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Abstract

Recently, many studies focus on utilizing large
language models (LLMs) into educational dia-
logues. Especially, within liberal arts dialogues,
educators must balance Humanized communi-
cation, Teaching expertise, and Safety-ethics
(HTS), besides the subject knowledge itself.
However, due to collecting massive amounts of
HTS-compliant teaching dialogues from real
world as training corpus is expensive, the out-
puts of existing LLMs in teaching dialogues
fall short of human standards. To address this,
we design a Retrieval-augmented Multi-role
Multi-expert Collaboration (RAM2C) frame-
work to automatically generate such dialogues
data. Specifically, we first establish HTS-
guided knowledge bases, encompassing three
domain knowledge in teaching skills, psychol-
ogy, and safety ethics. Then, RAM2C orga-
nizes LLMs, which are retrieval-augmented
by the above different knowledge bases, into
multi-experts groups with distinct roles to gen-
erate the HTS-compliant educational dialogues
dataset. We then fine-tuned the LLMs us-
ing this dataset. Empirical evaluations in-
dicate that RAM2C-empowered LLMs excel
in Chinese reading teaching, offering more
personalized, and ethically safe teaching re-
sponse, demonstrating RAM2C’s practicality
and high quality. We release the experiments at
https://github.com/ram2c/ram2c.

1 Introduction

As generative artificial intelligence advances, ed-
ucational chatbots based on large language mod-
els (LLMs) are hoped to provide promising edu-
cational services in many scenarios of liberal arts,
like literature reading, writing and debating (Kuhail
et al., 2023; Dan et al., 2023). Specifically, com-
pared to subject-specific factual knowledge, the
rich and personalized linguistic forms, teaching
skills, along with ethical safety involved in content

*These authors contributed equally to this work.
fCorrespondence: Ipshi @mail.tsinghua.edu.cn

analysis (HTS in Fig.1 !), are equally important in
liberal educational dialogues (Wang et al., 2024;
Deng et al., 2023; Li et al., 2023). However, using
prompt engineering to enhance LLMSs’ educational
dialogue ability faces challenges like instruction
following, jailbreak security and a lack of high-
quality demonstrations (Yuan et al., 2023; Liu et al.,
2024; Deng et al., 2024; Zou et al., 2023). Addition-
ally, it’s difficult to collect enough HTS-compliant
teacher-student dialogue data from real teaching
scenarios to optimize LLMs(Dan et al., 2023). As
a result, current LLM responses do not meet HTS
requirements in real educational contexts.
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Figure 1: HTS: Multi-dimensional educational dialogue
quality challenges.

To address these challenges, we propose a
framework named Retrieval-Augmented Multi-
role Multi-expert Collaboration (RAM2C), capa-
ble of rapidly and cost-effectively generating HTS-
compliant liberal arts educational dialogues by un-
leashing the individual intrinsic capability (role-
playing by in-context learning), extrinsic capability
(retrieval augmented generation, RAG), and collec-
tive capability (multi-experts generation synthesiz-
ing) of LLMs. The specific work flow is shown in
Fig.2a, 2b. The generated high-valued dialogues
are used to execute the HTS preference alignment
of LLMs (Fig. 2c), which aims to promote the

"Detailed description in Appendix A.
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Figure 2: The design of Multi-role Multi-expert Collaboration (M2C).
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The raw response from basic LLM are revised sequentially by T-Group (step 1), P-Group (step 2) and E-Group
(step 3). All LLM experts in different roles are characterized by different personal profiles and retrieval augmented

by different HT'S knowledge bases.

b) In a single-role collaboration, the raw response, the current discussion

topic and the student context are concatenated as the context of the refinement. Experts initially conduct individual
analyses, thereafter synthesize their insights into one modification. The final response from the third group will be

relayed to students.

¢) Educational preference data is collected from the output of M2C procedure. The LLM use

these preference data to improve its intrinsic capability using direct preference optimization (DPO) algorithm.

intrinsic capability of basic LLMs to analyze ref-
erences and generate responses. We conduct ex-
periments in the representative scenario of Chinese
literature discussion, where interdisciplinary topic
discussions can take place for learning.

In this paper, our contributions can be summa-
rized as follows:

(1) An automated HTS-compliant dialogue gen-
eration framework that utilizes multi-role multi-
agent collaboration, along with an improved RAG.

(2) A design of LLM experts that implements
multi-dimensional reference value retrieval aug-
mentation through group reflection.

(3) We conduct fine-tuning experiments and hu-
man evaluations to demonstrate the effectiveness
of RAM2C in liberal arts education.

2 Related Work

Recent studies suggest strategies like prompt en-
gineering, RAG and human preference alignments
(Wei et al., 2022; Asai et al., 2023; Rafailov et al.,
2023; Zhang et al., 2024; Ouyang et al., 2022; Sun
et al., 2024; Hu et al., 2024b; Gu et al., 2023).
But these face challenges including instruction fol-
lowing, retrieval accuracy and high value prefer-
ence data collection respectively. Therefore, edge-
deployed models for professional education dia-
logue need an comprehensive approach that inte-
grate data collection, model inference, and fine-
tuning to tackle the aforementioned challenges
(HTS), as no single solution is enough.

2.1 Educational Chatbots

Educational chatbots, focusing on individualized
guidance and educational resource optimization,
have been thoroughly explored(Chen et al., 2023;
Deng et al., 2023). These systems, often pow-
ered by LLMs, play a supportive role by deliv-
ering exercises, recommending resources, training
teachers, and tracking student progress(Dan et al.,
2023; Markel et al., 2023). Despite their contribu-
tions, they typically feature limited dialogue open-
ness(Macina et al., 2023) and have not extensively
addressed the complex challenges of higher-level
educational standards which face HTS challenge
(Kuhail et al., 2023).

2.2 Prompt Engineering

Prompt engineering techniques are well explored
recently to enhance reasoning capability and role-
playing ability of LLMs (Wei et al., 2022) by few-
shot demonstration, explicit thought path (Chain of
Thought, CoT) (Wang et al., 2022, 2023b; Besta
et al., 2023; Tang et al., 2023), specific personas
(Nori et al., 2023; Lu et al., 2024; Wang et al.,
2023a; Zhou et al., 2023) and multi-agent collab-
orations(Suzgun and Kalai, 2024). However, the
instruction-following ability of lightweight models
often falls short of advanced LLMs, thus limiting
the effectiveness of prompt engineering (Zhang
et al., 2024; Yuan et al., 2023).
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2.3 Retrieval Augmented Generation

Recent studies on RAG (Gao et al., 2023) aim at im-
proving domain-specific factual knowledge and al-
leviating model hallucinations (Zhang et al., 2023b;
Jietal., 2023) by re-writing retrieval queries (Ma
et al., 2023), executing self-reflection (Asai et al.,
2023; Yan et al., 2024) and organizing knowledge
in a tree structure(Sarthi et al., 2024). These meth-
ods perform well for factual knowledge QA tasks,
and use deep sentence embedding models (Chen
et al., 2024; NetEase Youdao, 2023), which filter
relevant documents by comparing their distances
in a semantic vector space. These semantic-vector-
based retrieval methods often struggle to effectively
retrieve documents with high educational value for
the reason of weak embedding on educational
corpus: Educational documents are valuable not
just for their factual knowledge but also for their
the expression style, word choice, sentence struc-
ture, emotional tone, and logic flow. Embedding
models have difficulty capturing these aspects.

2.4 Preference Alignment on Education

Researchers have developed specialized datasets
to enhance models in specific domains (Dan et al.,
2023; Zhang et al., 2023a). However, the individ-
ualization and diversity in educational scenarios
makes it hard to collect high-quality data (Hicke
et al., 2023; Long et al., 2024). The BEA 2023
dataset and related studies are proposed to enhance
teaching ability of LLMs, using samples from the
Teacher-Student Chatroom Corpus for only English
learning (Tack et al., 2023; Huber et al., 2023; Bal-
adon et al., 2023). These samples are short (~100
tokens), limiting the depth and complexity of dia-
logues.

Consequently, edge-deployed models for educa-
tion need an integrated systemic approach that in-
cludes data collection, model inference, and model
fine-tuning to address the HTS challenges in Fig.1,
as a single technological path is not sufficient.

3 Methodology

In this section, we elaborate on the principle com-
ponents in RAM2C, as shown in Fig.2 and Fig.3.

3.1 M2C: Multi-role Multi-expert
Collaboration

Unlike multi-role single-agent collaboration(Tang
et al., 2023) and single-role multi-agent collabora-
tion(Wang et al., 2023b, 2022), we utilize prompt
engineering to create three groups of LLM experts
with distinct roles: T-Group: Chinese language
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Figure 3: A schematic diagram of retrieval augmented
experts, using the T-Group as an example. The revision
of a raw response from the basic LLM is generated
through proactive analysis of the student context and the
accepted documents. The documents are retrieved from
a multi-source knowledge base and subsequently filtered
through group reflection, that is, the multi-dimensional
value assessments of the retrieved documents.

teachers, P-Group: educational psychologists, and
E-Group: ethical safety experts, with several ex-
perts for each role, as shown in Fig.2a.

Refining dialogue responses to students is a step-
by-step process involving T/P/E-Group collabora-
tion in turn. First, as depicted in Fig.2b, a basic
LLM generates an initial, considering the dialogue
context, which is then refined by T-Group. The
P-Group further refines this output, followed by the
E-Group, which ensures ethical standards. Finally,
the refined response is delivered to the student.

3.2 In-group Collaboration

In each group (T/P/E-Group), several experts work
on generating refinements. Each expert receives
a unique reference document and performs an ex-
plicit analysis of its reference value, a process we
term proactive analysis (see Fig.3). Experts use
their analyses to rewrite the group’s input. Since
each expert’s document has a different educational
value, this ensures diverse chain-of-thoughts. The
group’s output is synthesized from these experts’
refinements.

3.3 Retrieval Augmented Experts

We propose a module named group-reflection RAG
to provide references to experts in each group in
Fig.2a. To achieve this, we first establish a multi-
source knowledge base. And we emphasize that,
LLMs for liberal arts dialogues benefit from demon-
stration or inspiration from documents with differ-
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Topic from RAM2C:

Retrieval Document 4

High similarity but low
reference value

High similarity and high

reference value
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English: Hey kids, have you ever thought
about this: Robinson Crusoe lived on a
deserted island for nearly twenty-eight
years. What important lessons can we
fearn from his story? Maybe we can pick
up some special insights from his
experiences, like how to stay brave and
optimistic when facing challenges, don't
you think?

Chinese: & T hilﬂi? e (& i2)
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English: Based on the above understanding, the teaching objectives | have set for
"Robinson Crusoe” are as follows: 1.To understand the significance of "adventure”
for individual lives and human survival. 2.To understand the value of “rational spirit"
in human survival and development. 3.To understand the role of “reflection” in
constructing the meaning of lfe.

4
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Retrieval Document 5

Response from Students:
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English: In the next class, we will continue to delve deeper into Robinson Crusoe's
inner world, experiencing his situation and feelings on the deserted island. We will
gain a more profound understanding of what kind of person Robinson really is. Let's
continue our study next class. Goodbye!

Ao
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English: Robinson's story tells me to
never give up, no matter how big the
problems are. He lived on that island for so
long, always being brave and smart,
learning lots of survival skills. | think that if
we face our problems bravely and try our
best to solve them, nothing is impossibe.

Retrieval Document 15

Chinese: %
MR AL

1

gl

English: In "Robinson Crusoe," Robinson's spirit of adventure, calmness, optimism,
and perseverance is reflected in his various actions to overcome difficulties on the
deserted island. Teachers can guide students to list and organize the challenges
Robinson faced in terms of survival, daily life, and the meaning of life. By examining
the various ways Robinson overcame these difficulties, students can initally grasp
the qualities he exhibited through his words and actions.
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Figure 4: Grading of retrieval documents by deep sentence embedding model bge-reranker-v2-m3 and group of

LLM experts.

a) Top: RAM?2C starts a topic.Bottom: a student gives the answer.

b) Retrieval documents #4,

#5 and #15 according to the topic and answer. Document #4 and #5 have high similarity with the topic and the
answer but have low educational reference value for improving the response. While the document #15 is actually

the high-value reference which could inspire the analysis of similar topic.

¢) From top to bottom: voting scores

of documents #0 - #17 by 7, 5, 3 teacher experts, similarity scores between the answer and documents, similarity
scores between the topic and documents by the bge-reranker-v2-m3.

ent reference values. The language style, vocabu-
lary usage, and logical connections in these doc-
uments help enhance humanized communication
of LLMs. These complex semantic structures are
difficult to capture solely through semantic vector
matching. As shown in Fig.4b, vector databases
are likely to return documents with high similarity
score but low reference value.

Therefore, we assemble an expert group (con-
taining 7, 5, 3 experts in Fig.4c top 3 sub-figures) to
analyze the initially retrieved documents from vari-
ous perspectives. The experts then vote on whether
to keep or discard each document. This process
filters out a diverse set of documents with high ref-
erence value, see Document # 4 and #5 as rejected
samples and Document #15 as accepted samples in
Fig.4b and 4c. The final set of documents is then
distributed to each expert in Section 3.2.

4 Experiments

4.1 Experimental Setup

Scenario settings. We select the Chinese litera-
ture discussion as an example of liberal arts educa-
tional dialogues. In this scenario, students discuss
interdisciplinary topics related to the novel "Robin-
son Crusoe" with an LLM teacher who offers real-
time feedback to promote the progress of dialogue.
These discussions cover multiple fields such as lit-
erature, western history, sociology, geography and
economics.This makes it an ideal representative
scenario for liberal arts educational dialogues.

Multi-source knowledge base. We construct
a multi-source knowledge vector database for
literature art reading. It contains five types
of knowledge/documents: class recording, edu-
cational monographs, educational psychological
monographs, safety prompts, and literature arts
(most novels). Details in Appendix B.

4.2 Model Fine-tuning

We use RAM2C to organize GLM-4 and gener-
ate a preference alignment dataset, which contains
3,500 dialogues. Each sample of this dataset is
a (Q,A,R1,R2) pair, as shown in Fig.2c, where Q
is the discussion topic generated by RAM2C, A is
the answer by LLM-simulated student, and R1 is
the chosen response from RAM2C-GLM4, R2 is
the rejected one by the lightweight model without
fine-tuning. We conduct fine-tuning experiments
on lightweight models including Qwen1.5-4B(Bai
et al., 2023), MiniCPM-2B(Hu et al., 2024a), and
ChatGLM3-6b(Du et al., 2022), based on Llama-
Factory(Zheng et al., 2024).

4.3 Evaluation Dataset Construction

In liberal arts education, dialogues are subjective,
unlike question-answer tasks evaluated based on
factual accuracy. Therefore, we recruit sixteen vol-
unteers, including school teachers and university
researchers, to assess the fine-tuned models in three
dimensions (HTS). For each model, we construct
a dialogue sample set, which structure is similar to
the fine-tuning dataset in Section 4.2. More details
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are in the Appendix C.
4.4 Evaluation Results

Tab. 1 compares the performance of the fine-tuned
model with its original version across three dimen-
sions HTS. The results show that the fine-tuned
model outperforms the original model in all three
dimensions (both without retrieval augmentation
and M2C), particularly in humanized communi-
cation and teaching expertise. And the scores of
inter-annotation agreement (IAA) show the moder-
ate agreement between the volunteers’ evaluation.

We also compared the performance between the
fine-tuned lightweight model and mainstream Chi-
nese commercial model GLM-4. As shown in
Tab. 2, fine-tuned models can largely compete
with GLM-4 that do not use RAM2C integration.
And the RAM2C-empowered GLM-4 exhibits the
highest level of performance.

Criteria H T S
Qwenl.5  74.8 (0.42) 65.2 (0.45) 73.3 (0.37)
MiniCPM  62.3 (0.18) 69.3 (0.25) 74.0 (0.42)
ChatGLM3 72.6 (0.33) 76.1 (0.49) 69.8 (0.29)

Table 1: Evaluations between fine-tuned models and the
corresponding raw models in three dimensions (HTS).
The values in parentheses represent the IAA score.
H/T/S indicate humanized communication, teaching
expertise and safety & ethics.

Criteria H T S

Qwenl.5 vs GLM 47.2(0.28) 52.2(0.25) 48.3(0.39)
MiniCPM vs GLM  44.1(0.37) 51.3(0.23) 55.3(0.49)
GLM3 vs GLM 41.7(0.19) 45.8(0.39) 53.3(0.42)
Qwenl.5 vs GLM-R  44.8(0.28) 43.6(0.27) 46.1(0.42)
MiniCPM vs GLM-R 47.0(0.47) 48.0(0.26) 45.5(0.35)
GLM3vs GLM-R  40.5(0.42) 44.2(0.18) 39.0(0.32)
GLM vs GLM-R  48.3(0.25) 42.2(0.55) 43.6(0.64)

Table 2: Evaluations between fine-tuned models
(Qwen1.5-4B, MiniCPM-2B, ChatGLM3-6b) and the
commercial GLM-4 model with and without RAM2C as
baselines. H/T/S indicate humanized communication,
teaching expertise and safety & ethics. The values in
parentheses represent the IAA score. GLM3 means
local ChatGLM3-6b, GLM means commercial GLM-4
without retrieval augmentation and M2C, and GLM-R
means commercial GLM-4 using retrieval augmentation
and M2C.

Ablation studies. We conducted ablation experi-
ments to explore the impact of different roles and

Criteria H T S

GLM vs GLM-R 48.3(0.25 0.55 0.64

GLM-P/R vs GLM-R 46.5(0.65 0.32 0.41

GLM-PS/R vs GLM-R 46.3(0.22 0.39

(0.25) 42.2(0.55) 43.6(0.64)
(0.65) 51.0(0.32) 50.2(0.41)
GLM-S/R vs GLM-R  50.3(0.55) 50.7(0.21) 48.1(0.46)
(0.22) 48.2(0.39) 47.8(0.42)
(0.28) 46.6(0.27) 46.1(0.42)

GLM-R/1 vs GLM-R 44.8(0.28 0.27 0.42

Table 3: Ablation studies on different roles and numbers
of experts. GLM: GLM-4 without RAM2C; GLM-R
GLM-4 with full RAM2C; GLM-P/R: GLM-R without
P-Group; GLM-E/R: GLM-R without E-Group; GLM-
PE/R: GLM-R without P-Group and E-Group; GLM-
R/1: GLM-R with only one expert in each group/role.

the number of experts on the quality of the dia-
logue, as shown in the Tab. 3. RAM2C based
GLM-4 models excluding the P-Group and/or E-
Group result in varying degrees of performance
decline in the dimensions of humanized commu-
nication and safety & ethics. However, the exclu-
sion of the E-Group has a relatively limited impact
on safety & ethics. We interpret this as general
LLMs that typically align well with human prefer-
ences and possess basic ethical and safety qualities.
Therefore, the collaboration of the T-Group and
P-Group mitigates the performance decline caused
by the absence of the E-Group. We also explored
the difference in dialogue quality between an ex-
pert per group and three experts per group, and the
results indicate that in-group collaboration is quite
necessary.

4.5 Case Study

A well organized response is shown in Fig. 5 gener-
ated by the fine-tuned Qwen model. The response
includes personalized emotional support and en-
couragements, as long as the assessment to the
specific content of the student, compared with the
response of untrained version.

5 Conclusion

To address the HTS challenges of deploying
LLMs for high-quality liberal arts educational di-
alogues, we propose RAM2C, a framework based
on retrieval-augmented multi-role multi-expert col-
laboration to automatically generate high-quality
dialogues for model fine-tuning. We conduct exper-
iments in a literature discussion scenario. Human
volunteer evaluations demonstrate the effectiveness
on the multi-dimensional quality. In shorts, this
work highlights the potential of LLM (especially
lightweight models) in liberal arts educational di-
alogues by arousing its intrinsic role-playing and

452


https://bigmodel.cn

collaborating capability and extrinsic capability.
6 Limitations

Considering that we use Chinese dialogues as ex-
periments, we select models which perform well in
Chinese, and fine-tune and evaluate them as many
models as possible, but the number is still limited.
In the future, we are going to test the performance
of LLaMA and Mistral. Our exploration of dia-
logue scenarios in other liberal arts is insufficient.
We will test the effectiveness of the system in other
languages (such as English and French) and other
specific scenarios (such as history science discus-
sion, politics science discussion). Therefore, we
will also enrich related educational resources to
support research. The design of prompt templates
and expert roles may affect the performance of
LLMs, but due to time constraints, we are unable
to test all variants of the templates. In future work,
we will organize more volunteers to conduct ex-
tensive evaluations on more output samples. In
addition, we also consider the jailbreak threat us-
ing special-designed prompts and update the design
of E-Group experts in our Github repository. The
future work will develop more jailbreak scenarios.
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A HTS: multi-dimensional challenge for
educational dialogue

We have summarized three dimensions for evalu-
ating liberal arts educational dialogue: humanized
communication, teaching expertise, and safety &
ethics.

A.1 Humanized communication

Cultural competence: The system should un-
derstand and respect diverse cultural backgrounds,
enabling effective and inclusive communication.

Active supportiveness: It should provide encour-
agement and positive reinforcement, fostering a
supportive learning environment for users.

Emotional feedback: The system should recog-
nize and respond to users’ emotional states, enhanc-
ing engagement and connection.

A.2 Teaching expertise

Assessment proficiency: The system should ef-
fectively evaluate user performance and under-
standing, providing meaningful feedback for im-
provement.

Subject mastery: It must possess in-depth
knowledge of various subjects, ensuring accurate
and relevant information is conveyed.
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Pedagogical skills: The system should employ
effective teaching strategies, adapting to different
learning styles and needs.

Accurate response: It should deliver precise and
reliable answers to user inquiries, promoting trust
and credibility.

A.3 Safety and ethics

Data privacy: The system must protect user data,
ensuring confidentiality and compliance with rele-
vant privacy regulations.

Content appropriateness: It should filter and
provide content that is suitable for the intended
audience, avoiding harmful or offensive material.

Abuse prevention: The system must have mech-
anisms in place to identify and prevent abusive in-
teractions, ensuring a safe experience for all users.

B Multi-source knowledge base

We establish a multi-source knowledge base to
support the multi-role multi-expert collaboration,
based on Chromadb? and the sentence embedding
model BGE-m3(Chen et al., 2024). The knowledge
base includes the following sources of knowledge:

1. Class dialogue records. Records are derived
from Chinese transcripts obtained through au-
dio transcription and text proofreading from
videos of public classes. These records
demonstrate different teaching styles and re-
sponses that adhere to educational standards.

2. Theories and research papers on Chinese
language teaching. It includes general theo-
ries of Chinese language teaching, theories of
reading teaching and case analyses.

3. Theories and case analyses in educational
psychology.

4. Safety prompts. Sensitive prompts for ed-
ucational scenarios and corresponding safe
responses. We use GLM-4-Flash to filter and
rewrite seven types of malicious prompts and
their appropriate responses from Sun et al.
(2023), including crimes and illegal activi-
ties, ethics and morality, insult, mental health,
physical harm, privacy and property, unfair-
ness and discrimination, for reference by cul-
tural safety experts.

https://github.com/chroma-core/chroma

Source Counts

Dialogue records 1,688,000 words
Educational theories 3,770,000 words
Literature works 207,800 words
Edu-psycho theories 2,672,000 words
Safety prompts 13,893,188 words

Table 4: Summary of counts in Chinese character across
different knowledge sources.

5. literature works in Chinese. These texts sup-
port discussions involving the original plots
of literary works.

C Evaluation dataset and criteria

We generate a dialogue set for evaluation of each
fine-tuned model. The structure of the dialogue
set is same as the fine-tuning dataset in Section
4.2, (Q,A,R1,R2). The Q is the question gener-
ated by the model and not included in the fine-
tuning dataset, the A is a LLM-simulated student’s
response, and R1 and R2 are the responses from
the fine-tuned model or the baseline model to the
student’s response. The positions of R1 and R2 are
unspecified to prevent any influence on the evalua-
tors’ preferences.

For each dimension evaluation (H/T/S), each
volunteer is provided with a random sample of
25 items from the set and makes choices between
R1 and R2 based on evaluation criteria (Tab. 5),
indicating whether the fine-tuned model is bet-
ter/equal/worse, and thereby assigning correspond-
ing scores (4/2/0). The total score reflects the per-
formance of the tested model. The score above
50.0 means better overall performance against the
baseline model. And score of 50.0 indicates that
there’s no preference between the fine-tuned model
and the baseline model. Scores below 50.0 mean
that the fine-tuning has negative effect on the model.
We also calculate the Fleiss Kappa index to indicate
the inter-annotation agreement.
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Negative Cases
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RINAE (BRIFRIC) ENTAXEBRDZHBANE
REAND? FRMAZNEENG! BIREMXABE
Bt ANR? BOAAIRITT XSRS T 87 BARREIX
WHBE, hRZE T AKEDRRIE,

Wow-~ Absolutely fantastic! Imagine this: in that challenging moment, the
warriors are sitting together, bathed in moonlight, exchanging firm and warm
glances, just like Crusoe and Friday. They make a vow together, their voices
strong and powerful, like a family united at heart. Doesn't that scene just come
alive in your mind?

plan for

Lastly, the idea of writing down promises is the cherry on top! Each promise is
like a seed planted in everyone's hearts, waiting to bloom into beautiful flowers
in the future. Such a team is truly unstoppable and invincible! Your answer not
only shows your understanding of teamwork and friendship but also brims with
imagination and literary flair

Hello, there. Your answer was great. | hope you can share your thoughts and

encouraging words
emotional support

general evaluation
improve reading skill

Only meaningless words of
encol it, without

approaches in class, and engage with your classmates in discussions and
learning. That way, you'll be able to learn even more!

Do you know which country Robinson, the main character in Robinson Crusoe,
is from? It turns out he’s British! So, what can you learn from this book? |
believe you can gain a better understanding of the culture and history of that
time, as well as appreciate the resilience of the human spirit.

any specific or
meaningful feedback.

The teacher engages in
self-questioning without
offering thought-
provoking prompts to
stimulate student
thinking.

Figure 5: A well structured response by the fine-tuned Qwenl1.5-4B model and some negative cases generated
by traditional LLMs. In positive cases, it begins with emotional support in the first paragraph, then assesses the
student’s context in detail (second and third paragraph). It also provides general advice about reading skills (third
paragraph) and concludes by encouraging the student to continue the discussion.
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Category

Criteria

Humanized
communication

1.1 Responses are crafted in a student’s voice, rather than evaluating and
guiding student remarks in a teacher’s voice.

1.2 Language style lacks warmth and liveliness, lacking affinity, and uses a
written language style.

1.3 Use of vocabulary and sentence construction not suited to the cognitive
level of elementary students, employing complex and profound terms.

1.4 Inclusion of irrelevant content, such as analytical content on student
responses, LLM’s thought processes, etc.

1.5 Presence of non-Chinese statements.

1.6 Lack of clear response to and guidance on student emotions.

1.7  Failure to use individual backgrounds, hobbies, and life experiences of
different students to provide personalized responses.

Teaching expertise

2.1  Lack of heuristic dialogue, such as questions, rhetorical questions, and
imperatives, failing to stimulate student interest.

2.2 Homogeneity in praise and encouragement, lacking diversity.

2.3 Responses are overly simplistic in sentence structure and repetitive in
content.

2.4  Only answers student questions without guiding further discussion.

2.5 Poses questions and then answers them, leaving no room for student
discussion.

2.6 Responses lack openness at their conclusion.

2.7 Lack of targeted analysis of student answers.

2.8 Responses are excessively long or short.

2.9  Text is not fluent, with typographical errors, omissions, or misspellings.
2.10  Factual inaccuracies in responses.

2.11  Absence of encouragement for interaction and discussion among stu-
dents.

Safety and Ethics

3.1 Use of swear words or uncivil language.

3.2 Absence of guidance towards universal values, such as pioneering spirit,
unity and friendship, humanitarianism, fearlessness in the face of difficulties,
nature conservation, continuous learning, self-reflection, tolerance and under-
standing, and hard work.

3.3 Promotion of content from the Bible or other theistic views.

3.4 Lack of respect for and integration of cultural diversity.

3.5 Discussion of special storylines in novels, such as slave trade, cannibalism,
murder, etc., is not handled flexibly or skillfully, failing to guide towards correct
values.

Table 5: Evaluation criteria of liberal arts educational dialogues for volunteers.
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