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Abstract

Long sequences occur in abundance within
real-world scenarios, hence properly modelling
them opens numerous down-stream use-cases.
Deep neural networks, however, have often
struggled with these for a variety of reasons.
Recent advances, both in system engineering
as well as model design, have enabled the scal-
ing up of model that are purported to support
extended context length. In particular, the state-
space and linear recurrent neural network fami-
lies of models hypothetically can entend to infi-
nite sequence lenth. However, is this too good
to be true? We conduct a targeted evaluation,
where we show that while such claims may
have theoretical soundness under particular con-
ditions, these may break down in practical set-
tings where limitations exist. In particular,
we observe that these new-age sequence mod-
els suffer similarily as attention-based models
when it comes to long-contexts, highlighting
the need to further study such paradigms and
why they seemingly fail to behave as expected.

1 Introduction

Advances in AI system engineering (Dao et al.,
2022; Dao, 2024; Rasley et al., 2020) and model
design (Katharopoulos et al., 2020; Jiang et al.,
2023; AI21, 2024) have opened language models
to the broader public for a diverse set of purposes
and use cases. However, Transformer-based ar-
chitechtures (Vaswani et al., 2017) remain bounded
in terms of their context windows, as they re-
quire fixed-length positional embedding represen-
tations (Press et al., 2022; Su et al., 2023; Peng
et al., 2024) which cannot be modified a posteriori.
With this glaring limitation, linear sequence mod-
els (Gu et al., 2022; Gu and Dao, 2024; Orvieto
et al., 2023; Qin et al., 2023; Peng et al., 2023; De
et al., 2024; Dao and Gu, 2024) have emerged as an
alternative that present a seeming ability to extend
to infinite-length contexts in theory while retaining

all the original benefits of the Transformer related
to training-based parallization.

However, despite the temptation to assert lin-
ear sequence models as superior, properly testing
for information retention from long-context tasks
remains callenging. Although some work has at-
tempted to evaluate this ability through long con-
texts (Shaham et al., 2022; Pang et al., 2022; Dong
et al., 2024; Bai et al., 2023; Li et al., 2023; Han
et al., 2024), whether or not they truly require
the use of long-contexts is uncertain and ascer-
taining long-context abilities from these tasks is
difficult. This has prompted the use of more syn-
thetic tasks (Hsieh et al., 2024), such as needle-in-
a-haystack (NIAH) (Kamradt, 2023) and passkey
retreival (Mohtashami and Jaggi, 2023), to better
control and evaluate the context sizes of models.

Nevertheless, an outstanding question remains
whether or not long-context models can effectively
model long contexts. While some works (Gu and
Dao, 2024; Fu et al., 2023; Poli et al., 2023; Peng
et al., 2024; Team, 2024) purport to be able to ex-
trapolate towards sequences of long length (100k
tokens+), further investigation has suggested dif-
ferently. For example, Hsieh et al. (2024) claim
modern LLMs significantly over-state true context
windows on a number of synthetic tasks. Mean-
while Han et al. (2024) observe models to perform
reasonably well on synthetic tasks, but struggle on
real-world tasks, as do Li et al. (2023). Hence de-
spite a consistent trend in models behaving under-
whelmingly, it remains to be understood why this
occurs. Yet one interesting question is whether or
not linear sequence models are in fact more suited
for these compared to Transformer-based ones, as
has been claimed repeatedly.

To this end, we further analyze the behaviour of
sequence models to observe how differently they
behave compared to Transformer-based ones. We
perform a more extensive study into each type of
model, as well as a mixture of both, to better inves-
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tigate how they perform in principle and how they
change in behaviour when extending to longer and
longer sequences. On both synthetic and realistic
data, we conduct a thorough study and observe:

• All models, whether they use pure sequence
layers, attention or a mix, struggle with extrapo-
lating beyond their training context length.

• The abiliy to extrapolate can vary signficantly
based on the format of the sequence even if the
task remains constant. However models consis-
tently struggle more with information placed in
the middle of long contexts.

These results highlight that long sequence models
suffer from significant limitations despite their the-
oretical soundness, highlighting a need to better
understand this striking dissonance between expec-
tation and observation and how to amend it for
better long-context understanding and reasoning.

2 Related Work

Efficient Long-Context Models. Due to the
computational bottleneck of attention (Bahdanau
et al., 2015) relative to sequence length, significant
modifications have been made to overcome this
limitation of the Transformer (Child et al., 2019;
Katharopoulos et al., 2020; Su et al., 2023) yet they
remain theoretically bounded in terms of its context
length. Alternatively, sequence models (Rumel-
hart et al., 1986; Jordan, 1986; Hochreiter and
Schmidhuber, 1997; Cho et al., 2014) originally
faced significant issues that limited their applica-
tion but recent modifications (Gu et al., 2020, 2021)
have led to the prominence of linear sequence mod-
els which are significantly more compute-effective
than Transformer-based architechtures.

On the Limits of Long Sequence Models. Due
to their more intuitive and interpretable architech-
ture, long/linear sequence models remain easier
to analyze when placed in comparision to Trans-
formers. As such, their limitations also become
easier to discover and analyze. Vardasbi et al.
(2023) first show that SSMs struggle at sequence-
to-sequence tasks due to to the use of a fixed-size
hidden representation which compresses the entire
prior context, making it difficult to extract infor-
mation from the past, fact further substantiated by
Jelassi et al. (2024). Park et al. (2024) addition-
ally demonstrate that these models have difficulty
with more complex in-context learning tasks, while

Merrill et al. (2024) show them to possess simi-
lar limitations in terms of representational power
as Transformers (Merrill and Sabharwal, 2023).
Waleffe et al. (2024) finally make a comparision
between Mamba, Transformers as well as a hybrid
and observe hybrid models to perform better on
long-context tasks, while Mamba2 often trails be-
hind Transformers. These observations thus beg a
question: can long sequence models really model
long sequences? Given the hints that long sequence
models may not always be as they seem, a more
formal investigation is necessary. We distinguish
ourselves by conducting a more controlled but in-
tricate study which aims to uncover why some of
the prior results might occur, which we discuss in
the work that follows.

3 Background

Attention and Long Sequences. Self-attention
as used in Transformers is powerful but costly.
When provided an embedded text representation as
a sequence of tokens x ∈ RL×d, each Transformer
layer in the network applies a function

Tℓ(x) = FFℓ(Aℓ(x) + x) +Aℓ(x) (1)

where Aℓ is the self-attention mechanism of the ℓ-
th layer and FFℓ is the following feed-forward net-
work1. Self-attention computes, for every position,
a weighted average of the feature representations
of all other positions with a weight proportional to
a similarity score between the representations.

Qℓ = xWQ
ℓ Kℓ = xWK

ℓ Vℓ = xW V
ℓ

Aℓ(x) = V ′
ℓ = softmax

(
QℓK

T
ℓ /

√
d
)
Vℓ

(2)

As the softmax operation operates in O(L2) time
when applied naively, this limits the ability to pro-
cess long-sequences.

Transformers to Sequence Models. The long-
sequence limitations of Transformers necessitates
the need for alternatives in such settings, which
have currently appeared under the form of state-
of-the-art sequence models. An initial proposal
borrowed from control theory, namely the notion
of state-space models (SSMs). These model a dy-
namical system, traditionally mapping a 1-D con-
tinuous input signal x(t) ∈ R to an n-dimensional
hidden state h(t) ∈ Rn that is projected back to a

1Excludes normalization operations.
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1-D output y(t) ∈ R using:{
h′(t) = Ah(t) +Bx(t)

y(t) = Ch(t) +Dx(t)
(3)

where A, B, C and D are all trainable parameters.
Gu et al. (2021) use this paradigm to define a re-
current model to work on discrete signals, in which
case the input can be regarded as discretized data
sampled from a continuous signal with a step size
∆, for which the corresponding SSM is defined by:

ht = Aht−1 +Bxt yt = Cht +Dxt

A =

(
I +∆A/2)(
I −∆A/2

) B =
∆B(

I −∆A/2
) (4)

and C = C (They set D = 0 due to being equiv-
alent to a residual connection.) Thus the output y
given an input x is

K = (CB,CAB, . . . ,CA
L−1

B)

yt =
L−1∑
j=0

CA
j
BxL−j = K ∗ x

(5)

where K is the SSM kernel. As y can be computed
in O(L logL) with a Fast Fourier Transform (Cor-
men et al., 2009), the entire output can be computed
in tandem based on the input, given the matrices
that parametrize the system. Gu et al. (2021) use
this to overcome issues of parallelization and van-
ishing gradients (Bengio et al., 1994; Hochreiter
et al., 2001; Pascanu et al., 2013) observed by prior
recurrent models by

(1) Removing non-linearities in the recurrence,
enabling the efficient pre-computation of K.

(2) Using a special matrix parameterization (Gu
et al., 2020) for A to memorize the input and
eliminate exponential gradient scaling.

This has sparked a new wave of recurrent mod-
els to compete with Transformers (Orvieto et al.,
2023; Qin et al., 2023; De et al., 2024; Beck et al.,
2024), with the added benefit of theoretically hav-
ing longer context sizes that scale more efficiently.

4 Experiments and Results

Datasets. We conduct an initial evaluation us-
ing RULER (Hsieh et al., 2024), a set of synthetic
benchmarks that test long-context information re-
tention, before conductin a more fine-grained evalu-
ation on a general needle-in-the-haystack task. We

use this benchmark as for more granular control
over the exact information that must be retained.
Results are measured in terms of accuracy based
on exact matching of predicted tokens.

Baselines. Our main objective is to compare how
long-sequence models fare on long context tasks.
To this end, we compare models with the same
number of parameters that are evenly trained on
the same data. Hence we first use Mamba2 (Dao
and Gu, 2024) as well as a Transformer variant
(Transformer++) as well as a hybrid Mamba2Attn,
each with 2.7 billion parameters. We further add
Sheared-LLaMA (Xia et al., 2024) and Recurrent-
Gemma (Botev et al., 2024) baselines (with and
without intruction-tuning) as same-sized baselines
trained under different conditions. We finally add
a 3 billion RWKV (Peng et al., 2023) variant as
another sequence model baseline.

Results. We present initial results on the base set
of RULER tasks (as defined by its original authors)
in Table 1. Results presented are averaged across
individual tasks within the benchmark, which are
described in futher detail in Appendix B. How-
ever, we present two additional ablation studies. In
the first, we use a single needle hidden within a
large haystack; however, we modify its relative po-
sition within the context. The goal of this ablation,
presented in Table 2 and 3, is to observe how the
use of a unified hidden state rather than attention
can affect the ability to retain information through-
out a long sequence. The second (Table 4) further
tests how this information retention may change
when the content that is being memorized changes
(e.g. numbers versus UUIDs within a haystack of
repeated sentences or essays). In all tables, we
abbreviate model names using titles noted in Ap-
pendix A.

Length 1K 2K 4K 8K 16K Average

Mamba2 38.52 32.91 12.98 6.51 0.1 18.2
M2A 39.14 30.43 12.89 7.8 3.49 18.75
TPP 46.61 36.74 0.31 0.06 0.03 16.75

RG 78.82 71.72 22.45 11.21 6.29 38.1
SL 84.38 69.89 58.37 0.0 0.0 42.53
RWKV 68.09 55.27 37.47 23.73 13.81 39.67

RG-IT 85.64 79.45 44.33 24.19 14.18 49.56
SL-IT 86.22 77.54 74.25 0.0 0.0 47.6

Table 1: Results on RULER. Accuracy is aggregated
across several tasks for each model and context length.
Context length for which each model was trained is
underlined. Best performing models are bolded.
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Position 0 20 40 50 60 80 100 Avg

Mamba2 59.07 31.47 33.07 39.07 40.0 31.33 66.0 42.63
M2A 40.27 36.53 30.27 29.33 29.33 35.07 37.2 35.26
TPP 53.33 33.47 22.8 26.27 31.33 35.07 55.73 35.64

RG 100.0 100.0 100.0 100.0 100.0 100.0 99.47 99.92
SL 99.6 99.6 100.0 100.0 100.0 100.0 100.0 99.89
RWKV 82.4 100.0 100.0 80.27 100.0 100.0 100.0 94.67

RG-IT 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
SL-IT 98.27 99.6 100.0 100.0 100.0 100.0 99.73 99.66

Table 2: Results on needle-in-a-haystack task where the
position of a single needle is at a fixed depth within
the haystack. Context length is set to the maximum on
which the models were trained.

Position 0 20 40 50 60 80 100 Avg

Mamba2 26.8 19.6 17.73 18.93 18.93 20.13 21.87 21.03
M2A 38.8 26.27 18.93 28.8 10.13 21.6 66.67 27.07
TPP 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

RG 0.0 0.0 0.0 99.87 100.0 100.0 96.27 56.59
SL 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
RWKV 33.47 99.6 100.0 36.53 100.0 100.0 100.0 81.37

RG-IT 0.0 0.0 0.0 100.0 99.6 100.0 99.73 57.05
SL-IT 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Table 3: Same results as above with context length set
to twice the maximum training length.

Model
Context Essay-Word-Num Essay-Word-UUID Repeat-Word-Num
Length 0 50 100 0 50 100 0 50 100

Mamba2
1024 86.0 73.6 82.0 78.0 70.8 80.8 77.6 70.4 55.2
2048 45.6 20.8 65.2 49.6 20.4 66.0 82.0 76.0 66.8
4096 0.0 0.0 0.0 0.0 0.0 0.0 80.4 56.8 65.6

M2A
1024 37.2 28.0 48.0 39.2 26.8 48.0 47.2 44.4 70.0
2048 41.6 27.6 39.6 42.4 28.4 30.8 36.8 32.0 63.2
4096 29.2 25.6 59.2 27.6 28.0 58.0 59.6 32.8 82.8

TPP
1024 52.0 36.0 47.6 58.8 34.4 50.4 81.6 33.2 58.4
2048 51.6 29.6 62.4 44.8 36.0 55.6 63.6 13.2 49.2
4096 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Table 4: Results on needle-in-a-haystack task where the
position of a single needle is placed at the beginning,
end or middle of the haystack while the types of each
component varies. Context length is set to the maximum
on which the models were trained.

5 Discussion

All models have limits. Our first observation is
that regardless of the model, performance drops
steeply upon testing with sequences that are longer
than what the model was initially trained on. This
is made clear in Table 1, where the performance
decline is greatest once the evaluated sequences
are longer than the training context (with the mild
exception of RWKV which demonstrates approx-
imately linear degredation as the sequences pro-
gressively double in length). However, an im-
portant observation is that linear sequence mod-
els do appear to extrapolate slightly better than

pure-attention models, whose performance drop
to near 0 performance upon the increase, as these
models do show non-trivial accuracy even when
evaluated on the longer sequences. This distinction
is less clear when comparing between pure linear
sequence models and hybrid models which alter-
nate between sequence-model layers and attention
layers, as there is no explicit pattern as to when one
class will perform better on one length or another.

Being lost in the middle is a common event. Be-
ing lost in the middle, whereby models have diffi-
culty recalling relevant information located posi-
tionally in the middle of long contexts (Liu et al.,
2024), has been observed as a common limitation
among attention-based models. In Table 2, this
appears to be a common feature among all models
we test, since all classes of models see increasing
drops in performance as the information is more
closely located at the center of the sequence. This
suggests that despite their long-context modeling
ability, recurrent models cannot effectively reason
over their entire context window when prompted.
However, when extending beyond the length of the
training context (Table 3), there is less consistency
in the pattern, but models generally remain more
capable when information is close to either end
of the sequence. Moreover, while Mamba models
still appear lost-in-the-middle, other recurrent mod-
els such as RecurrentGemma and RWKV have no
clear depth-to-performance trends, further bringing
into question their general long-context modeling
abilities and how they function.

Extrapolation can inconsistent. Furthermore,
extrapolation can be inconsistent based on char-
acteristics of the model as well as the data. In
Table 4, we can first note that, depending on the
data format of the haystack, key, and value to be
retrieved, the performance of each model varies sig-
nificantly even with the same task template, context
length and needle position. Furthermore, extrap-
olation varies based on the model as these char-
acteristics change. For example, pure sequence
layers (Mamba2) appear to only extrapolate when
the haystack is a repeated sequence and the retrived
value is a number related to a key word. Upon
changing the haystack to be essays, extrapolation
craters, and the model fails. An equally trained
hybrid model (M2A) can meanwhile always extrapo-
late to some degree, but performance on sequences
up to the training context length appears to com-
pare much worse. Pure attention (TPP) meanwhile
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performs favorably only when evaluating on the
extact training context length under specific data
formats, but otherwise underwhelms.

6 Conclusion

In this work, we conduct a comprehensive com-
parision between the long-sequence models and
attention-based language models, showing that
long-context abilities of such sequence models may
hold from a theoretical perspective, they empiri-
cally still struggle in comparison to models that
make no guarantees. This highlights the need to
improve long sequence reasoning abilties not only
for Transformer-based LLMs, but also SSMs and
new classes of RNNs, which hopefully can serve
as motivation to further analyze this topic.

7 Limitations

We limit ourself to a model size in which it is easy
to compare models of various paradigms. As such,
some perhaps more powerful models are not ex-
plored as the analysis between such models can
become difficult due to multiple additional chang-
ing variables that can perhaps lead to incorrect or
undersupported claims.

8 Ethical Concerns

This paper discusses how different types of lan-
guage models behave on long-context data. It fol-
lows that mistakes in our methodology (both exper-
imental and analytical) could lead to unsupported
confidence or skepticism about LLMs. Though nei-
ther are unethical, unsupported confidence can be
very dangerous. However, given that the overall
claim is that LLMs should not be assumed to sup-
port context length that extend beyond what they
have trained, regardless of their training data, we do
not think this paper in itself could be misinterpreted
for particularly dangerous outcomes.

As for model choices, we use publicly available
models where the license agreements do not restrict
what we can say about the model. This should give
the reader confidence that our views are unbiased.
This is unlike ChatGPT or GPT4, which include
an unrestricted indemnity-clause in their license
agreement, which could make us financially liable
for damages.
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A Technical Implementation Details

A.1 Models Used
Table 5 lists the public models we use for our ex-
perimentation.

A.2 Computing Resources Used
All experiments were conduced using a single
NVIDIA A100 80GB SXM GPU with 6 CPU
worker cores. Experiments are run using PyTorch
Version 2.2.0 and CUDA 11.8.

B The RULER Benchmark

To conduct our study, we focus on the RULER

benchmark (Hsieh et al., 2024), which comprises
of tasks spanning across four categories: retrieval,
multi-hop tracing, aggregation, and question an-
swering. We use a publicly available repository2

to generate evaluation examples based on specific
input configurations (see Table 6 for example con-
figurations) that define the length and complexity
of each input. In RULER, the task complexity can
be thought of as a function of the number of target
output tokens and the signal-to-noise ratio in the
context. For our experiments, we use the default
set of tasks pre-defined by Hsieh et al. (2024).

B.1 Retrieval: Needle-in-a-haystack (NIAH)
RULER includes multiple retrieval-based tasks, ex-
tending the vanilla NIAH test to evaluate models
based to four NIAH tasks. The “needle” in each
of these tasks is a key-value pair inserted into the
“haystack” (long distractor texts). The query is lo-
cated at the end of the sequence and serves as a
cue for matching the keys in the context and subse-
quently retrieving the associated values.

• Single NIAH (S-NIAH): This comprises the
standard/vanilla NIAH task where a single “nee-
dle” needs to be retrieved from the “haystack”.
The query/key/value can take the form of words,
numbers (7 digits), or UUIDs (32 digits). The
“haystack” can be repeated noise sentences or
Paul Graham essays (Kamradt, 2023).

• Multi-keys NIAH (MK-NIAH): Multiple “nee-
dles” are inserted into the “haystack”, and only
one of them needs to be retrieved. The additional
“needles” are hard distractors. The most challeng-
ing setting is a version where the “haystack” is
filled with distractor needles.

• Multi-values NIAH (MV-NIAH): Multiple
“needles” sharing the same key are inserted into
the “haystack”. All values associated with the
same key need to be retrieved.

• Multi-queries NIAH (MQ-NIAH): Multiple
“needles” are inserted into the “haystack”. All
“needles” with distinct keys need to be retrieved.
This is the same multi-query associative recall
task setup used by Arora et al. (2024). Together
with MV-NIAH, these two tasks evaluate the re-
trieval capability without missing any critical in-
formation.

2https://github.com/NVIDIA/RULER
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Model Abbreviation Public Model Name HuggingFace Model

Mamba2 Mamba2 state-spaces/mamba2-2.7b ✘

Mamba2Attention M2A state-spaces/mamba2attn-2.7b ✘

Transformer++ TPP state-spaces/transformerpp-2.7b ✘

RWKV RWKV RWKV/rwkv-6-world-3b-v2.1 ✔

Sheared-LLaMA SL princeton-nlp/Sheared-LLaMA-2.7B ✔

Sheared-LLaMA-ShareGPT SL-IT princeton-nlp/Sheared-LLaMA-2.7B-ShareGPT ✔

RecurrentGemma-2B RG google/recurrentgemma-2b ✔

RecurrentGemma-2B-IT RG-IT google/recurrentgemma-2b-it ✔

Table 5: Models used and public links to their weights.

Task Configuration Example

Single
NIAH
(S-NIAH)

type_key = word
type_value = number
type_haystack = essay
size_haystack ∝ context length

(essays) ......
One of the special magic numbers for
long-context is: 12345. ......
What is the special magic number for
long-context mentioned in the provided
text?
Answer: 12345

Multi-keys
NIAH
(MK-NIAH)

num_keys = 2
type_key = word
type_value = number
type_haystack = essay
size_haystack ∝ context length

(essays) ......
One of the special magic numbers for
long-context is: 12345.
One of the special magic numbers for
large-model is: 54321.
......
What is the special magic number for
long-context mentioned in the provided
text?
Answer: 12345

Multi-values
NIAH
(MV-NIAH)

num_values = 2
type_key = word
type_value = number
type_haystack = essay
size_haystack ∝ context length

(essays) ......
One of the special magic numbers for
long-context is: 12345.
One of the special magic numbers for
long-context is: 54321.
......
What are all the special magic numbers
for long-context mentioned in the pro-
vided text?
Answer: 12345 54321

Multi-queries
NIAH
(MQ-NIAH)

num_queries = 2
type_key = word
type_value = number
type_haystack = essay
size_haystack ∝ context length

(essays) ......
One of the special magic numbers for
long-context is: 12345.
One of the special magic numbers for
large-model is: 54321.
......
What are all the special magic numbers
for long-context and large-model men-
tioned in the provided text?
Answer: 12345 54321

Variable
Tracking
(VT)

num_chains = 2
num_hops = 2
size_noises ∝ context length

(noises) ......
VAR X1 = 12345 ...... VAR Y1 = 54321
......
VAR X2 = X1 ...... VAR Y2 = Y1 ......
VAR X3 = X2 ...... VAR Y3 = Y2 ......
Find all variables that are assigned the
value 12345.
Answer: X1 X2 X3

Common Words
Extraction
(CWE)

freq_cw = 2, freq_ucw = 1
num_cw = 10
num_ucw ∝ context length

aaa bbb ccc aaa ddd eee ccc fff ggg hhh
iii iii ......
What are the 10 most common words in
the above list?
Answer: aaa ccc iii ......

Frequent Words
Extraction
(FWE)

α = 2
num_word ∝ context length

aaa bbb ccc aaa ddd eee ccc fff ggg aaa
hhh aaa ccc iii iii ......
What are the 3 most frequently appeared
words in the above coded text?
Answer: aaa ccc iii

Question
Answering
(QA)

dataset = SQuAD
num_document ∝ context length

Document 1: ...... aaa ......
Document 2: ...... bbb ......
Document 3: ...... ccc ......
Question: question
Answer: bbb

Table 6: Task examples with flexible configurations in
RULER. Different colors highlight queries, keys, values,
and distractors in each example. Examples are retrieved
directly from Hsieh et al. (2024).

B.2 Multi-hop Tracing: Variable Tracking
(VT)

Variable tracking emulates a minimal coreference
chain resolution (Ng, 2010) task. This task checks
the behavior of tracking relevant co-occurrence pat-
terns and drawing skipped connections within long
input. Specifically, a variable X1 is initialized with
a value V , followed by a linear chain of variable
name binding statements (e.g., X2 = X1, X3 =
X2, ...), which are inserted at various positions of
the input. The objective is to return all variable
names pointing to V . The task complexity can be
increased by adding more hops (i.e., the times of
name binding) or more chains.

B.3 Aggregation: Common Words (CWE)
and Frequent Words Extraction (FWE)

In the common word extraction task (CWE), words
are sampled from discrete uniform distributions,
with the number of common words fixed while the
number of uncommon words increases with the
sequence length. In the frequent words extraction
task (FWE), words are sampled from a Zeta distri-
bution. A model needs to return the top-K frequent
words in the context. In CWE, K is equivalent to
the number of common words. In FWE, K is set
to 3, as Hsieh et al. (2024) observe that increasing
K leads to poor performance even at small context
sizes for most models. The task complexity can be
adjusted by varying the number of common words
or the parameter of the Zeta distribution.

B.4 Question Answering (QA)

The majority of existing QA datasets (Rajpurkar
et al., 2018; Yang et al., 2018; Trivedi et al., 2022)
are designed to answer questions based on short
passages. These datasets can be extended to simu-
late long-context input by adding distracting infor-
mation. In this task category, we insert the golden
paragraphs (i.e., the paragraphs that contain an-

https://huggingface.co/state-spaces/mamba2-2.7b
https://huggingface.co/state-spaces/mamba2attn-2.7b
https://huggingface.co/state-spaces/transformerpp-2.7b
https://huggingface.co/RWKV/rwkv-6-world-3b-v2.1
https://huggingface.co/princeton-nlp/Sheared-LLaMA-2.7B
https://huggingface.co/princeton-nlp/Sheared-LLaMA-2.7B-ShareGPT
https://huggingface.co/google/recurrentgemma-2b
https://huggingface.co/google/recurrentgemma-2b-it
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swers) into paragraphs randomly sampled from the
same dataset. This category is a real-world adapta-
tion (Ivgi et al., 2023) of NIAH, where the question
serves as the query, the golden paragraphs are the
“needles”, and the distracting paragraphs form the
“haystack”.

C RULER Task Results

Length 1K 2K 4K 8K 16K Average

Mamba2 66.8 71.6 60.0 62.4 0.0 52.16
M2A 58.0 36.4 43.2 18.4 0.0 31.2
TPP 40.4 24.8 0.0 0.0 0.0 13.04

RG 100.0 100.0 52.0 24.8 10.0 57.36
SL 100.0 100.0 100.0 0.0 0.0 60.0
RWKV 100.0 100.0 100.0 100.0 54.4 90.88

RG-IT 100.0 100.0 51.6 28.8 16.4 59.36
SL-IT 100.0 100.0 100.0 0.0 0.0 60.0

Table 7: Results on niah_single_1 task of RULER.

Length 1K 2K 4K 8K 16K Average

Mamba2 62.4 60.4 0.0 0.0 0.0 24.56
M2A 33.2 34.8 9.6 4.8 0.0 16.48
TPP 50.8 48.0 0.0 0.0 0.0 19.76

RG 100.0 100.0 36.4 16.8 2.8 51.2
SL 99.6 99.6 100.0 0.0 0.0 59.84
RWKV 100.0 100.0 53.6 30.4 9.6 58.72

RG-IT 100.0 100.0 55.2 24.4 12.8 58.48
SL-IT 100.0 100.0 100.0 0.0 0.0 60.0

Table 8: Results on niah_single_2 task of RULER.

Length 1K 2K 4K 8K 16K Average

Mamba2 52.0 61.6 0.0 0.0 0.0 22.72
M2A 38.8 32.4 2.8 6.4 0.0 16.08
TPP 64.4 53.2 0.0 0.0 0.0 23.52

RG 100.0 100.0 39.2 16.8 8.4 52.88
SL 100.0 100.0 96.4 0.0 0.0 59.28
RWKV 99.2 96.4 15.2 19.6 4.4 46.96

RG-IT 100.0 100.0 53.6 24.0 13.6 58.24
SL-IT 100.0 99.6 99.6 0.0 0.0 59.84

Table 9: Results on niah_single_3 task of RULER.

Length 1K 2K 4K 8K 16K Average

Mamba2 25.6 23.6 0.0 0.0 0.0 9.84
M2A 21.2 16.4 5.2 1.2 0.0 8.8
TPP 50.0 34.4 0.0 0.0 0.0 16.88

RG 98.8 98.8 23.2 15.6 4.4 48.16
SL 99.2 100.0 94.0 0.0 0.0 58.64
RWKV 81.6 64.0 30.4 18.0 11.2 41.04

RG-IT 99.2 100.0 36.8 17.6 11.2 52.96
SL-IT 99.6 99.2 98.0 0.0 0.0 59.36

Table 10: Results on niah_multikey_1 task of RULER.

Length 1K 2K 4K 8K 16K Average

Mamba2 4.8 2.0 0.0 0.0 0.0 1.36
M2A 17.2 7.6 0.4 0.0 0.0 5.04
TPP 60.0 36.4 0.0 0.0 0.0 19.28

RG 98.0 94.8 8.4 2.4 1.6 41.04
SL 95.2 86.8 53.6 0.0 0.0 47.12
RWKV 20.4 4.0 0.8 0.4 0.0 5.12

RG-IT 100.0 98.0 43.6 27.2 9.6 55.68
SL-IT 97.6 96.0 78.8 0.0 0.0 54.48

Table 11: Results on niah_multikey_2 task of RULER.

Length 1K 2K 4K 8K 16K Average

Mamba2 14.4 2.4 0.0 0.0 0.0 3.36
M2A 17.6 12.4 0.0 0.0 0.0 6.0
TPP 61.2 56.4 0.0 0.0 0.0 23.52

RG 74.8 58.8 7.2 2.8 1.6 29.04
SL 96.4 46.4 38.8 0.0 0.0 36.32
RWKV 14.8 1.6 0.4 0.0 0.0 3.36

RG-IT 88.0 92.0 16.0 14.0 1.6 42.32
SL-IT 85.6 63.2 59.2 0.0 0.0 41.6

Table 12: Results on niah_multikey_3 task of RULER.

Length 1K 2K 4K 8K 16K Average

Mamba2 34.9 26.6 0.0 0.0 0.0 12.3
M2A 48.8 33.5 1.3 0.1 0.0 16.74
TPP 42.3 31.1 0.0 0.0 0.0 14.68

RG 97.4 95.1 14.7 3.3 3.0 42.7
SL 100.0 82.5 44.0 0.0 0.0 45.3
RWKV 96.5 87.0 57.2 10.8 5.2 51.34

RG-IT 96.7 87.6 41.8 22.0 11.3 51.88
SL-IT 100.0 87.5 77.2 0.0 0.0 52.94

Table 13: Results on niah_multivalue task of RULER.
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Length 1K 2K 4K 8K 16K Average

Mamba2 39.1 39.2 0.0 0.0 0.0 15.66
M2A 54.4 37.5 1.6 0.0 0.0 18.7
TPP 44.4 34.8 0.0 0.0 0.0 15.84

RG 99.5 99.7 4.7 2.8 2.8 41.9
SL 98.8 80.8 45.6 0.0 0.0 45.04
RWKV 94.3 80.7 38.4 9.3 2.4 45.02

RG-IT 97.8 97.9 48.5 21.1 11.4 55.34
SL-IT 98.4 94.7 85.9 0.0 0.0 55.8

Table 14: Results on niah_multiquery task of RULER.

Length 1K 2K 4K 8K 16K Average

Mamba2 69.12 36.64 35.2 20.72 0.0 32.34
M2A 78.24 56.88 9.6 1.76 0.56 29.41
TPP 40.88 21.12 0.0 0.0 0.0 12.4

RG 98.0 75.52 0.0 0.0 0.0 34.7
SL 98.16 81.68 19.36 0.0 0.0 39.84
RWKV 68.56 47.76 20.08 6.88 10.95 30.85

RG-IT 84.24 79.36 50.4 31.76 19.92 53.14
SL-IT 93.68 76.88 42.32 0.0 0.0 42.58

Table 15: Results on vt task of RULER.

Length 1K 2K 4K 8K 16K Average

Mamba2 28.52 14.72 4.08 0.16 0.12 9.52
M2A 26.48 15.24 3.04 5.92 0.8 10.3
TPP 30.32 17.8 0.64 0.0 0.04 9.76

RG 48.6 21.32 42.88 17.24 4.24 26.86
SL 71.2 25.32 55.24 0.0 0.04 30.36
RWKV 57.08 3.24 45.0 14.84 1.92 24.42

RG-IT 55.4 4.56 17.4 3.24 0.2 16.16
SL-IT 78.96 18.64 57.2 0.0 0.0 30.96

Table 16: Results on cwe task of RULER.

Length 1K 2K 4K 8K 16K Average

Mamba2 57.87 44.67 40.67 0.53 0.0 28.75
M2A 59.73 53.73 58.0 52.0 39.6 52.61
TPP 59.6 56.4 0.13 0.0 0.0 23.23

RG 56.0 53.87 7.6 15.6 17.33 30.08
SL 72.0 38.67 45.07 0.0 0.0 31.15
RWKV 74.67 67.47 68.0 56.67 43.42 62.05

RG-IT 80.8 67.87 69.73 64.8 50.67 66.77
SL-IT 78.67 78.27 73.07 0.0 0.0 46.0

Table 17: Results on fwe task of RULER.

Length 1K 2K 4K 8K 16K Average

Mamba2 25.2 24.4 18.4 0.0 0.4 13.68
M2A 33.6 35.6 18.0 6.8 3.6 19.52
TPP 37.2 36.4 2.8 0.8 0.4 15.52

RG 26.8 15.6 31.2 6.8 8.8 17.84
SL 41.6 37.2 37.2 0.0 0.0 23.2
RWKV 46.4 35.6 30.8 21.2 18.4 30.48

RG-IT 74.0 66.8 58.4 10.0 9.6 43.76
SL-IT 54.4 56.4 55.6 0.0 0.0 33.28

Table 18: Results on qa_1 task of RULER.

Length 1K 2K 4K 8K 16K Average

Mamba2 20.0 20.0 10.4 0.8 0.8 10.4
M2A 21.6 23.2 14.8 4.0 0.8 12.88
TPP 24.4 26.8 0.4 0.0 0.0 10.32

RG 26.8 18.8 24.4 20.8 16.8 21.52
SL 24.8 29.6 29.6 0.0 0.0 16.8
RWKV 31.6 30.8 27.2 20.4 17.6 25.52

RG-IT 37.2 38.8 33.2 25.6 16.0 30.16
SL-IT 34.0 37.6 38.4 0.0 0.0 22.0

Table 19: Results on qa_2 task of RULER.
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