
Proceedings of the 31st International Conference on Computational Linguistics, pages 4442–4456
January 19–24, 2025. ©2025 Association for Computational Linguistics

4442

Large Language Models are Good Multi-lingual Learners :
When LLMs Meet Cross-lingual Prompts

Teng Wang1, Zhenqi He1, Wing-Yin Yu2*, Xiaojin Fu2, Xiongwei Han3

1Department of Mathematics, The University of Hong Kong, Hong Kong SAR, China
2Noah’s Ark Lab, Huawei, Hong Kong SAR, China

3Noah’s Ark Lab, Huawei, Shenzhen, China
Correspondence: {wt0318, zhenqi_he}@connect.hku.hk, {rocket.YuWingYin, fuxiaojin, hanxiongwei}@huawei.com,

Abstract

With the advent of Large Language Models
(LLMs), generating rule-based data for real-
world applications has become more accessi-
ble. Due to the inherent ambiguity of natural
language and the complexity of rule sets, espe-
cially in long contexts, LLMs often struggle to
follow all specified rules, frequently omitting
at least one. To enhance the reasoning and un-
derstanding of LLMs on long and complex con-
texts, we propose a novel prompting strategy
Multi-Lingual Prompt, namely MLPrompt,
which automatically translates the error-prone
rule that an LLM struggles to follow into an-
other language, thus drawing greater attention
to it. Experimental results on public datasets
across various tasks have shown MLPrompt can
outperform state-of-the-art prompting methods
such as Chain of Thought, Tree of Thought, and
Self-Consistency. Additionally, we introduce
a framework integrating MLPrompt with an
auto-checking mechanism for structured data
generation, with a specific case study in text-to-
MIP instances. Further, we extend the proposed
framework for text-to-SQL to demonstrate its
generation ability towards structured data syn-
thesis.

1 Introduction

Mixed Integer Programming (MIP) is a significant
part of Operations Research (OR), which aims to
solve optimization problems where some decision
variables are constrained to be integers. It has
been widely applied in industrial fields including
logistics (Hulagu and Celikoglu, 2020), schedul-
ing (Keha et al., 2009), and supply chain man-
agement (Sawik, 2011). Nowadays, benefiting
from the development of Large Language Mod-
els (LLMs), automatically modeling complex and
practical OR problems in plain text description to
mathematical optimization formulas is no longer
an impossible mission (Xiao et al., 2024; Wei et al.,
2022; Yao et al., 2023a). CoE (Xiao et al., 2024)

Figure 1: Semantic illustrations of the potential of
LLMs in generating data following real distributions. (a)
Distribution of Constraint Coefficients in Real-World
Factory Location Problems (Cornuejols et al., 1977).
(b) Distribution of Constraint Coefficients generated by
random simulation. (c) Distribution of Constraint Coef-
ficients generated by GPT-4 (Achiam et al., 2023) with
different hyper-parameters. For each case: (demand
points, candidate locations) = (4, 4), (5, 4).

proposes a multi-agent system leveraging LLMs to
model and program complex operations research
problems and constructs a new dataset named Com-
plexOR involving intricate constraints, domain-
specific terminology, and multi-step reasoning for
various domains e. g.supply chain, scheduling, and
logistics. Although the ComplexOR dataset pro-
vides foundational model metadata including ‘set’,
‘parameter’, ‘hyper-parameter’, ‘variable’, ‘objec-
tive function’, and ‘constraint’, concrete values
of ‘set’ and ‘parameter’ are missing to generate
MIP instances, causing limited applicability in de-
veloping autonomous MIP solvers for real-world
optimization tasks.

With the success of data synthesis in various do-
mains (Yang et al., 2024b; Zhang et al., 2023b,a;
Li et al., 2023; He et al., 2023; Zhang et al., 2024),
LLMs have shown great capabilities in synthesiz-



4443

Figure 2: Illustration of the MIP instance generation
process using key modeling components, including sets,
parameters, variables, constraints, and objective func-
tions. Only when compliant with the parser rules can
the parser generate the modeling code, and the modeling
tools produce instances.

ing realistic data in multiple modalities while the
potential of LLMs in generating MIP instances
data has not been fully explored. By compar-
ing the synthetic distributions generated by GPT-
4 (Achiam et al., 2023) with the real distribution
of Constraint Coefficients of MIP instances and
randomly generated distributions for Factory Lo-
cation Problem (Cornuejols et al., 1977), shown in
Fig. 1, LLMs have demonstrated its superiority in
MIP instances generating compared with random
simulation.

Fig. 2 demonstrates the autonomous MIP in-
stance generation pipeline, incorporating model-
ing information such as sets, parameters, variables,
constraints, and objective functions across mul-
tiple solvers. Commercial MIP solvers such as
Gurobi (Achterberg, 2019), OptVerse (Li et al.,
2024), and CPLEX (Bliek1ú et al., 2014) usually
have its unique data representation with different
parser rules for MIP instances, requiring various
intricate rules in natural language to condition the
generation of data that can be imported by the
solvers for successful modeling. While direct hand-
crafted rules may lead to long and ambiguous con-
texts, LLMs have a high risk of neglecting certain
rules to generate unsatisfactory instances given the
complicated contexts.

To facilitate the autonomous generation of MIP
instances within industrial pipelines, we propose
a novel Multi-Lingual Prompt algorithm, namely
MLPrompt, specifically designed for structural
data synthesis and adaptability for various solvers
with different formats. Additionally, we propose a

Figure 3: The dominant language refers to the major-
ity language in the pretraining dataset, while "others"
refer to all remaining languages. This figure demon-
strates the language imbalance phenomenon in the pre-
training data of GPT-3.5 (Brown et al., 2020), Llama-
3 (Dubey et al., 2024), Deepseek-V2 (Liu et al., 2024),
Bloom (Le Scao et al., 2023), Nemotron-4 (Adler et al.,
2024), OPT (Zhang et al., 2022), and Falcon (Al-
mazrouei et al., 2023).

framework incorporating MLPrompt with an auto-
checking mechanism to enable iterative prompt up-
dates to ensure compliance with input constraints.

The design of MLPrompt is motivated by the
following observations. The trilingual parallel lan-
guage processing experiments (Pathak et al., 2024)
have shown that more dominant languages receive
greater cognitive focus, which facilitates faster re-
sponse times and reduces the mental load when
processing in non-dominant languages for poly-
glots. These findings are derived from mouse-
tracking experiments (Pathak et al., 2024) that
observed participants’ language processing while
listening to words in different languages and se-
lecting corresponding images. Similarly, LLMs,
such as ChatGPT (Achiam et al., 2023), function
as polyglots, supporting over 80 languages. The
scale of pretraining data varies across languages,
as depicted in Fig. 3, where dominant languages
frequently appear in the pretraining data, while
non-dominant languages are comparatively under-
represented (Achiam et al., 2023). Hence, deriv-
ing from phenomena in human polyglots where
the existence of non-dominant languages helps the
process of dominant languages, MLPrompt is pro-
posed to leverage the non-dominant languages of
LLMs to strengthen the understanding on dominant
languages.

Existing LLM-based reasoning approaches, such
as Chain-of-Thought (CoT) (Wei et al., 2022),
Tree-of-Thoughts (ToT) (Yao et al., 2023a), Self-



4444

Consistency (SC) (Wang et al., 2023), and Re-
Act (Yao et al., 2023b), primarily focus on en-
hancing reasoning through iterative steps. These
approaches aim to improve the quality of gener-
ated outputs by verifying the correctness of inter-
mediate steps and selecting the best path forward.
However, when generating structured outputs like
JSON that must adhere to given constraints, it poses
challenges to break the task into smaller and inde-
pendent parts due to the interconnections within
each part. In contrast, MLPrompt tackles struc-
tured data synthesis with introducing non-dominant
languages to raise LLMs’ attention in error-prone
constraints reduce inference time without requiring
multiple inference steps, all while preserving the
interconnected relevance of the constraints.

In this paper, we propose a general MIP in-
stances synthesis pipeline with a novel prompt-
ing method. Our contributions are three-fold: (1)
We introduce MLPrompt, a simple yet effective
multiple-lingual prompting strategy, for enhancing
LLM reasoning, inspired by the capability of cross-
lingual understanding in polyglots. (2) We make
the first attempt at a LLM for MIP instance gener-
ation which serves as a bridge to connect existing
research-based datasets with industrial needs, and
it is easy to be extended into a general pipeline
for structured data synthesis. (3) Extensive ex-
periments on the ComplexOR dataset demonstrate
the superiority of our prompt strategy compared
to existing prompting strategies for MIP instance
generation. Moreover, additional demonstration on
the text2SQL(Yu et al., 2018; Cao et al., 2024) task
highlights the broader applicability of our frame-
work in other structured data generation tasks.

2 Related Work

2.1 MIP Instance Generation

MIP instance generation plays a crucial role
in the development of commercial MILP
solvers (Rimmi Anand and Kumar, 2017). Tradi-
tional mathematical-formulation-based methods
for MIP instance generation include TSP (Wiel
and Sahinidis, 1995), structure-based instance
generation (Bixby et al.; Applegate et al., 2006),
mixed-integer knapsack (Atamtürk, 2003), and set
covering (Balas and Ho, 1980; Anureet Saxena
and Lejeune, 2010). G2MILP (Geng et al.,
2023) introduces the first learning-based MILP
instance generation framework, representing
MILP problems as bipartite graphs and using a

masked variational autoencoder (VAE) (Kingma
and Welling, 2019) to iteratively generate new
instances. ACM-MILP (Guo et al., 2024) presents
an adaptive and structure-preserving approach
by using a community detection algorithm to
group strongly related constraints for collective
modification. MILPGen (Yang et al., 2024c)
simplifies bipartite graph representations of MILP
instances into tree-like structures and uses graph
convolutional networks (GCNs) to calculate
node embeddings, allowing for optimal node pair
merging. This enables the creation of larger, more
complex instances while maintaining the original
structural characteristics. Building upon these
approaches, our method generates general MILP
instances for a variety of applications, such as
scheduling, logistics, and product management,
through the use of input text descriptions. Specifi-
cally, we leverage the modeling information from
the ComplexOR dataset to produce MIP instances,
aligning with the broader goal of addressing
real-world industrial needs.

2.2 Prompt Engineering for LLMs

Prompts are gradient-free strategy to strengthen
LLMs’ reasoning for complex tasks. The Chain-of-
Thought (CoT) (Wei et al., 2022) decouples com-
plex reasoning tasks into intermediate reasoning
steps. Auto-CoT (Zhang et al., 2023c) automate
CoT by by encouraging LLMs to think step by step
to reduce manual operations in prompting. Self-
Consistency (SC) (Wang et al., 2023) introduces a
novel decoding strategy to enhance the reasoning
capabilities of LLMs when using CoT prompting.
Instead of relying on a single reasoning path de-
rived from greedy decoding, it samples multiple
diverse reasoning paths and determines the final an-
swer by marginalizing over these paths to select the
most consistent one. Tree-of-thought (ToT) (Yao
et al., 2023a) and Graph-of-thought (GoT) (Besta
et al., 2024) enhance the reasoning capabilities of
LLMs through structured prompting schemes that
go beyond traditional linear approaches like CoT.

2.3 Multilingual LLMs

With the success of English-center LLMs across
various NLP tasks such as Question Answer-
ing (Kočiský et al., 2018) and Summarization (Her-
mann et al., 2015), increasing attention has been
drawn to multilingual LLMs due to globalization.
A multilingual LLM possesses the ability to pro-
cess and produce content in multiple languages



4445

Figure 4: The workflow of the proposed framework for
structured data generation. The process includes prompt
construction with predefined rules, data generation by
the LLM, evaluation of compliance with the rules, and
iterative refinement of the prompt by translating rules
into other languages if necessary.

simultaneously. Existing approaches for Multi-
lingual LLMs are mainly split into two ways -
(1) Parameter-tuning the LLMs with multilingual
data (Du et al., 2022; Mendonca et al., 2023) (2)
Parameter-frozen with prompting (Hoang et al.,
2024). In this paper, we focus on the analysis of
increasing the understanding and reasoning capabil-
ities of LLMs trained with multilingual data such
as GPT (Achiam et al., 2023) with proposed ML-
Prompt.

3 Methodology

3.1 Problem Statement
An Mixed-Linear-Integer-Programming (MLIP)
problem can be formulated as follows:

min
x

cTx

s.t. Ax ≤ b,

xi ∈ Zn for ∀i ∈ I,

(1)

where c ∈ Rn is the vector of objective coeffi-
cients, A ∈ Rm×n is the matrix of constraint coef-
ficients, b ∈ Rm is the vector of constraint bounds,
and x ∈ Rn represents the decision variable. The
index set I indicates the decision variables xi con-
strained to be integers.

Here, A, b, and c are parameters to be generated,
and their dimensions n,m will be defined in the
given modeling problem. To simplify the genera-
tion and avoid unexpected long outputs, we formu-
late the MLIP instances into JSON data to record
the data types, along with the lower and upper

Figure 5: A demo of how MLPrompt builds prompts.

bounds for sets, parameters, and hyper-parameters
as shown in Fig. 4. Then a random process gener-
ates values within the generated bounds to be fed
into the solver’s parser to construct the MLIP in-
stance. By that, we successfully convert the MLIP
instance generation problem into rule-based struc-
tured data generation, and the core is to employ the
LLM to produce the corresponding JSON.

3.2 MLPrompt

Generally, user-specific parsers are used in indus-
tries and academic teams for mathematical model-
ing and MIP instance generation (Xing et al., 2024;
Wang et al., 2024b), leading to complex and in-
terdependent rules to condition the generation of
desired structured data. To address the complex
constraints in natural language, we propose ML-
Prompt to leverage the multilingual capabilities
of LLMs to draw LLMs attention to error-prone
rules by translating any rule that is not followed
into a non-dominant language of LLMs and hence
to improve the quality of the generated data.

MLPrompt Inspired by the phenomenon in
human polyglots where the existence of non-
dominant languages helps the process of dominant
languages (Pathak et al., 2024), we propose the
MLPrompt to translate the error-prone rule into a
non-dominant language of LLM to strengthen the
understanding and reasoning of LLM in given com-
plex contexts. A demonstration of this approach is
presented in Fig. 5.

Here, we define the dominant language as the
most frequently occurring language within the pre-
training dataset, while all other languages, except
the dominant one, are referred to as "others.". Prior
work on Falcon (Almazrouei et al., 2023) high-
lights the challenge that arises when incorporating
a substantial amount of multilingual data (e.g., ex-
ceeding 10%) in language models—leading to a de-
cline in performance on tasks that are more aligned
with the dominant language. Consequently, many
state-of-the-art LLMs prioritize training on large
volumes of dominant language data, further exac-
erbating the imbalance across languages. Fig. 3
demonstrates that while LLMs are designed with



4446

multilingual capabilities in mind, there is a preva-
lent tendency to disproportionately prioritize domi-
nant language exposure, primarily to optimize per-
formance on tasks aligned with the dominant lan-
guage.

Auto-MLPrompt Strategy As introduced in
Sec. 3.1, we formulate the MIP instance gener-
ation as a conditioned structured data synthesis
constrained by natural language rules. It is rela-
tively straightforward to validate whether JSON
data adheres to the given constraints and to identify
the specific rule or rules that have been violated.
With such property in the rule-based JSON gener-
ation, we design an autonomous MIP generation
pipeline with the proposed MLPrompt strategy to
automatically detect the violated rule and translate
it into a non-dominant language. The generation
flow can be summarized as follows: Initially, we
incorporate the predefined rules and input mod-
eling information directly to generate the initial
prompts. Then, the LLM generates structured data,
like JSON, based on the initial prompt, and an eval-
uation function assesses whether the generated data
complies with the given rules. If the error or mis-
generation is detected, the corresponding rule will
be translated into a non-dominant language to up-
date the prompt, and the data generation process
will be repeated.

4 Experiments

4.1 Dataset

ComplexOR (Xiao et al., 2024) contains 60 com-
plex operations research problems with natural lan-
guage description and corresponding mathemati-
cal formula. For each problem, it contains com-
prehensive information (an example is shown in
Appendix A.1) for constructing models, includ-
ing problem backgrounds, sets, parameters, hyper-
parameters, variables, objective functions, and con-
straint functions. To generate the data following
given conditions, we convert this extensive context
into a set of rules for the LLMs to follow, requiring
the output JSON to include the data type, lower
bound, and upper bound for each set, parameter,
and hyper-parameter. Subsequently, a random pro-
cess is simulated to generate values for these sets
and parameters. The solver’s parser then reads the
model-building information, loads the generated
random data, and constructs the MIP instance ac-
cordingly.

4.2 Experimental Settings

As described in Section 4.1, we use the Com-
plexOR (Xiao et al., 2024) dataset (an example
of binpacking problem is shown in Appendix A.1)
for our experiments and utilize an LLM to generate
a JSON file constrained by input rules. The rules
are outlined in Appendix A.2, and we evaluate the
model’s performance based on rules 4, 7, and 8. A
detailed analysis of the model’s compliance with
these rules is provided in Appendix A.4. We also
implement an evaluation function to check whether
the generated JSON complies with each rule, com-
pute the accuracy for each rule, and calculate the
final score by averaging the accuracies of the three
rules.

We evaluate our proposed prompting strat-
egy, MLPrompt, on various LLMs of different
sizes, categorizing them into three groups based
on the number of parameters. (1) Small-scale
LLMs: LLMs with fewer than 10 billion pa-
rameters are classified as small. We use open-
source models such as Mistral-7B (Jiang et al.,
2023), Llama-3-8B (Dubey et al., 2024), Gemma-
2-9B (Team et al., 2024), Qwen2-7B (Yang
et al., 2024a), Llama-3.1-8B (Dubey et al., 2024),
Qwen1.5-7B (Bai et al., 2023) and Openchat-
3.5-7B (Wang et al., 2024a). (2) Medium-scale
LLMs: LLMs with parameter sizes between 50
billion and 200 billion are considered medium-
sized. These include GPT-3.5 (Brown et al., 2020),
Mixtral-8×7B (Jiang et al., 2024), Llama-3.1-
70B (Dubey et al., 2024), Deepseek-67B (Liu et al.,
2024), Llama-3-70B (Dubey et al., 2024), Qwen2-
72B (Yang et al., 2024a), WizardLM-8×22B (Xu
et al., 2023) and Mixtral-8×22B (Jiang et al., 2024).
(3) Large-scale LLMs: We define LLMs with
more than 200 billion parameters as large mod-
els. For this category, we focus on the GPT-4 series
and conduct experiments using GPT-4o, GPT-4o
mini, and GPT-4-Turbo (Achiam et al., 2023).

For each model scale, we compare MLPrompt
with CoT (Wei et al., 2022), ToT (Yao et al., 2023a)
and SC (Wang et al., 2023)

4.3 Small-scale LLMs

In our experiments, the input contexts are long and
comprehensive, requiring LLMs to have a strong
capability of understanding and reasoning of long
contexts, while small models often fail to compre-
hend our intentions and fail to generate the cor-
rect JSON format by input constraints. Hence, for



4447

Methods Mistral-7B Llama-3-8B Llama-3.1-8B Gemma-2-9B Qwen1.5-7B Qwen2-7B Openchat-3.5-7B
Zero-shot 0.211 0.268 0.016 0.302 0.017 0.100 0.250
Few-shots 0.178 0.062 0.032 0.326 0.017 0.033 0.100
CoT(Wei et al., 2022) 0.350 0.300 0.167 0.717 0.000 0.133 0.233
ToT(Yao et al., 2023a) 0.300 0.033 0.350 0.033 0.000 0.233 0.433
SC(Wang et al., 2023) 0.267 0.067 0.333 0.050 0.000 0.250 0.100

Table 1: The table presents the success rate of small-scale LLMs generating correctly formatted JSON under various
prompting methods, without considering rule compliance.

experiments on the small-scale model, we only
consider the success rate of generating the correct
JSON format by LLMs, without assessing rule com-
pliance.

Natural language, unlike formal logic, lacks
clear evaluative properties, making it difficult to
assess the accuracy of generated outputs. This lim-
itation poses a challenge for methods like CoT,
ToT, and SC, which struggle to handle this am-
biguity effectively. Additionally, the intercon-
nected nature of rules in structured outputs, such as
JSON, makes it difficult to verify each step in isola-
tion—correctness in one part does not necessarily
guarantee overall correctness when the parts are
combined. To effectively utilize SOTA prompting
methods, in the following experiments, CoT, ToT,
and SC are applied without evaluating intermedi-
ate results. Detailed explanations are provided in
Appendix A.5.

The performance, as shown in Table 1, indicates
that these small LLMs struggle to generate the de-
sired JSON format and improve the quality of the
generated data under prompting methods such as
CoT, ToT, and SC. Due to their limitations in han-
dling complex tasks, we will not use these small
LLMs in further experiments.

4.4 Medium-scale LLMs

Medium LLMs have the capability to comprehend
our requirements and generate correctly formatted
JSON. We evaluate these medium LLMs to deter-
mine whether the generated data adhere to the rules
we have defined. The final results, as shown in
Table 2, demonstrate that MLPrompt effectively
improves the quality of generating complex data by
translating a single rule from one language to an-
other. This approach is more efficient compared to
methods like ToT and SC, which involve multiple
steps to obtain intermediate results, then combine
and infer from these results to reach the final out-
put.

The poor performance of CoT, ToT, and SC, as
shown in Table 2, can be attributed to our inabil-

ity to evaluate the intermediate results required by
these methods in generating complex data task. As
discussed in Section 4.3, these medium LLMs can
be considered as weak learners, and their inter-
mediate outputs often contain errors. As a result,
combining multiple weak learners not only fails to
improve the quality of the final results but may even
degrade them. In contrast, similar to bagging, only
when combining the results of strong learners can
performance improvements be expected (Bhavan
et al., 2019).

Furthermore, as shown in Table 2, adding the
missing rule in another language alongside the ex-
isting one not only fails to outperform the replace-
ment method but, in some cases, performs worse
than the baseline. This approach also appears in-
fluenced by the re-adding prompt method, which
undermines the purpose of the ablation experiment.
Therefore, in the subsequent experiments, we will
focus solely on the MLPrompt strategy using the
replacement approach.

4.5 Large-scale Models

In this section, we evaluate the performance of
large-scale models, specifically from the GPT-4
series, across various prompting strategies. GPT-
4o served as the base model, and the results, as
shown in Table 3, demonstrate several key findings.
The baseline performance in a zero-shot setting is
reasonable, and improvements are achieved using
CoT, ToT, and SC prompting methods, which show-
case their ability to refine model performance by
structuring reasoning steps.

However, the most significant gains are observed
with the MLPrompt strategy, which replaces key
rules with alternative languages such as Mandarin,
Thai, and Korean. Across all model variations,
MLPrompt consistently yielded the highest perfor-
mance, with Mandarin replacement proving par-
ticularly effective. This strategy outperformed tra-
ditional multi-step prompting methods like CoT,
ToT, and SC, not only improving accuracy but also
enhancing the efficiency of the models by reducing



4448

Methods GPT-3.5 WizardLM-8×22B Mixtral-8×7B Mixtral-8×22B Llama-3.1-70B Llama-3-70B Deepseek-67B Qwen2-72B
Baseline 0.436 0.250 0.133 0.239 0.378 0.461 0.083 0.383
CoT(Wei et al., 2022) 0.156 0.389 0.128 0.261 0.428 0.150 0.128 0.583
ToT(Yao et al., 2023a) 0.294 0.339 0.011 0.128 0.167 0.083 0.061 0.606
SC(Wang et al., 2023) 0.131 0.217 0.011 0.078 0.167 0.117 0.000 0.611
Repeated Missed Rule 0.133 0.244 0.067 0.228 0.328 0.183 0.056 0.528
MLPrompt + Mandarin 0.378 0.283 ↑ 3.3% 0.039 0.239 0.472 ↑ 9.4% 0.194 0.094 ↑ 1.1% 0.633 ↑ 25.0%
MLPrompt + Thai 0.383 0.272 ↑ 2.2% 0.011 0.306 ↑ 6.7% 0.500 ↑ 12.2% 0.372 0.044 0.500 ↑ 11.7%
MLPrompt + Korean 0.372 0.350 ↑ 10.0% 0.044 0.256 ↑ 1.7% 0.483 ↑ 10.5% 0.233 0.050 0.572 ↑ 18.9%
MLPrompt ↔ Mandarin 0.414 0.383 ↑ 13.3% 0.211 ↑ 7.8% 0.289 ↑ 5.0% 0.411 ↑ 3.3% 0.483 ↑ 2.2% 0.117 ↑ 3.4% 0.422 ↑ 3.9%
MLPrompt ↔ Thai 0.454 ↑ 1.8% 0.294 ↑ 4.4% 0.150 ↑ 1.7% 0.294 ↑ 5.5% 0.394 ↑ 1.6% 0.456 0.128 ↑ 4.5% 0.428 ↑ 4.5%
MLPrompt ↔ Korean 0.591 ↑ 15.5% 0.406 ↑ 15.6% 0.089 0.267 ↑ 2.8% 0.444 ↑ 6.6% 0.533 ↑ 7.2% 0.106 ↑ 2.3% 0.339

Table 2: The table presents the accuracy of each medium-scale model across various settings. MLPrompt consistently
enhances data quality. The "+" symbol denotes the addition of a new language rule to complement an unmet rule,
while "↔" signifies the replacement of the original rule with an existing one.

Methods GPT-4o GPT-4o mini GPT-4-Turbo
Baseline 0.472 0.625 0.753
CoT(Wei et al., 2022) 0.492 - -
ToT(Yao et al., 2023a) 0.530 - -
SC(Wang et al., 2023) 0.619 - -
Repeated Missed Rule 0.536 - -
MLPrompt ↔ Mandarin 0.844 ↑37.2% 0.888 ↑26.3% 0.874 ↑12.1%
MLPrompt ↔ Thai 0.813 ↑34.1% 0.816 ↑19.1% 0.777 ↑2.4%
MLPrompt ↔ Korea 0.796 ↑32.4% 0.613 0.892 ↑13.9%

Table 3: Performance evaluation of large-scale LLMs,
comparing GPT-4 series under different prompting
strategies, including CoT, ToT, SC, and Repeated-
missed-rule.

inference time and improving the overall quality
of the generated data. As such, MLPrompt demon-
strates its superiority in handling complex data gen-
eration tasks in large-scale models.

Figure 6: Heatmap of PCA-transformed final layer of
LLaMA-3-70B with different prompts. (a) With orig-
inal single-lingual Prompt. (b) Multi-lingual Prompts
with the rule 8 in maindarin (Ours). The X-axis repre-
sents input tokens, and the Y-axis shows the 50 PCA
components.

4.6 Attention Verification

To verify whether MLPrompt increases the atten-
tion of LLMs of error-prone rules, we visualize the
attention map of the final layer of the open-source
LLaMA-3-70B (Dubey et al., 2024) when inputting
the English prompt and our MLPrompt with rule
8 being translated into Mandarin. The attention
map is firstly downsampled from 8192 to 50 for
better representation using PCA. Fig. 6 shows the
downsampled attention map, and the corresponding
error-prone rule 8 positioned between 84 to 128 has
been zoomed in for clear representations. The first
few principal components of our proposed prompts
predominantly focus on the translated Rule 8 while
the original English prompts do not exhibit a sim-
ilar concentration on any specific rule. The atten-
tion map visualization from the final layer of the
LLM illustrates the efficacy of our proposed ML-
Prompt, which effectively directs the LLM’s at-
tention towards error-prone rules by incorporating
non-dominant languages.

4.7 Text-to-SQL

We further expand our MLPrompt in text-to-SQL
tasks to validate the generalization ability. Text-to-
SQL is more challenging than text-to-JSON due to
the difficulty in detecting rule violations in SQL,
which in turn complicates the identification of error-
prone rules. However, it is straightforward to man-
ually identify rule violations from the SQL results.
To demonstrate the effectiveness of our approach,
we present an example where MLPrompt outper-
forms other methods in text-to-SQL, and the rules
for LLMs and the process by which these rules are
derived are detailed in Appendix A.6.

The task is: "Find the first name and age of stu-
dents who have a pet," using the pets_1 database
from the Spider V1.0 dataset (Yu et al., 2018). We
generate the prompt for GPT-4 by combining the
SQL schema with predefined rules. Manual anal-



4449

Prompt combination Error Rate (%)
English 0.35

English w Repetitive Rule 4 0.50
Rule 4 in Mandarin (Ours) 0.10
Rule 4 in Japanese (Ours) 0.00
Rule 4 in Korean (Ours) 0.00

Table 4: Error rates for different prompt configurations
in the text-to-SQL task, based on 20 runs of the given
sample.

ysis reveals that GPT-4 frequently violates rule 4
in this task. To address it, we translate rule 4 into
Korean, Japanese, and Mandarin respectively us-
ing an online translation. We also present ablation
studies examining repetitive error-prone rules. The
performance, evaluated by the error rate for SQL
execution based on 20 runs of the provided exam-
ple, is shown in Tab. 4, which shows that GPT-4
would fail to follow long and comprehensive rules.
Even when the error-prone rules are repeated for
emphasis, GPT-4 still fails. A potential strategy to
mitigate this challenge is to split the rules within
the prompt. However, isolating them is not fea-
sible due to their interleaved nature, which could
compromise the integrity of the prompt structure.
Our proposed MLPrompt, utilizing various non-
dominant languages, consistently exhibits low error
rates, demonstrating the superiority of MLPrompt
in text-to-SQL tasks.

5 Conclusion

In this work, we tackle the challenge of generat-
ing structured data using LLMs in real-world ap-
plications, where complex rules and natural lan-
guage ambiguity often hinder the effectiveness of
traditional methods. To address this, we introduce
MLPrompt, a novel method that improves LLM
reasoning to generate structured data by translating
error-prone rules into another language, enhancing
attention from LLM, and overall data quality. In
comparison with state-of-the-art prompting strate-
gies like CoT, ToT, and SC, MLPrompt demon-
strates faster inference times and lower error rates.
Additionally, we utilize MLPrompt to bridge the
gap between LLM and autonomous industrial MIP
generation, conducting extensive experiments on
Text-to-MIP to prove MLPrompt’s effectiveness.
Finally, we explore the possibility of applying ML-
Prompt to structured data generation tasks, such as
Text-to-SQL.

6 Limitations

Difficulty in Identifying Rule Violations in Natu-
ral Language Prompts: While MLPrompt can en-
hance the quality of generated data after localizing
the rule LLM would fail to follow, the identification
of omitting or violated rules remains a significant
challenge. One limitation of our approach arises
from the abstract nature of natural language, which
often leads to rule inter-dependencies. Unlike pro-
gramming languages, which can be translated into
executable code to verify rule compliance, natural
language is an abstract representation that cannot
be executed directly. In structured data genera-
tion tasks like text-to-SQL (see Appendix A.6, we
define rules for LLMs to follow and validate the
generated SQL by comparing it to the expected
output. However, when discrepancies occur, pin-
pointing the specific rule violation is difficult, often
requiring manual analysis.

However, enforcing rules with mathematical con-
straints, such as checking the data values, is rela-
tively straightforward. The mechanism or model
that can pinpoint which rule is violated is crucial
for the effectiveness of MLPrompt.

Which non-dominant language should we use:
In our experiment, the dominant language for
LLMs is English, and we implement MLPrompt
by translating the error-prone rule in English to
another non-dominant language, such as German,
French, Mandarin, Thai, Japanese, and Korean.
The performance of German and French is notably
lower, while Mandarin, Thai, and Korean show bet-
ter results. Since our method relies on the GPT-4
series, and OpenAI has not disclosed the language
distribution in GPT-4’s training data, we reference
the language distribution from GPT-3 (Brown et al.,
2020). According to this, English, German, and
French are among the top three languages in the
training dataset, while Mandarin, Thai, and Korean
rank much lower, around the 20s.

We hypothesize that MLPrompt is most effective
when the distribution difference between dominant
and non-dominant languages in the training data
is neither too large nor too small. However, this
hypothesis remains unproven, and selecting the ap-
propriate language combination in the MLPrompt
generation remains a key challenge.



4450

References
Josh Achiam, Steven Adler, Sandhini Agarwal, Lama

Ahmad, Ilge Akkaya, Florencia Leoni Aleman,
Diogo Almeida, Janko Altenschmidt, Sam Altman,
Shyamal Anadkat, et al. 2023. Gpt-4 technical report.
arXiv preprint arXiv:2303.08774.

Tobias Achterberg. 2019. What’s new in gurobi
9.0. Webinar Talk url: https://www. gurobi.
com/wp-content/uploads/2019/12/Gurobi-90-
Overview-Webinar-Slides-1. pdf, 5(9):97–113.

Bo Adler, Niket Agarwal, Ashwath Aithal, Dong H Anh,
Pallab Bhattacharya, Annika Brundyn, Jared Casper,
Bryan Catanzaro, Sharon Clay, Jonathan Cohen, et al.
2024. Nemotron-4 340b technical report. arXiv
preprint arXiv:2406.11704.

Ebtesam Almazrouei, Hamza Alobeidli, Abdulaziz Al-
shamsi, Alessandro Cappelli, Ruxandra Cojocaru,
Mérouane Debbah, Étienne Goffinet, Daniel Hess-
low, Julien Launay, Quentin Malartic, et al. 2023.
The falcon series of open language models. arXiv
preprint arXiv:2311.16867.

Vineet Goyal Anureet Saxena and Miguel A. Lejeune.
2010. Mip reformulations of the probabilistic set
covering problem. Mathematical Programming.

David L Applegate, Robert E Bixby, Vašek Chvátal, and
William J Cook. 2006. The Traveling Salesman Prob-
lem: A Computational Study. Princeton University
Press.

Alper Atamtürk. 2003. On the facets of the
mixed–integer knapsack polyhedron. Mathematical
Programming.

Jinze Bai, Shuai Bai, Yunfei Chu, Zeyu Cui, Kai Dang,
Xiaodong Deng, Yang Fan, Wenbin Ge, Yu Han, Fei
Huang, Binyuan Hui, Luo Ji, Mei Li, Junyang Lin,
Runji Lin, Dayiheng Liu, Gao Liu, Chengqiang Lu,
Keming Lu, Jianxin Ma, Rui Men, Xingzhang Ren,
Xuancheng Ren, Chuanqi Tan, Sinan Tan, Jianhong
Tu, Peng Wang, Shijie Wang, Wei Wang, Sheng-
guang Wu, Benfeng Xu, Jin Xu, An Yang, Hao Yang,
Jian Yang, Shusheng Yang, Yang Yao, Bowen Yu,
Hongyi Yuan, Zheng Yuan, Jianwei Zhang, Xingx-
uan Zhang, Yichang Zhang, Zhenru Zhang, Chang
Zhou, Jingren Zhou, Xiaohuan Zhou, and Tianhang
Zhu. 2023. Qwen technical report. arXiv preprint
arXiv:2309.16609.

Egon Balas and Andrew Ho. 1980. Set covering algo-
rithms using cutting planes, heuristics, and subgradi-
ent optimization: A computational study. Combina-
torial Optimization.

Maciej Besta, Nils Blach, Ales Kubicek, Robert Ger-
stenberger, Michal Podstawski, Lukas Gianinazzi,
Joanna Gajda, Tomasz Lehmann, Hubert Niewiadom-
ski, Piotr Nyczyk, and Torsten Hoefler. 2024. Graph
of thoughts: Solving elaborate problems with large
language models. In AAAI.

Anjali Bhavan, Pankaj Chauhan, Rajiv Ratn Shah, et al.
2019. Bagged support vector machines for emotion
recognition from speech. Knowledge-Based Systems.

Robert E Bixby, Mark Fenelon, Zonghao Gu, Edward
Rothberg, and Roland Wunderling. Mip: Theory and
practice—closing the gap. In System Modelling and
Optimization, pages 19–49.

Christian Bliek1ú, Pierre Bonami, and Andrea Lodi.
2014. Solving mixed-integer quadratic programming
problems with ibm-cplex: a progress report. In Pro-
ceedings of the twenty-sixth RAMP symposium, pages
16–17.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss,
Gretchen Krueger, Tom Henighan, Rewon Child,
Aditya Ramesh, Daniel Ziegler, Jeffrey Wu, Clemens
Winter, Chris Hesse, Mark Chen, Eric Sigler, Ma-
teusz Litwin, Scott Gray, Benjamin Chess, Jack
Clark, Christopher Berner, Sam McCandlish, Alec
Radford, Ilya Sutskever, and Dario Amodei. 2020.
Language models are few-shot learners. In NeurIPS,
volume 33, pages 1877–1901. Curran Associates,
Inc.

Ruisheng Cao, Fangyu Lei, Haoyuan Wu, Jixuan Chen,
Yeqiao Fu, Hongcheng Gao, Xinzhuang Xiong, Han-
chong Zhang, Yuchen Mao, Wenjing Hu, et al. 2024.
Spider2-v: How far are multimodal agents from au-
tomating data science and engineering workflows?
arXiv preprint arXiv:2407.10956.

Gerard Cornuejols, Marshall L Fisher, and George L
Nemhauser. 1977. Exceptional paper—location of
bank accounts to optimize float: An analytic study
of exact and approximate algorithms. Management
science, 23(8):789–810.

Zhengxiao Du, Yujie Qian, Xiao Liu, Ming Ding,
Jiezhong Qiu, Zhilin Yang, and Jie Tang. 2022. Glm:
General language model pretraining with autoregres-
sive blank infilling. In Proceedings of the 60th An-
nual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 320–335.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey,
Abhishek Kadian, Ahmad Al-Dahle, Aiesha Letman,
Akhil Mathur, Alan Schelten, Amy Yang, Angela
Fan, et al. 2024. The llama 3 herd of models. arXiv
preprint arXiv:2407.21783.

Zijie Geng, Xijun Li, Jie Wang, Xiao Li, Yongdong
Zhang, and Feng Wu. 2023. A deep instance gener-
ative framework for milp solvers under limited data
availability. In NeurIPS.

Ziao Guo, Yang Li, Chang Liu, Wenli Ouyang, and
Junchi Yan. 2024. ACM-MILP: Adaptive constraint
modification via grouping and selection for hardness-
preserving MILP instance generation. In ICML.

https://proceedings.neurips.cc/paper_files/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://openreview.net/forum?id=qDAAMmGsGw
https://openreview.net/forum?id=qDAAMmGsGw
https://openreview.net/forum?id=qDAAMmGsGw


4451

Zhenqi He, Junjun He, Jin Ye, and Yiqing Shen. 2023.
Artifact restoration in histology images with diffu-
sion probabilistic models. In Medical Image Comput-
ing and Computer Assisted Intervention – MICCAI,
pages 518–527.

Karl Moritz Hermann, Tomás Kociský, Edward Grefen-
stette, Lasse Espeholt, Will Kay, Mustafa Suleyman,
and Phil Blunsom. 2015. Teaching machines to read
and comprehend. In NeurIPS.

Hieu Hoang, Huda Khayrallah, and Marcin Junczys-
Dowmunt. 2024. On-the-fly fusion of large language
models and machine translation. In Findings of the
Association for Computational Linguistics: NAACL
2024.

Selin Hulagu and Hilmi Berk Celikoglu. 2020. A mixed
integer linear programming formulation for green ve-
hicle routing problem: Case for shuttle services. In
Computer Aided Systems Theory–EUROCAST 2019:
17th International Conference, Las Palmas de Gran
Canaria, Spain, February 17–22, 2019, Revised Se-
lected Papers, Part II 17, pages 153–160. Springer.

Albert Q Jiang, Alexandre Sablayrolles, Arthur Men-
sch, Chris Bamford, Devendra Singh Chaplot, Diego
de las Casas, Florian Bressand, Gianna Lengyel, Guil-
laume Lample, Lucile Saulnier, et al. 2023. Mistral
7b. arXiv preprint arXiv:2310.06825.

Albert Q Jiang, Alexandre Sablayrolles, Antoine
Roux, Arthur Mensch, Blanche Savary, Chris Bam-
ford, Devendra Singh Chaplot, Diego de las Casas,
Emma Bou Hanna, Florian Bressand, et al. 2024.
Mixtral of experts. arXiv preprint arXiv:2401.04088.

Ahmet B. Keha, Ketan Khowala, and John W. Fowler.
2009. Mixed integer programming formulations for
single machine scheduling problems. Computers &
Industrial Engineering.

Diederik P. Kingma and Max Welling. 2019.

Tomáš Kočiský, Jonathan Schwarz, Phil Blunsom, Chris
Dyer, Karl Moritz Hermann, Gábor Melis, and Ed-
ward Grefenstette. 2018. The NarrativeQA Reading
Comprehension Challenge. Transactions of the Asso-
ciation for Computational Linguistics, 6:317–328.

Teven Le Scao, Angela Fan, Christopher Akiki, El-
lie Pavlick, Suzana Ilić, Daniel Hesslow, Roman
Castagné, Alexandra Sasha Luccioni, François Yvon,
Matthias Gallé, et al. 2023. Bloom: A 176b-
parameter open-access multilingual language model.

Xijun Li, Fangzhou Zhu, Hui-Ling Zhen, Weilin Luo,
Meng Lu, Yimin Huang, Zhenan Fan, Zirui Zhou,
Yufei Kuang, Zhihai Wang, et al. 2024. Machine
learning insides optverse ai solver: Design principles
and applications. arXiv preprint arXiv:2401.05960.

Zhuoyan Li, Hangxiao Zhu, Zhuoran Lu, and Ming Yin.
2023. Synthetic data generation with large language
models for text classification: Potential and limita-
tions. In EMNLP.

Aixin Liu, Bei Feng, Bin Wang, Bingxuan Wang,
Bo Liu, Chenggang Zhao, Chengqi Dengr, Chong
Ruan, Damai Dai, Daya Guo, et al. 2024.
Deepseek-v2: A strong, economical, and efficient
mixture-of-experts language model. arXiv preprint
arXiv:2405.04434.

John Mendonca, Alon Lavie, and Isabel Trancoso. 2023.
Towards multilingual automatic open-domain dia-
logue evaluation. In Proceedings of the 24th Annual
Meeting of the Special Interest Group on Discourse
and Dialogue.

Lekhnath Sharma Pathak, Mila Vulchanova, Poshak
Pathak, and Ramesh Kumar Mishra. 2024. Trilin-
gual parallel processing: Do the dominant languages
grab all the attention? Bilingualism: Language and
Cognition, page 1–18.

Divya Aggarwal Rimmi Anand and Vijay Kumar. 2017.
A comparative analysis of optimization solvers. Jour-
nal of Statistics and Management Systems.

Tadeusz Sawik. 2011. Scheduling in Supply Chains
Using Mixed Integer Programming.

Gemma Team, Morgane Riviere, Shreya Pathak,
Pier Giuseppe Sessa, Cassidy Hardin, Surya Bhupati-
raju, Léonard Hussenot, Thomas Mesnard, Bobak
Shahriari, Alexandre Ramé, et al. 2024. Gemma 2:
Improving open language models at a practical size.
arXiv preprint arXiv:2408.00118.

Guan Wang, Sijie Cheng, Xianyuan Zhan, Xiangang Li,
Sen Song, and Yang Liu. 2024a. Openchat: Advanc-
ing open-source language models with mixed-quality
data. In ICLR.

Teng Wang, Wing-Yin Yu, Ruifeng She, Wenhan Yang,
Taijie Chen, and Jianping Zhang. 2024b. Leverag-
ing large language models for solving rare mip chal-
lenges. arXiv preprint arXiv:2409.04464.

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc
Le, Ed Chi, Sharan Narang, Aakanksha Chowdhery,
and Denny Zhou. 2023. Self-consistency improves
chain of thought reasoning in language models. In
NeurIPS.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, Brian Ichter, Fei Xia, Ed H. Chi, Quoc V. Le,
and Denny Zhou. 2022. Chain-of-thought prompt-
ing elicits reasoning in large language models. In
NeurIPS.

Russ J Vander Wiel and Nikolaos V Sahinidis. 1995.
Heuristic bounds and test problem generation for the
time-dependent traveling salesman problem. Trans-
portation Science.

Ziyang Xiao, Dongxiang Zhang, Yangjun Wu, Lilin
Xu, Yuan Jessica Wang, Xiongwei Han, Xiaojin Fu,
Tao Zhong, Jia Zeng, Mingli Song, and Gang Chen.
2024. Chain-of-experts: When LLMs meet complex
operations research problems. In ICLR.

https://doi.org/10.1016/j.cie.2008.06.008
https://doi.org/10.1016/j.cie.2008.06.008
https://doi.org/10.1162/tacl_a_00023
https://doi.org/10.1162/tacl_a_00023
https://doi.org/10.1017/S1366728924000257
https://doi.org/10.1017/S1366728924000257
https://doi.org/10.1017/S1366728924000257
https://doi.org/10.1002/9781118029114.fmatter
https://doi.org/10.1002/9781118029114.fmatter
https://openreview.net/forum?id=HobyL1B9CZ
https://openreview.net/forum?id=HobyL1B9CZ


4452

Linzi Xing, Xinglu Wang, Yuxi Feng, Zhenan Fan, Jing
Xiong, Zhijiang Guo, Xiaojin Fu, Rindra Ramamon-
jison, Mahdi Mostajabdaveh, Xiongwei Han, et al.
2024. Towards human-aligned evaluation for linear
programming word problems. In LREC-COLING,
pages 16550–16556.

Can Xu, Qingfeng Sun, Kai Zheng, Xiubo Geng,
Pu Zhao, Jiazhan Feng, Chongyang Tao, and Daxin
Jiang. 2023. Wizardlm: Empowering large lan-
guage models to follow complex instructions. arXiv
preprint arXiv:2304.12244.

An Yang, Baosong Yang, Binyuan Hui, Bo Zheng,
Bowen Yu, Chang Zhou, Chengpeng Li, Chengyuan
Li, Dayiheng Liu, Fei Huang, Guanting Dong, Hao-
ran Wei, Huan Lin, Jialong Tang, Jialin Wang, Jian
Yang, Jianhong Tu, Jianwei Zhang, Jianxin Ma, Jin
Xu, Jingren Zhou, Jinze Bai, Jinzheng He, Junyang
Lin, Kai Dang, Keming Lu, Keqin Chen, Kexin Yang,
Mei Li, Mingfeng Xue, Na Ni, Pei Zhang, Peng
Wang, Ru Peng, Rui Men, Ruize Gao, Runji Lin,
Shijie Wang, Shuai Bai, Sinan Tan, Tianhang Zhu,
Tianhao Li, Tianyu Liu, Wenbin Ge, Xiaodong Deng,
Xiaohuan Zhou, Xingzhang Ren, Xinyu Zhang, Xipin
Wei, Xuancheng Ren, Yang Fan, Yang Yao, Yichang
Zhang, Yu Wan, Yunfei Chu, Yuqiong Liu, Zeyu
Cui, Zhenru Zhang, and Zhihao Fan. 2024a. Qwen2
technical report. arXiv preprint arXiv:2407.10671.

Jiaxi Yang, Binyuan Hui, Min Yang, Jian Yang, Junyang
Lin, and Chang Zhou. 2024b. Synthesizing text-to-
sql data from weak and strong llms. In ACL.

Tianxing Yang, Huigen Ye, and Hua Xu. 2024c. Learn-
ing to generate scalable milp instances. In Proceed-
ings of the Genetic and Evolutionary Computation
Conference Companion.

Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran,
Thomas L. Griffiths, Yuan Cao, and Karthik
Narasimhan. 2023a. Tree of thoughts: Deliberate
problem solving with large language models. In
NeurIPS.

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak
Shafran, Karthik Narasimhan, and Yuan Cao. 2023b.
ReAct: Synergizing reasoning and acting in language
models. In ICLR.

Tao Yu, Rui Zhang, Kai Yang, Michihiro Yasunaga,
Dongxu Wang, Zifan Li, James Ma, Irene Li, Qingn-
ing Yao, Shanelle Roman, et al. 2018. Spider: A
large-scale human-labeled dataset for complex and
cross-domain semantic parsing and text-to-sql task.
In ACL.

Jianping Zhang, Yizhan Huang, Weibin Wu, and
Michael R Lyu. 2023a. Transferable adversarial at-
tacks on vision transformers with token gradient reg-
ularization. In Proceedings of the IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition,
pages 16415–16424.

Jianping Zhang, Yizhan Huang, Zhuoer Xu, Weibin Wu,
and Michael R Lyu. 2024. Improving the adversar-
ial transferability of vision transformers with virtual
dense connection. In Proceedings of the AAAI Con-
ference on Artificial Intelligence, volume 38, pages
7133–7141.

Jianping Zhang, Yung-Chieh Huang, Weibin Wu, and
Michael R Lyu. 2023b. Towards semantics-and
domain-aware adversarial attacks. In Proceedings of
the Thirty-Second International Joint Conference on
Artificial Intelligence, pages 536–544.

Susan Zhang, Stephen Roller, Naman Goyal, Mikel
Artetxe, Moya Chen, Shuohui Chen, Christopher De-
wan, Mona Diab, Xian Li, Xi Victoria Lin, et al. 2022.
Opt: Open pre-trained transformer language models.
arXiv preprint arXiv:2205.01068.

Zhuosheng Zhang, Aston Zhang, Mu Li, and Alex
Smola. 2023c. Automatic chain of thought prompt-
ing in large language models. In ICLR.



4453

A Appendix

A.1 An Example for ComplexOR Dataset

Binpacking modeling problem in the ComplexOR
dataset is shown blew:

{
"id": 3,
"title": "Binpacking Problem",
"description": "The bin packing

problem involves assigning items
of known weights to bins with
uniform capacity. The objective is
to minimize the total number of

bins utilized while ensuring that
all items are allocated and each
bin’s total weight does not exceed
the bin capacity.",

"category": ["Binpacking Problem"],
"model": {
"set": [
{
"name": "I",
"description": "Set of items"

}
],
"parameter": [
{
"name": "s",
"description": "weight of item ‘

i‘",
"domain": "{i <in> I}"

},
{
"name": "c",
"description": "Capacity of a

bin"
}

],
"variable": [
{
"name": "y",
"description": "Binary variable,

1 if we use bin ‘j‘",
"domain": "{j <in> I}",
"type": "binary"

},
{
"name": "x",
"description": "Binary variable,

1 if we assign item ‘i‘ to
bin ‘j‘",

"domain": "{i <in> I, j <in> I}",

"type": "binary"
}

],
"objective": [
{
"name": "MinBins",
"description": "Minimize the

total number of used bins",
"sense": "min",
"function": "<sum>_{j <in> I} y_{

j}"
}

],
"constraint": [
{
"name": "CapConstraint",
"description": "The total weight

of assigned items to a bin
should not exceed the bin
capacity",

"domain": "{j <in> I}",
"function": "<sum>_{i <in> I} s_{

i} * x_{i,j} <= c * y_{j}"
},
{
"name": "AssignConstraint",
"description": "Every items

should be assigned to a bin",
"domain": "{i <in> I}",
"function": "<sum>_{j <in> I} x_{

i,j} = 1"
}

]
}

}

A.2 Rule for Text-to-MIP

The following rules are to be obeyed by the LLM,
combined with modeling information (shown in
Appendix A.1 from the ComplexOR dataset), to
generate the prompt.

You must follow the following rules:

1: If the set in the model.json file has
the ’range’ key, this set has a

hyper-parameter. For example, {range
: [1,T]}, where T is the hyper-
parameter. If the set in the model.



4454

json file doesn’t have the ’range’
key, the set doesn’t have a hyper-
parameter.

2: The number of set equals to the
number of hyper-parameter.

3: In the set key, you need to append
each set’s lower bound and upper
bound to the set value in order. The
value of bound is generated by you

after reading the model json file.
4: In the above case, if json_obj[’model

’][’set’] does not have the range
field, you need to add [null, null]
to the hyper-parameter. If json_obj
[’model’][’set’]} has the range
field, you need to add the predicted
lower and upper bounds to the hyper

-parameter.
5: The lower bound and upper bound of

the set must be numbers, not null!
The lb of set can start from non-one
number.

6: When you provide the lower and upper
bounds of the parameter, the value
includes the lower bound but does
not include the upper bound.

7: You should specify the data type of
each parameter in order. The lb and
ub of a parameter must either both
be integers or both be float. If you
think the type of this parameter is
int, then you should append ’

integer’. If you think the type of
this parameter is float, then you
should append ’float’.

8: You should ensure that the gap
between ub and lb of the parameter
should be less than or equal to 15.
ub-lb <= 15! At the same time,
diversify the upper and lower bound
of parameter.

9: You must follow the json data format
{’set’: [[lb1, ub1], [lb2,ub2]...],
’hyper-parameter’: [[lb1, ub1], [lb2
,ub2]...], ’parameter’: [[lb1, ub1
],[lb2, ub2]...], ’parameter_types
’:[integer, integer, float, ...]}.

Figure 7: The figure shows the translations of rules 4, 7,
and 8 into Mandarin, Korean, and Thai, illustrating the
language-specific versions of these rules.

Since our experiment primarily focuses on gen-
erating data according to rules 4, 7, and 8, we
also present the corresponding dictionary in Fig. 7,
which illustrates how these rules are translated into
Mandarin, Korean, and Thai.

A.3 Prompt Template for Text-to-MIP

The MLPrompt approach involves simply replac-
ing a specific rule with its equivalent in another
language. The dominant language in the prompt
is English, and during application, only the target
rule needs to be swapped with its counterpart in
the desired language. The prompt template is as
follows:

Prompt Template

You are required to return a feasible solution
distribution under the given constraints.
Please read the following mixed integer
programming (MIP) model and return a
JSON object containing the lower and upper
bounds for each set, hyper-parameter, and
parameter.
Since the model does not include any data,
your task is to provide the lower and up-
per bounds for every set, parameter, and
hyper-parameter to construct instances for
this model.
The required JSON format is as follows:
{’set’: [[lb1, ub1], [lb2,ub2]...], ’hyper-
parameter’: [[lb1, ub1], [lb2,ub2]...], ’pa-
rameter’: [[lb1, ub1],[lb2, ub2]...], ’parame-
ter_types’:[integer, integer, float, ...]}.
Rules is shown in Appendix A.2.



4455

Modeling Information from ComplexOR
Dataset. (An example is shown in Appendix
A.1)

A.4 Analysis rules for Text to MIP

Rule 4 requires the LLM to read through the de-
tailed modeling information, which consists of a
long text, analyze the modeling process, and de-
termine whether each set contains a corresponding
hyper-parameter after reading the rule. Rule 4 eval-
uates the LLM’s ability to comprehend the lengthy
text and reason the result based on both the given
question and the context.

Rule 7 requires consistency between the gen-
erated parameter values and their respective data
types. Since the LLM must first output all param-
eter values and then generate their corresponding
data types, it often forgets previous outputs, lead-
ing to struggles in maintaining coherence across
the generated values. Rule 7 assesses the LLM’s
ability to ensure coherence throughout the process.

Rule 8 requires the LLM to diversify its output
while adhering to specific mathematical constraints.
The LLM often fails by generating common or
repeated data values and not complying with the
necessary constraints. Rule 8 evaluates the LLM’s
ability to generate diverse numbers, perform calcu-
lations, and adhere to given constraints.

A.5 Details of CoT, ToT, and SC

Due to the inherent ambiguity in natural language,
evaluating intermediate steps during the reason-
ing process becomes problematic for methods like
CoT, ToT, and SC. These methods rely on breaking
down complex tasks into smaller steps and ver-
ifying them, which works well in structured en-
vironments like logic expressions. However, in
structured data generation tasks, it is challenging to
clearly define whether an intermediate result is ac-
curate, as language is often subject to interpretation.
Additionally, the interconnected nature of rules in
structured outputs, such as JSON, makes it diffi-
cult to verify each step in isolation—correctness
in one part does not necessarily guarantee overall
correctness when the parts are combined. In our
experiment, we made slight modifications to CoT,
ToT, and SC to adapt them to our specific task. The
details of these modifications are as follows:

CoT We implement CoT using zero-shot prompt-
ing by simply adding the phrase, "Let’s think it step

by step," to guide the LLM in reasoning through
the task.

ToT We implement ToT by having the LLM
generate each part of the desired JSON, similar to
the structure of a tree, one by one. The previous
output is combined into the prompt at each step
until the entire requirement is fulfilled.

SC We implement SC by generating the full
JSON multiple times, evaluating each result as ei-
ther correct or incorrect. These labeled outputs are
then combined into a new prompt, which is pro-
vided to the LLM to generate a more consistent and
accurate final output.

A.6 Text to SQL
To demonstrate the generalization and robustness
of MLPrompt, we apply our method to the Text-to-
SQL task using the Spider V1.0 dataset (Yu et al.,
2018). Given that each entity—such as companies,
individuals, and datasets—follows its own coding
style, we filter questions that GPT-4 answered in-
correctly by having it generate SQL queries directly
based on the SQL schema used in database con-
struction, without any specific rules. We manually
analyzed these incorrect cases and summarized a
set of rules for GPT-4 to follow. Given the large
size of the dataset, we used only 20% of it and
identified the types of questions GPT-4 struggles to
handle effectively. By combining these rules with
the SQL schema, we employed zero-shot learning
with GPT-4 to test whether it could generate the
correct queries. The rules are as follows:

Rules for Text-to-SQL

1. When handling queries involving
counting-related issues, avoid using "LEFT
JOIN" or "RIGHT JOIN" to generate non-
existent records. Instead, use "INNER
JOIN".
2. Pay attention to the order of values re-
quested in the question! Make sure the "SE-
LECT" clause provides the appropriate field
order. If the question does not ask for a
count, do not include it. If the requirement
is "xxx1 for each xxx2," the first field in
"SELECT" should contain the data (xxx1)
and the last field should return the category
(xxx2). If the target is a primary key and
the question asks how many xxx each pri-
mary key has, put the primary key last and
the count first. There’s no need to include



4456

non-key fields like names.
3. If the logic is complex, use subqueries
instead of joining tables. Avoid using "DIS-
TINCT" unless necessary. When consider-
ing relationships between tables based on
the query and the table’s information, deter-
mine whether it’s a "has-a" or "is-a" rela-
tionship. If the "SELECT" fields include a
"has-a" scenario, use "DISTINCT" to avoid
duplicates. If the query asks to list all xxx,
do not use "DISTINCT".
4. If the user wants to find the maxi-
mum/minimum/average value in a table,
consider using subqueries instead of group-
ing by different categories. If the query re-
quires finding the maximum/minimum/aver-
age value within categories, use aggregation
functions and "GROUP BY".
5. If the query requires listing all informa-
tion, use "SELECT *".


	Introduction
	Related Work
	MIP Instance Generation
	Prompt Engineering for LLMs
	Multilingual LLMs

	Methodology
	Problem Statement
	MLPrompt

	Experiments
	Dataset
	Experimental Settings
	Small-scale LLMs
	Medium-scale LLMs
	Large-scale Models
	Attention Verification
	Text-to-SQL

	Conclusion
	Limitations
	Appendix
	An Example for ComplexOR Dataset
	Rule for Text-to-MIP
	Prompt Template for Text-to-MIP
	Analysis rules for Text to MIP
	Details of CoT, ToT, and SC
	Text to SQL


