaster. I will ask you a
question that can be from any general theme.
The prediction for variable {} is {}. Provide
me with the rationale followed for your an-
swer. Use the following format in your re-
sponse: ‘The rationale is <rationale>’. You
lose points if you fail to follow the format."

• For generating rationale using gold labels:
Consider yourself a participant in a quiz show
where I am the quizmaster. I will ask you a
question that can be from any general theme.
You need to provide me with the correct an-
swer. The question can have multiple vari-
ables to answer, and you need to provide me
with the answer for variable {}. Hence, use
the following format strictly in your response:

‘The answer is <X answer>.’ You lose points
if you fail to follow the format.

Note that the phrase “You lose points if you fail
to follow the format” is only added to induce a
quizzing setup. Since ours is a zero-shot setup,
there is no explicit punishment/loss sent as feed-
back to the model if the answer is not correctly
predicted. Further, the models are evaluated inde-
pendently and not competing against each other.

C Evaluation Prompts

• Entity Evaluation: You are the host of a quiz
show where you ask complex and tricky ques-
tions to the contestants. Now, once you ask
one such question, the contestant gives an
answer that might not be the exact answer
but is still correct. For instance, the answer
provided to you might be ’U.S.A’ while the
actual answer is ’United States of America’
or ’United States’ or ’America’, etc. Use your
wise judgment to decide, based on the ques-

youtube.com
donquizote.wordpress.com
youtube.comactivate.org


4507

tion given, whether the answer is correct or
not. YOU ARE THE JUDGE AND YOUR
WORD IS FINAL. Be fair and just in your judg-
ment. Always respond with ’correct’ or ’incor-
rect’ based on the answer provided by the con-
testant. You will be provided the question, the
true answer, and the answer provided by the
contestant, and you need to decide whether
the answer is correct or not. ## Question
<question>
## True Answer
<true_answer>
## Answer Given by contestant
<answer_given_by_contestant>
## Your Judgement (correct/incorrect)

• Rationale Evaluation:
You are the host of a quiz show where you ask
complex and tricky questions to the contes-
tants. Now, once you ask one such question,
the contestant gives an answer as well as the
rationale behind that answer. You need to de-
cide whether the rationale provided is correct
or not by comparing it with the true rationale.
Use your wise judgment to decide based on
the question given whether the rationale is
correct or not. YOU ARE THE JUDGE AND
YOUR WORD IS FINAL. Be fair and just in
your judgment. Provide a score between 1
to 5 based on the rationale provided by the
contestant. 1 being the least and 5 being the
highest score. ## Question
<question>
## True Rationale
<true_answer>
## Rationale Given by contestant
<rationale_given_by_contestant>
## Your Judgement (Score between 1 to 5 do
not provide any other score or text)

D Evaluation Results

Tables 8 and 7 capture the results with and without
CoT prompting on varying subsets of the dataset
and record the evaluation on all metrics BLEU,
ROUGE, BERTScore and LLM-metrics.

BLEU and ROUGE. From Tables 7 and 8,
with a BLEU of 65.7 (66.2), GPT-4-Turbo leads
among all models when prompted without (with)
CoT. In comparison, Meta-Llama-3-70B-Instruct
trails by ≈ 4 points with a BLEU of 61.2 (61.5)
when prompted without (with) CoT. Meanwhile,
in terms of ROUGE-L (Tables 7 and 8), we ob-

serve similar patterns. GPT-4-Turbo leads among
all models when prompted without (with) CoT
with a score of 89.8 (89.9), and Meta-Llama-3-
70B-Instruct trails behind with 83.3 (83.6) when
prompted without (with) CoT. On the other hand,
GPT-3.5-Turbo leads with 22.5 (22.7) BLEU and
29.1 (29.7) ROUGE-L when prompted without
(with) CoT. Meta-Llama-3-70B-Instruct trails by 1
points with a BLEU of 21.4 (21.3) and a ROUGE-L
of 28.7 (28.7) when prompted without (with) CoT.

Tradeoff between Closed Source v/s Open
Weight Models. Across all metrics and exper-
iments, GPT-4-Turbo consistently outperformed
other models. While its performance is closely
followed by both GPT-3.5-Turbo and the open-
weighted Meta-Llama-3-70B-Instruct, the tradeoff
between using open and closed sources is appar-
ent. Speaking broadly about the LLM-evaluated
metrics, if the only parameter to optimize is perfor-
mance (in lieu of cost or open access), then GPT-
4-Turbo should be the preferred model for world
knowledge-related tasks. Meanwhile, Meta-Llama-
3-70B-Instruct can efficiently serve as a substitute
for the closed-sourced API models. It registers a
slight drop in performance against GPT-4-Turbo
and clearly outperforms Gemini-1.5-Flash, while
performance is very comparable to GPT-3.5-Turbo.
However, the 70B model comes with resource con-
straints. In terms of the LLM-evaluated metric,
Mixtral-8x7B-Instruct-v0.1 is an excellent alterna-
tive to Meta-Llama-3-70B-Instruct in case of lim-
ited hardware, albeit with a significant performance
drop.

E Human Benchmarking

Figure 6 provides an overview of the Google form
employed for human benchmarking of QUENCH.
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(a) (b)

Figure 6: Screenshots showing the instructions (a) and one of the questions with multiple rationales (b) for the
human evaluation of QUENCH.

Model Category Answer Rationales w/ Predicted Answer Rationales w/ Gold Answer
BLEU Rouge BS GEval BLEU Rouge BS GEval BLEU Rouge BS GEval

Gemini 1.5 Flash

Indic 31.3 72.8 91.7 40 6.6 29.2 86.8 56.2 19.7 30.6 87.6 87.6
Non-Indic 36.4 81.9 93.6 71 18.4 28 86.9 76 17.5 27.9 87.2 93.8
All 35.5 80.2 93.3 66 13.7 28.2 86.9 72.6 17.8 28.4 87.3 92.6
±∆(N − I) +5.1 +9.1 +1.9 +31.0 +11.8 −1.2 +0.1 +19.8 −2.2 −2.7 −0.4 +6.2

Gemma-1.1-7B-it

Indic 13.2 45.7 89.2 14 19.4 28.5 86 38.6 22 30.3 87 85.2
Non-Indic 15.3 52.3 90.8 41 17.2 26 85.9 58.2 19.4 28.2 86.9 88.2
All 14.9 51.1 90.6 36 17.6 26.4 86 54.8 19.9 28.5 86.9 87.6
±∆(N − I) +2.1 +6.6 +1.6 +27.0 −2.2 −2.5 −0.1 +19.6 −2.6 −2.1 −0.1 +3.0

GPT-3.5-Turbo

Indic 54.8 76.2 95 53 23.2 29.3 87.4 67.2 27.8 34.7 88.7 94
Non-Indic 52.8 81 95.9 76 22.3 29.1 87.6 83 23.9 31.4 88.2 94
All 53.1 80.1 95.8 72 22.5 29.1 87.5 80.2 24.6 32 88.3 94
±∆(N − I) −2.0 +4.8 +0.9 +23.0 −0.9 −0.2 +0.2 +15.8 −3.9 −3.3 −0.5 0.0

GPT-4-Turbo

Indic 66.4 87.5 96.8 78 18.8 27.6 87.5 86.8 19 28.2 88.1 97
Non-Indic 65.5 90.4 97.4 88 17.1 25.6 87.3 91 16.8 27 87.6 97.6
All 65.7 89.8 97.3 86 17.4 26 87.3 90.4 17.1 27.2 87.7 97.6
±∆(N − I) −0.9 +2.9 +0.6 +10.0 −1.7 −2.0 −0.2 +4.2 −2.2 −1.2 −0.5 +0.6

Meta-Llama-3-8B-Instruct

Indic 53.4 71.6 94 29 18.7 26.8 86.3 48.8 20.2 27.5 87.2 84.8
Non-Indic 54.2 75.1 95.3 46 18 25.2 86.4 60.8 19.4 27.4 87 84.6
All 54.1 74.4 95.1 43 18.1 25.5 86.3 58.6 19.5 27.4 87.1 84.6
±∆(N − I) +0.8 +3.5 +1.3 +17.0 −0.7 −1.6 +0.1 +12.0 −0.8 −0.1 −0.2 −0.2

Meta-Llama-3-70B-Instruct

Indic 59.1 79.4 95.4 58 21.7 28.5 87 70.8 22.5 32.1 88.1 92.2
Non-Indic 61.7 84.2 96.7 73 21.3 28.7 87.3 82 21 29.2 87.6 94.2
All 61.2 83.3 96.5 70 21.4 28.7 87.3 80 21.2 29.7 87.7 93.8
±∆(N − I) +2.6 +4.8 +1.3 +15.0 −0.4 +0.2 +0.3 +11.2 −1.5 −2.9 −0.5 +2.0

Mixtral-8x7B-Instruct-v0.1

Indic 4 21.5 86.1 43 16.8 26.3 87 61.4 16 25.6 87.2 93.4
Non-Indic 4.9 29.8 88 68 16.1 25.7 87 79.4 15.7 25.9 87.3 95.6
All 4.7 28.5 87.7 64 16.3 25.8 87 76.2 15.7 25.9 87.3 95.2
±∆(N − I) +0.9 +8.3 +1.9 +25.0 −0.7 −0.6 0.0 +18.0 −0.3 +0.3 +0.1 +2.2

Table 7: This table shows our complete evaluation results without using the Chain-of-Thought prompting technique.
Here, ∆(N − I) is the difference in performance between the Non-Indic and Indic subset. BS: BERTScore; GEval:
Jury Evaluation.
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Model Category Answer Rationales w/ Predicted Answer Rationales w/ Gold Answer
BLEU Rouge BS GEval BLEU Rouge BS GEval BLEU Rouge BS GEval

Gemini 1.5 Flash

Indic 1.3 72.6 91.3 38 4.7 28.2 86.7 56.4 18.9 29.2 87.4 92.4
Non-Indic 34.8 81.7 93.7 70 18.5 28.3 87.1 75.4 17.7 27.9 87.2 93.6
All 6.9 80.1 93.3 64 12.1 28.3 87.1 72.2 17.9 28.1 87.2 93.4
±∆(N − I) +33.5 +9.1 +2.4 +32.0 +13.8 +0.1 +0.4 +19.0 −1.2 −1.3 −0.2 +1.2

Gemma-1.1-7B-it

Indic 8.4 31.9 87.5 20 20.2 30.5 86.2 43.6 19.8 29.3 86.7 87
Non-Indic 10.1 39.9 89.3 43 17.2 26.5 86.1 59.6 18 27.4 86.6 88.4
All 9.8 38.6 89 39 17.8 27.2 86.1 56.8 18.3 27.7 86.6 88.2
±∆(N − I) +1.7 +8.0 +1.8 +23.0 −3.0 −4.0 −0.1 +16.0 −1.8 −1.9 −0.1 +1.4

GPT-3.5-Turbo

Indic 44.8 74 94.6 54 24.7 30.2 87.6 66.2 28 34.7 88.7 94.8
Non-Indic 53.7 82.2 96 77 22.3 29.6 87.6 82.6 23.1 31.4 88 95.6
All 52 80.7 95.8 73 22.7 29.7 87.6 79.8 23.9 32 88.2 95.4
±∆(N − I) +8.9 +8.2 +1.4 +23.0 −2.4 −0.6 0.0 +16.4 −4.9 −3.3 −0.7 +0.8

GPT-4-Turbo

Indic 67.1 87.3 97 77 18.5 27.2 87.5 82.8 18.9 29.6 88.2 97.6
Non-Indic 66.6 90.4 97.5 89 16.6 26 87.3 91 16.6 26.5 87.5 97.6
All 66.6 89.9 97.4 87 16.9 26.2 87.3 89.6 17 27 87.6 97.6
±∆(N − I) −0.5 +3.1 +0.5 +12.0 −1.9 −1.2 −0.2 +8.2 −2.3 −3.1 −0.7 0.0

Meta-Llama-3-8B-Instruct

Indic 48.6 67.4 93.3 25 19.7 27.7 86.5 46.6 20.7 29 87.2 77
Non-Indic 55.3 75.7 95.4 47 17.6 25.1 86.4 62.6 19.8 27.9 87.1 82.8
All 54.1 74.2 95 43 17.9 25.6 86.4 59.8 20 28.1 87.1 81.8
±∆(N − I) +6.7 +8.3 +2.1 +22.0 −2.1 −2.6 −0.1 +16.0 −0.9 −1.1 −0.1 +5.8

Meta-Llama-3-70B-Instruct

Indic 59.5 81 95.7 62 21.6 28.3 87 71.8 24.9 32.2 88.2 95.6
Non-Indic 62 84.1 96.7 74 21.2 28.8 87.3 82.4 21.5 30 87.8 94.2
All 61.5 83.6 96.5 72 21.3 28.7 87.2 80.6 22.1 30.4 87.9 94.4
±∆(N − I) +2.5 +3.1 +1.0 +12.0 −0.4 +0.5 +0.3 +10.6 −3.4 −2.2 −0.4 −1.4

Mixtral-8x7B-Instruct-v0.1

Indic 3.8 21.4 86 42 16.8 27.1 86.9 59.2 16.8 26.2 87.6 94
Non-Indic 4.9 32.4 88.4 71 16.1 25.8 87.1 78.4 15.7 26.1 87.4 95
All 4.7 30.5 88 66 16 26.1 87 75 15.7 26.2 87.4 94.8
±∆(N − I) +1.1 +11.0 +2.4 +29.0 −0.7 −1.3 +0.2 +19.2 −1.1 −0.1 −0.2 +1.0

Table 8: This table shows our complete evaluation results using the Chain-of-Thought prompting technique. Here,
∆(N − I) is the difference in performance between the Non-Indic and Indic subset. BS: BERTScore; GEval: Jury
Evaluation.
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