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Abstract
State-of-the-art neural retrievers predominantly
focus on high-resource languages like English,
which impedes their adoption in retrieval sce-
narios involving other languages. Current ap-
proaches circumvent the lack of high-quality
labeled data in non-English languages by lever-
aging multilingual pretrained language mod-
els capable of cross-lingual transfer. However,
these models require substantial task-specific
fine-tuning across multiple languages, often
perform poorly in languages with minimal rep-
resentation in the pretraining corpus, and strug-
gle to incorporate new languages after the pre-
training phase. In this work, we present a
novel modular dense retrieval model that learns
from the rich data of a single high-resource
language and effectively zero-shot transfers to
a wide array of languages, thereby eliminat-
ing the need for language-specific labeled data.
Our model, ColBERT-XM, demonstrates com-
petitive performance against existing state-of-
the-art multilingual retrievers trained on more
extensive datasets in various languages. Further
analysis reveals that our modular approach is
highly data-efficient, effectively adapts to out-
of-distribution data, and significantly reduces
energy consumption and carbon emissions. By
demonstrating its proficiency in zero-shot sce-
narios, ColBERT-XM marks a shift towards
more sustainable and inclusive retrieval sys-
tems, enabling effective information accessibil-
ity in numerous languages. We publicly release
our code and models for the community.

1 Introduction

Text retrieval models are integral to various day-to-
day applications, including search, recommenda-
tion, summarization, and question answering. In
recent years, transformer-based models have mo-
nopolized textual information retrieval and led to
significant progress in the field (Lin et al., 2021).
However, the existing literature mostly focuses on
improving retrieval effectiveness in a handful of

widely spoken languages – notably English (Muen-
nighoff et al., 2023) and Chinese (Xiao et al., 2023)
– whereas other languages receive limited attention.

As a solution, a few studies have suggested fine-
tuning multilingual transformer-based encoders,
such as mBERT (Devlin et al., 2019), on ag-
gregated retrieval data across various languages.
Nonetheless, this approach faces two major chal-
lenges. First, acquiring high-quality relevance la-
bels for various languages proves difficult, particu-
larly for those with fewer resources. Consequently,
languages with insufficient representation in train-
ing data experience a proficiency gap compared to
widely represented ones (MacAvaney et al., 2020).
Second, when these multilingual transformers are
pretrained on too many languages, their perfor-
mance on downstream tasks worsens. This issue,
known as the curse of multilinguality (Conneau
et al., 2020), underscores the challenge of develop-
ing models that effectively accommodate a broader
spectrum of languages.

Our work addresses the challenges above by
introducing ColBERT-XM, a novel multilingual
dense retrieval model built upon the recent XMOD
architecture (Pfeiffer et al., 2022), which combines
shared and language-specific parameters pretrained
from the start to support the following key features:

1. Reduced dependency on multilingual data:
Our XMOD-based retriever is designed to
learn through monolingual fine-tuning, capi-
talizing on the rich data from a high-resource
language, like English, thereby reducing the
need for extensive multilingual datasets.

2. Zero-shot transfer across languages: Despite
being fine-tuned in a single language, our re-
triever’s modular components enable effective
knowledge transfer to a variety of underrepre-
sented languages without any further training.

3. Significant reduction in carbon footprint:
Trained on just 6.4M English examples, our
model contrasts with higher-consuming SoTA
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Figure 1: A high-level illustration of XMOD’s modular layer during its successive learning stages. Components
that are blurred indicate that they remain frozen. (a) Initially, the model learns language-specific adapters at each
transformer layer via MLM pre-training on a large multilingual corpus. (b) We then adapt the pre-trained model
to the downstream retrieval task by fine-tuning its shared weights on a high-resource language, while keeping the
modular adapters and the embedding layer frozen. (c) Next, we perform zero-shot transfer by routing the target
language’s input text through the corresponding modular units. (d) Incidentally, the architecture supports adding
new languages post training by learning extra modular adapters only via light MLM training in the new language.

networks and exemplifies environmental re-
sponsibility by dramatically lowering energy
consumption and carbon emissions.

Practically, ColBERT-XM learns to effectively
predict relevance between queries and passages
using only a limited set of English examples, lever-
aging the late interaction approach introduced in
ColBERT (Khattab and Zaharia, 2020). Our ex-
perimental results demonstrate competitive per-
formance across a diverse range of languages
against state-of-the-art multilingual models trained
on vastly larger datasets and many more languages.
Moreover, our analysis shows that ColBERT-XM is
highly data-efficient, as more training data from the
same distribution does not markedly enhance its
performance. Even so, further investigations reveal
our model’s strong ability to generalize to out-of-
distribution data, despite its limited training. We
also provide evidence that multi-vector representa-
tions outperform single-vector approaches within
our framework. Finally, we underscore our model’s
sustainability by examining its environmental im-
pact in comparison to established dense retrievers.

In summary, the contributions of this research
are threefold. First, we introduce a novel modular
dense retriever that, despite being trained exclu-
sively in one language, demonstrates remarkable
adaptability to a broad spectrum of languages in
a zero-shot configuration. Second, through com-
prehensive experiments, we compare the effec-
tiveness of employing multi-vector over single-
vector representations, explore the influence of
the volume of training examples on the overall
model’s performance, investigate the model’s abil-
ity to adapt to out-of-distribution data and lan-
guages it has not previously encountered, includ-
ing low-resource ones, and highlight its sustain-
able environmental footprint. Finally, we release
our source code and model checkpoints at https:
//github.com/ant-louis/xm-retrievers.

2 Related Work

2.1 Multilingual Information Retrieval

The term “multilingual” typically encompasses a
wide range of retrieval tasks using one or more lan-
guages (Hull and Grefenstette, 1996). In our study,

https://github.com/ant-louis/xm-retrievers
https://github.com/ant-louis/xm-retrievers


4372

we define it as performing monolingual retrieval
across multiple languages.

Monolingual text retrieval approaches have re-
lied on simple statistical metrics based on term
frequency, such as TF-IDF and BM25 (Robert-
son et al., 1994), to represent texts and match
documents against a given query. With the ad-
vent of transformer-based language models, con-
textualized representations rapidly got incorpo-
rated into retrieval models and gave rise to various
neural-based retrieval techniques, including cross-
encoder models such as monoBERT (Nogueira
et al., 2019) and monoT5 (Nogueira et al., 2020),
single-vector bi-encoders like DPR (Karpukhin
et al., 2020) and ANCE (Xiong et al., 2021), multi-
vector bi-encoders like ColBERT (Khattab and Za-
haria, 2020) and XTR (Lee et al., 2023), and sparse
neural models such as uniCOIL (Lin and Ma, 2021)
and SPLADE (Formal et al., 2021).

Nevertheless, prior work on neural retrievers
has predominantly focused on English due to the
abundance of labeled training data. In non-English
settings, multilingual pretrained language models
such as XLM-R (Conneau et al., 2020) and mBERT
(Devlin et al., 2019) emerged as an effective solu-
tion, capable of adapting the retrieval task across
many languages using a shared model (Lawrie
et al., 2023). However, these models proved to suf-
fer from the curse of multilinguality (Chang et al.,
2023), have shown substantially reduced mono-
lingual abilities for low-resource languages with
smaller pretraining data (Wu and Dredze, 2020),
and do not effectively extend to unseen languages
after the pretraining phase (Pfeiffer et al., 2022).

2.2 Modular Transformers

Traditionally, adapting pretrained transformer-
based language models to new data settings in-
volves fully fine-tuning all pretrained weights on
relevant data. While effective, this process is com-
putationally expensive. As a parameter-efficient
alternative, recent works have proposed insert-
ing lightweight “expert” modules after each trans-
former layer (Houlsby et al., 2019) to capture spe-
cific modeling aspects, such as language-specific
(Pfeiffer et al., 2020; Ansell et al., 2021) or task-
specific (Bapna and Firat, 2019; He et al., 2021)
knowledge. These modular components, com-
monly referred to as adapters (Rebuffi et al., 2017),
are selectively fine-tuned for the downstream task,
the core transformer parameters remaining frozen.

Despite their growing use in NLP, adapter-based
approaches remain relatively untouched in multilin-
gual information retrieval, with existing IR research
primarily concentrating on cross-language retrieval
(Litschko et al., 2022; Yang et al., 2022b), which
aims to return documents in a language different
from the query. A key limitation of these works is
that the additional capacity introduced by adapters
after pretraining is not able to mitigate the curse of
multilinguality that has already had a catastrophic
impact on the shared transformer weights (Pfeif-
fer et al., 2022). In contrast, our method employs
a model inherently designed for modularity that
learns language-specific capacity during pretrain-
ing, effectively avoiding this limitation.

3 Method

We present a novel multilingual dense retriever that
learns to predict relevance between queries and pas-
sages via monolingual fine-tuning, while adapting
to various languages in a zero-shot configuration.
Our model, ColBERT-XM, adopts a traditional bi-
encoder architecture (§3.1) based on a modular
multilingual text encoder (§3.2), and employs the
MaxSim-based late interaction mechanism (§3.3)
for relevance assessment. The model is optimized
through a contrastive learning strategy (§3.4), and
uses a residual compression approach to signifi-
cantly reduce the space footprint of indexes utilized
for fast vector-similarity search at inference time
(§3.5). We describe each part in detail below.

3.1 Bi-Encoder Architecture
To predict relevance between query q and passage
p, ColBERT-XM uses the popular bi-encoder ar-
chitecture (Gillick et al., 2018), which consists of
two learnable text encoding functions f(·;γi) :
Wn 7→ Rn×d, parameterized by γi, that map input
text sequences of n terms from vocabulary W to
d-dimensional real-valued term vectors, i.e.,

Ĥq = f([q1, q2, · · · , qi];γ1) , and

Ĥp = f([p1, p2, · · · , pj ];γ2) .
(1)

The main idea behind this architecture is to find
values for parameters γi such that a straightforward
similarity function sim : Rn×d × Rm×d 7→ R+

approximates the semantic relevance between q
and p by operating on their bags of contextualized
term embeddings, i.e.,

score(q, p) = sim
(
Ĥq, Ĥp

)
. (2)
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Figure 2: Illustration of the multi-vector late interaction
paradigm used in our proposed ColBERT-XM model.

This scoring approach, known as late interaction
(Khattab and Zaharia, 2020), as interactions be-
tween the query and passage are delayed after
their independent encoding computations, stands
out for its computational efficiency (Reimers and
Gurevych, 2019). This contrasts with the popular
cross-encoder architecture (Nogueira et al., 2019),
which encodes the queries and passages jointly to
learn rich interactions directly within the model.

In this work, we use a siamese bi-encoder, where
queries and passages are encoded by two identical
copies of a shared network (i.e., γ1 = γ2).

3.2 Modular Language Representation

To overcome the limitations posed by multilingual
transformer-based encoders outlined in Section 1,
we use the XMOD model (Pfeiffer et al., 2022)
as our backbone text encoder. As depicted in Fig-
ure 1a, XMOD extends the transformer architec-
ture by incorporating language-specific adapters
(Houlsby et al., 2019) at every transformer layer,
which are learned from the start during the masked
language modeling (MLM) pretraining phase. This
method contrasts with conventional adapter-based
approaches that typically extend pretrained multi-
lingual models post-pretraining, thereby building
upon sub-optimal parameter initialization already
affected by the curse of multilinguality.

Formally, our modular language representation
model is defined as a learnable encoding function
g(·;θ,ϕi) : (Wk,L) 7→ Rk×d, with shared param-

eters θ and language-specific parameters ϕi, that
maps a text sequence t of k terms from vocabulary
W in language Li to d-dimensional real-valued
representations. Let Wout ∈ Rd×dout be a linear
layer with no activations designed to compress the
dimensions of the output representation vectors,
Equation (1) then becomes

Ĥt = g([t1, · · · , tk];θ,ϕi) ·Wout

=
[
ĥ
t
1, ĥ

t
2, · · · , ĥ

t
k

]
.

(3)

A key benefit of employing XMOD over traditional
multilingual transformers is its proven adaptabil-
ity to accommodate new languages after the initial
pretraining phase while maintaining performance
across previously included languages, thereby ef-
fectively counteracting the curse of multilinguality.
Furthermore, Pfeiffer et al. (2022) demonstrated
that the per-language performance remains consis-
tent whether a language is included during pretrain-
ing or added afterward. This suggests that XMOD
can potentially encompass numerous languages by
pretraining on a subset of languages for which suf-
ficient text data exists, and subsequently adapting
to additional, underrepresented languages without
deteriorating overall performance. As shown in Fig-
ure 1d, the post-hoc inclusion of a new language
involves learning extra language-specific adapters
only via MLM training. While beyond the scope
of our study, we hope to explore this characteristic
within the retrieval context in future work.

3.3 MaxSim-based Late Interaction
ColBERT-XM adopts the fine-granular late inter-
action scoring mechanism of ColBERT, depicted
in Figure 2. This mechanism calculates the cosine
similarity across all pairs of query and passage em-
beddings, applies max-pooling across the resulting
similarity scores for each query term, and then sum
the maximum values across query terms to derive
the overall relevance estimate, i.e.,

sim
(
Ĥq̃, Ĥp̃

)
=

n∑
i=1

m
max
j=1

cos
(
ĥ
q̃
i , ĥ

p̃
j

)
, (4)

where q̃ and p̃ correspond to sequences obtained af-
ter incorporating special tokens into q and p, respec-
tively, and truncating to preset maximum lengths n
and m. More specifically, we have

p̃ = [[CLS], [P], p1, · · · , pj ] , and

q̃ = [[CLS], [Q], q1, · · · , qi, [M], · · · , [M]] ,
(5)
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where [M] is a mask token appended to queries
to reach the predefined length n. This padding
strategy serves as a query augmentation technique,
enhancing the model’s ability to interpret short
queries through the generation of extra contextual-
ized embeddings at the mask positions. The special
tokens [P] and [Q] enable the shared XMOD-based
encoder to differentiate between passage and query
input sequences, respectively.

3.4 Supervision
Let B = {(qi, p+i , p

−
H,i)}Ni=1 be a batch of N train-

ing instances, each comprising a query qi associ-
ated with a positive passage p+i and a hard negative
passage p−H,i. By considering the passages paired
with all other queries within the same batch, we can
enrich each training triple with an additional set of
2(N−1) in-batch negatives P−

IB,i = {p+j , p
−
H,j}Nj ̸=i.

Given these augmented training samples, we opti-
mize our model using a contrastive learning strat-
egy that combines two established ranking loss
functions, expressed as

LTOTAL

(
qi, p

+
i , p

−
H,i,P

−
IB,i

)
= LPAIR + LIB (6)

where LPAIR is the pairwise softmax cross-entropy
loss computed over predicted scores for the positive
and hard negative passages, used in ColBERTv1
(Khattab and Zaharia, 2020) and defined as

LPAIR = − log
escore(qi,p

+
i )

escore(qi,p
+
i ) + escore(qi,p

−
H,i)

, (7)

while LIB is the in-batch sampled softmax cross-
entropy loss added as an enhancement for optimiz-
ing ColBERTv2 (Santhanam et al., 2022b):

LIB = − log
escore(qi,p

+
i )∑

p∈P−
IB,i∪{p+i ,p−H,i} e

score(qi,p)
. (8)

These contrastive losses aim to learn a high-quality
embedding function so that relevant query-passage
pairs achieve higher similarity than irrelevant ones.

3.5 Inference
Since passages and queries are encoded inde-
pendently, passage embeddings can be precom-
puted and indexed offline through efficient vector-
similarity search data structures, using the faiss
library (Johnson et al., 2021). Instead of directly
indexing the passage representations as in Col-
BERTv1, which requires substantial storage even
when compressed to 32 or 16 bits, we adopt the
centroid-based indexing approach introduced in
ColBERTv2, as detailed in Appendix A.

4 Experiments

4.1 Experimental Setup
Data. For training, we follow ColBERTv1 and
use triples from the MS MARCO passage rank-
ing dataset (Nguyen et al., 2018), which contains
8.8M passages and 539K training queries. How-
ever, unlike the original work that uses the BM25
negatives provided by the official dataset, we sam-
ple harder negatives mined from 12 distinct dense
retrievers.1 For a comprehensive evaluation across
various languages, we consider the small develop-
ment sets from mMARCO (Bonifacio et al., 2021),
a machine-translated variant of MS MARCO in
13 languages, each comprising 6980 queries. To
assess out-of-distribution performance, we use the
test sets from Mr. TYDI (Zhang et al., 2021), an-
other multilingual open retrieval dataset including
low-resource languages not present in mMARCO.

Implementation. We train our model for 50k
steps using the AdamW optimizer (Loshchilov
and Hutter, 2017) with a batch size of 128, a
peak learning rate of 3e-6 with warm up along
the first 10% of training steps and linear schedul-
ing. We set the embedding dimension to dout=128,
and fix the maximum sequence lengths for ques-
tions and passages at n=32 and m=256, respec-
tively. Training is performed on a single 80 GB
NVIDIA H100 GPU hosted on a Linux server
with two 3.20 GHz AMD EPYC 7763 CPUs
and 500 GB of RAM. We use the following
Python libraries: transformers (Wolf et al.,
2020), sentence-transformers (Reimers
and Gurevych, 2019), colbert-ir (Khattab and
Zaharia, 2020), and wandb (Biewald, 2020).

Metrics & evaluation. To measure effectiveness,
we use the official metrics for each query set, i.e.,
mean reciprocal rank at cut-off 10 (MRR@10) for
MS MARCO, and recall at cut-off 100 (R@100)
along MRR@100 for Mr. TYDI. We compare our
model against established multilingual baselines
spanning four retrieval methodologies. For lexical
matching, we report the widely adopted bag-of-
words BM25 function (Robertson et al., 1994). For
the cross-encoders, we include two classification
models based on mMiniLML6 (Wang et al., 2021)
and mT5BASE (Xue et al., 2021), each fine-tuned
on mMARCO pairs across 9 languages (Bonifacio
et al., 2021). The dense single-vector bi-encoders

1
https://huggingface.co/datasets/

sentence-transformers/msmarco-hard-negatives

https://github.com/facebookresearch/faiss
https://github.com/huggingface/transformers
https://github.com/UKPLab/sentence-transformers
https://github.com/stanford-futuredata/ColBERT
https://github.com/wandb/wandb
https://huggingface.co/datasets/sentence-transformers/msmarco-hard-negatives
https://huggingface.co/datasets/sentence-transformers/msmarco-hard-negatives
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Model # Training en es fr it pt id de ru zh ja nl vi hi ar AvgExamp. Lang. Param.

Lexical systems
1 BM25 (Pyserini) - - - 18.4 15.8 15.5 15.3 15.2 14.9 13.6 12.4 11.6 14.1 14.0 13.6 13.4 11.1 14.2
Cross-encoders
2 mT5BASE (Bonifacio et al., 2021) 12.8M 9 390M 36.6 31.4 30.2 30.3 30.2 29.8 28.9 26.3 24.9 26.7 29.2 25.6 26.6 23.5 28.6
3 mMiniLML6 (Bonifacio et al., 2021) 80.0M 9 107M 36.6 30.9 29.6 29.1 28.9 29.3 27.8 25.1 24.9 26.3 27.6 24.7 26.2 21.9 27.8
Single-vector dense bi-encoders
4 DPR-X (Yang et al., 2022a) 25.6M 4 550M 24.5 19.6 18.9 18.3 19.0 16.9 18.2 17.7 14.8 15.4 18.5 15.1 15.4 12.9 17.5
5 mE5BASE (Wang et al., 2024) 981.6M 16 278M 35.0 28.9 30.3 28.0 27.5 26.1 27.1 24.5 22.9 25.0 27.3 23.9 24.2 20.5 26.5
Multi-vector dense bi-encoders
6 mColBERT (Bonifacio et al., 2021) 25.6M 9 167M 35.2 30.1 28.9 29.2 29.2 27.5 28.1 25.0 24.6 23.6 27.3 18.0 23.2 20.9 26.5

7 ColBERT-XM (ours) 6.4M 1 86M 37.2 28.5 26.9 26.5 27.6 26.3 27.0 25.1 24.6 24.1 27.5 22.6 23.8 19.5 26.2

Table 1: MRR@10 results on mMARCO small dev set. Performance on languages encountered during fine-tuning
is highlighted in orange , whereas zero-shot performance is highlighted in blue . ColBERT-XM reaches near
state-of-the-art results while trained on one language only with much fewer examples than competitive models.

are derived from XLM-R (Conneau et al., 2020)
and have been fine-tuned on samples in 4 (Yang
et al., 2022a) and 16 languages (Wang et al., 2024),
respectively. Lastly, we report the performance of a
dense multi-vector bi-encoder built on mBERTBASE

(Devlin et al., 2019) and fine-tuned on mMARCO
samples across 9 languages (Bonifacio et al., 2021).

4.2 Main Results

Table 1 reports results using the official MRR@10
metric for the 14 languages included in mMARCO.
In its training language (i.e. English), ColBERT-
XM outperforms all multilingual baselines. The un-
derperformance of certain models, like mT5BASE and
mColBERT, can partly be attributed to their expo-
sure to fewer English examples given their training
across 9 languages with 12.8M and 25.6M samples
distributed evenly – resulting in only 1.4M and
2.8M English examples, respectively, compared
to ColBERT-XM’s 6.4M training set. Conversely,
models such as mMiniLML6 and mE5BASE, despite
being exposed to a larger number of English exam-
ples, still underperform, suggesting that the modu-
lar architecture of ColBERT-XM may offer intrin-
sic benefits over conventional multilingual models.

In languages on which ColBERT-XM was not
trained but the baselines were, we observe com-
parable performance. For instance, when exclud-
ing English, the difference in average performance
between our model and mE5BASE is merely 0.5%,
even though mE5BASE was trained in 15 additional
languages and 800,000 times more data samples.
In languages on which neither ColBERT-XM nor
the baselines were trained, we note a slight en-
hancement in performance among the computation-
ally expensive cross-encoder models, while both
the non-modular single-vector and multi-vector bi-
encoders lag behind our model in performance.

Overall, ColBERT-XM demonstrates strong
knowledge transfer and generalization capabilities
across languages while trained on a significantly
smaller monolingual set.

4.3 Further Analysis
In this section, we conduct a thorough analysis
of several key aspects of our proposed methodol-
ogy, including the influence of greater volumes
of training data on ColBERT-XM’s performance
(§4.3.1), a performance comparison with a modu-
lar single-vector representation variant (§4.3.2), the
model’s ability to generalize to out-of-distribution
data (§4.3.3), and its environmental footprint com-
pared to existing multilingual retrievers (§4.3.4).

4.3.1 How does training on more examples
affect ColBERT-XM performance?

Despite being trained on substantially fewer ex-
amples, ColBERT-XM demonstrates competitive
results compared to existing multilingual models,
raising the question of whether an increased vol-
ume of training data would further enhance its per-
formance. To investigate, we train five instances
of our modular retriever on a varying number of
MS MARCO training triples, namely 3.2M, 6.4M,
12.8M, 19.2M, and 25.6M examples. Figure 3
shows the resulting models’ performance on the
mMARCO small dev set across MRR@10 and re-
call at various cut-offs, alongside the fixed per-
formance of mE5BASE for comparison. The results
reveal an initial performance boost with an in-
crease in training data, which plateaus quickly
after 6.4M examples, suggesting diminishing re-
turns from additional data of the same distribution.
This contrasts with existing baselines that were
trained on comparatively more samples from di-
verse languages to reach their peak performance,
thereby underscoring ColBERT-XM’s efficiency
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Figure 3: Performance of ColBERT-XM on mMARCO small dev set, based on the volume of training examples.

in low-resource scenarios. For a comprehensive
breakdown of performance across individual lan-
guages, we refer to Table 4 in Appendix B.

4.3.2 How does a single-vector representation
variant compare to ColBERT-XM?

To analyze the effects of single-vector vs. multi-
vector representations on our model’s performance,
we implement a variant of our modular dense re-
triever that maintains the bi-encoder architecture
and modular encoder outlined in Sections 3.1 and
3.2, respectively, yet adopts a different late inter-
action scoring mechanism that operates on single-
vector representations of the input sequences, i.e.,

sim
(
Ĥq, Ĥp

)
= cos

(
pool

(
Ĥq

)
,pool

(
Ĥp

))
,

(9)
where pool : Rk×d → Rd distills a global repre-
sentation for the whole text sequence using mean,
max, or [CLS] pooling on the corresponding bags
of contextualized term embeddings. We train this
model, dubbed DPR-XM, on 25.6M MS MARCO
triples with a batch size of 128 and learning rate
warm up along the first 10% of steps to a maximum
value of 2e-5, after which linear decay is applied.

Figure 4 illustrates the comparative performance
of our XMOD-based dense retrievers. We observe
that ColBERT-XM surpasses DPR-XM in the train-
ing language (i.e., English) by 4.5% on MRR@10.
Furthermore, it consistently outperforms DPR-XM
across the other 13 languages not encountered dur-
ing training by an average of 4.9%. Supported
by findings from Santhanam et al. (2022b), our
results confirm that multi-vector models bypass
the restrictive information bottleneck inherent in
single-vector models, enabling a richer and more
nuanced representation of queries and passages,
thereby yielding higher retrieval performance.

4.3.3 How does ColBERT-XM generalize to
out-of-distribution data?

To assess ColBERT-XM’s capabilities for out-of-
distribution generalization, we conduct a zero-
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Figure 4: MRR@10 results of our multi-vector represen-
tation retriever (ColBERT-XM) compared to its single-
vector counterpart (DPR-XM) on mMARCO dev set.

shot evaluation on Mr. TYDI, encompassing five
languages not covered in mMARCO – notably
Swahili, Bengali, and Telugu, which are commonly
identified as low-resource. Table 2 reports the
zero-shot performance of ColBERT-XM along-
side the BM25, mT5-based cross-encoder, and
mColBERT baselines. We find that ColBERT-XM
shows substantial generalization across the out-of-
distribution data. While not as effective as the com-
putationally expensive cross-attentional mT5BASE re-
ranking model on the rank-aware MRR@100 met-
rics, ColBERT-XM outperforms its non-modular
mColBERT counterpart. Notably, on the rank-
unaware R@100 metrics, ColBERT-XM matches
closely and even surpasses the more resource-
intensive mColBERT and mT5 retrieval models,
which have been trained on many more samples and
languages. These findings highlight our model’s
ability to efficiently adapt to domains and lan-
guages beyond its original training scope.

4.3.4 What is the environmental footprint of
ColBERT-XM?

Given the growing concerns over carbon emis-
sions and climate change, the environmental im-
pact of AI models has become a crucial issue.
In a quest for achieving ever-increasing perfor-
mance, many works prioritize effectiveness over ef-
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Model Type ar bn en fi id ja ko ru sw te Avg

MRR@100
1 BM25 (Pyserini) LEXICAL 36.8 41.8 14.0 28.4 37.6 21.1 28.5 31.3 38.9 34.3 31.3
2 mT5BASE (Bonifacio et al., 2021) CROSS 62.2 65.1 35.7† 49.5 61.1† 48.1 47.4 52.6† 62.9 66.6 55.1
3 mColBERT (Bonifacio et al., 2021) MULTI 55.3 48.8 32.9† 41.3 55.5† 36.6 36.7 48.2† 44.8 61.6 46.1
4 ColBERT-XM (ours) MULTI 55.2 56.6 36.0† 41.8 57.1 42.1 41.3 52.2 56.8 50.6 49.0

R@100
5 BM25 (Pyserini) LEXICAL 79.3 86.9 53.7 71.9 84.3 64.5 61.9 64.8 76.4 75.8 72.0
6 mT5BASE (Bonifacio et al., 2021) CROSS 88.4 92.3 72.4† 85.1 92.8† 83.2 76.5 76.3† 83.8 85.0 83.5
7 mColBERT (Bonifacio et al., 2021) MULTI 85.9 91.8 78.6† 82.6 91.1† 70.9 72.9 86.1† 80.8 96.9 83.7
8 ColBERT-XM (ours) MULTI 89.6 91.4 83.7† 84.4 93.8 84.9 77.6 89.1 87.1 93.3 87.5

Table 2: Out-of-domain retrieval performance on Mr. TYDI test set. All supervised models were fine-tuned on one
or more languages from mMARCO. † indicates performance on languages seen during training. The best results are
marked in bold, and the second best are underlined.

ficiency, leading to models whose training requires
significant energy consumption often derived from
non-renewable resources, thereby exacerbating the
global carbon footprint. Our comparative analysis
demonstrates that ColBERT-XM exhibits reduced
energy consumption and carbon emissions while
performing comparably to leading retrieval mod-
els, underscoring its economic and environmental
advantages.2 Table 3 reveals that ColBERT-XM,
trained for 7.5 hours only on private infrastructure
with a carbon efficiency of 0.432 kgCO2eq/kWh,
utilized only 2.3 kWh of power for a carbon foot-
print of about 1.01 kgCO2eq, which is approxi-
mately the amount of emissions produced by burn-
ing 0.5 kg of coal. This contrasts significantly with
competing models like mE5, which, despite its high
performance, consumed about 100× more power
during training (i.e., 230.4 kWh), emitting carbon
emissions equivalent to burning 49.6 kg of coal.
We calculate the estimated carbon emissions Ec as

Ec =

Power consumption︷ ︸︸ ︷
PTDP︸︷︷︸

Thermal
Design Power

× Ttrain︸ ︷︷ ︸
Training

time

+ Ceff︸︷︷︸
Carbon

efficiency

. (10)

Our analysis not only highlights the potential for
reduced carbon emissions associated with multilin-
gual dense retrievers, but also reflects a deliberate
stride toward aligning AI models with the pressing
need for environmental sustainability. By demon-
strating a comparable performance with a fraction
of the energy and carbon output, we hope to set
a precedent for future research and development
in the field, emphasizing the importance of eco-
friendly retrieval systems. Note that we also report
inference costs in Appendix C.

2Estimations were conducted using the MachineLearning
Impact calculator (Lacoste et al., 2019).

Model Hardware TDP Training Power Emission
(W) time (h) (kWh) (kgCO2eq)

1 mE5BASE 32× V100 300 24 230.4 99.52
2 mMiniLML6 1× A100 400 50 20.0 8.64
3 mColBERT 1× V100 300 36 10.8 4.67
4 mT5BASE 1× TPUv3 283 27 7.6 3.30

5 ColBERT-XM 1× H100 310 7.5 2.3 1.01

Table 3: Power efficiency and carbon footprint of exist-
ing multilingual retrieval models.

5 Conclusion

This research presents ColBERT-XM, a multilin-
gual dense retrieval model built upon the XMOD
architecture, which effectively learns from mono-
lingual fine-tuning in a high-resource language and
performs zero-shot retrieval across multiple lan-
guages. Despite being trained solely in English,
ColBERT-XM demonstrates competitive perfor-
mance compared to existing state-of-the-art neu-
ral retrievers trained on more extensive datasets in
various languages. An in-depth analysis reveals
that our modular model learns faster, consumes
a fraction of energy, and has a lower carbon foot-
print than existing multilingual models, thereby bal-
ancing its efficacy with environmental sustainabil-
ity goals. Additionally, ColBERT-XM generalizes
on out-of-distribution data and low-resource lan-
guages without further training, performing closely
or surpassing strong retrievers. We believe that our
research can help build effective retrieval systems
for many languages while eliminating the need for
language-specific labeled data, thus fostering inclu-
sivity and linguistic diversity by helping individuals
access information in their native languages.

Limitations

This section enumerates our work’s limitations.

https://mlco2.github.io/impact
https://mlco2.github.io/impact
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Broader evaluation across diverse datasets.
While our model’s evaluation predominantly re-
lies on the mMARCO dataset (Bonifacio et al.,
2021), future investigations could benefit from ex-
ploring a broader spectrum of multilingual retrieval
datasets, such as MIRACL (Zhang et al., 2022),
SWIM-IR (Thakur et al., 2023), and MLDR (Chen
et al., 2024). Additionally, examining the model’s
proficiency in domain-specific retrieval could offer
valuable insights into its adaptability to specialized
knowledge areas. However, such benchmarks are
scarce in multilingual contexts.

Distillation of expressive retrieval models. In-
stead of the pairwise cross-entropy loss employed
in ColBERTv1, a KL-divergence loss aimed at dis-
tilling the scores from a more sophisticated cross-
encoder model, as used in ColBERTv2, could yield
notable performance improvement (Santhanam
et al., 2022b). Nevertheless, our estimates sug-
gest this supervision scheme would require around
9.3× more computational time for training on our
system, surpassing our current resource allocation.
As such, we let this exploration for future work.

Adaptability to cross-lingual retrieval. While
this study presents a multilingual model designed
for information retrieval within the same language,
investigating its cross-lingual retrieval capabilities
– i.e., identifying relevant passages in a target lan-
guage based on queries in a different source lan-
guage – represents a compelling direction for future
research, especially in light of increasing needs for
systems that can transcend language barriers.

Model interpretability. Enhancing the inter-
pretability of retrieval model outputs is essential
for boosting user confidence and ensuring system
transparency, particularly given the complex lin-
guistic and cultural nuances present in multilingual
contexts. Building on seminal works in the area
(Sudhi et al., 2022; Anand et al., 2023), our future
efforts will focus on deepening our understanding
of ColBERT-XM’s decision-making mechanisms.

Evaluation of post-hoc language addition. Ex-
isting research suggests that XMOD can accommo-
date new languages post-hoc while mitigating the
curse of multilinguality, a property demonstrated in
text classification (Pfeiffer et al., 2022). However,
extending this exploration to retrieval is limited
by the availability of IR datasets in low-resource
languages beyond the 81 already integrated in the

pre-trained XMOD checkpoint, since creating such
datasets is extremely tedious and beyond the scope
of this work. We hope to investigate this character-
istic within retrieval contexts in future work.

Broader Impacts

This section discusses our approach’s ethical con-
siderations, societal implications, and misuse.

Ethical considerations. Our work mostly lever-
ages the widely recognized MS MARCO dataset,
which contains over half a million anonymized
queries collected from Bing’s search logs, ensuring
that our data sourcing practices are ethical and pro-
tect individual privacy. By leveraging mMARCO’s
direct translations, we ensure a fair and unbiased
distribution of samples across languages, thereby
avoiding the reinforcement of stereotypes. Further-
more, the combination of automated translation
and manual labeling of the dataset ensures the reli-
ability and precision of the ground truth data. This
approach is essential for reducing label bias, which
can arise from human annotators’ varying profi-
ciency levels and backgrounds.

Societal implications. Multilingual retrieval
models significantly impact society by reducing
language barriers and improving information ac-
cessibility for all. Our research aims to foster inclu-
sivity and linguistic diversity, helping non-English
speakers and those desiring information in their
native languages. By developing models capable
of effectively retrieving information in lesser-used
languages, we contribute to equitable learning op-
portunities worldwide, enable businesses to serve
a diverse international clientele, and prevent the
digital marginalization of linguistic minorities.

Potential misuse. The premature deployment of
a modular retrieval system presents a few risks.
Notably, flaws or biases acquired during the mono-
lingual fine-tuning phase could be inadvertently
propagated to other languages when performing
zero-shot transfer, thus perpetuating these malfunc-
tions. More generally, the integrity of the under-
lying knowledge corpus is crucial, as even an ef-
fective system may retrieve relevant yet factually
inaccurate content, thus unwittingly spreading mis-
information. These concerns underscore the need
for interpretability of retrieval model predictions to
bolster user trust in such systems, which ColBERT-
XM addresses with its interpretable MaxSim-based
scoring mechanism.
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# Training en es fr it pt id de ru zh ja nl vi hi ar AvgExamples

MRR@10
3.2M 35.7 27.7 25.9 26.2 26.9 25.3 26.2 24.4 24.0 23.9 26.5 21.8 23.2 19.2 25.5
6.4M 37.2 28.5 26.9 26.5 27.6 26.3 27.0 25.1 24.6 24.1 27.5 22.6 23.8 19.5 26.2

12.8M 38.1 28.6 26.8 26.9 27.5 26.6 27.1 25.4 24.9 24.2 27.3 22.9 23.8 19.5 26.4
19.2M 38.2 28.7 26.8 26.7 27.9 26.7 27.1 25.7 25.0 24.1 27.5 23.2 23.7 19.3 26.5
25.6M 38.0 28.4 26.7 26.8 27.8 26.6 27.1 26.0 25.2 24.2 27.5 23.2 23.8 19.6 26.5

R@10
3.2M 63.8 50.4 48.2 47.8 49.6 46.8 48.3 46.1 44.9 44.3 49.2 41.2 43.4 35.6 47.1
6.4M 65.7 52.0 49.2 48.2 50.5 48.3 49.5 47.3 46.0 44.6 49.8 42.4 44.2 36.5 48.2

12.8M 66.4 51.8 48.7 48.6 50.5 48.3 49.6 47.1 45.9 45.0 50.0 42.3 43.8 36.4 48.2
19.2M 67.0 52.0 49.1 48.2 50.4 48.9 49.6 47.8 46.0 44.8 50.0 42.8 43.6 35.7 48.3
25.6M 67.0 51.9 48.7 48.8 50.5 48.6 49.7 47.9 46.4 45.0 50.0 42.7 43.8 36.2 48.4

R@100
3.2M 88.5 77.2 75.1 73.6 75.3 73.3 73.1 73.0 71.6 71.2 74.4 66.8 68.6 59.3 72.9
6.4M 89.3 77.5 75.2 74.1 75.8 74.5 73.9 73.6 72.2 71.4 75.2 67.5 69.8 60.4 73.6

12.8M 90.1 77.7 75.3 73.8 75.6 73.9 73.9 73.6 72.2 71.4 75.0 67.2 69.0 59.7 73.5
19.2M 90.0 77.4 75.2 73.6 75.7 74.4 74.1 73.8 72.5 71.3 75.1 67.9 69.1 59.7 73.6
25.6M 90.0 77.5 75.3 73.6 75.7 74.1 74.2 73.9 72.7 71.4 75.3 67.8 69.4 59.7 73.6

R@1000
3.2M 96.3 88.7 87.5 86.3 87.4 86.2 85.5 85.7 84.7 83.8 86.8 81.5 81.4 75.1 85.5
6.4M 96.5 88.4 87.3 86.1 87.1 86.7 86.0 85.7 84.8 83.6 86.8 81.6 82.2 74.8 85.5

12.8M 96.5 88.0 87.5 85.8 86.9 86.0 85.4 85.6 84.7 83.6 86.4 80.9 81.4 74.3 85.2
19.2M 96.6 87.8 87.2 85.9 86.8 86.5 85.2 85.4 84.4 83.2 86.9 81.1 81.5 74.0 85.2
25.6M 96.7 87.8 87.3 85.8 87.0 86.2 85.3 85.4 84.3 83.4 87.0 80.9 81.6 74.0 85.2

Table 4: Influence of training samples on the performance of ColBERT-XM model on mMARCO small dev set.

applying k-means clustering to the contextualized
term embeddings of only a sample of all passages.

Then, every passage in the corpus is processed
using the modular language representation model,
as detailed in Section 3.2, and the resulting contex-
tualized term embeddings are assigned the iden-
tifier of the closest centroid cj ∈ C, which re-
quires ⌈log2 |C|⌉ bits to be encoded. Additionally, a
residual representation rpi ∈ Rdout is computed for
each term embedding to facilitate its reconstruction
given rpi = ĥp

i − cj . To enhance storage efficiency,
each dimension of this residual vector is quantized
into 2-bit values. Consequently, storing each term
vector requires 2dout + ⌈log2 |C|⌉ bits, i.e. roughly
7× less than the 16dout bits needed for the 16-bit
precision compression used in ColBERTv1, with-
out compromising on retrieval quality.

Finally, the identifiers of the compressed term
embeddings linked to each centroid are grouped
together and saved on disk within an inverted list.
At search time, the nprobe centroids closest to every
term representation of a given query are identified,
and the embeddings indexed under these centroids
are fetched for a first-stage candidate generation.

Specifically, the compressed embeddings associ-
ated with the selected centroids are accessed via the
inverted list structure, decompressed, and scored
against each query vector using the similarity met-
ric. The computed similarities are then aggregated
by passage for each query term and subjected to a
max-pooling operation. Since not all terms from
a given passage are evaluated but only those asso-
ciated with the selected centroids, the scores from
this preliminary retrieval stage serve as an approx-
imate of the MaxSim operation described in Sec-
tion 3.3, thus providing a lower bound on actual
scores. These approximated values are summed
across query terms, and the k passages with the
highest scores undergo a secondary ranking phase.
Here, the full set of term embeddings for each can-
didate passage is considered to calculate the exact
MaxSim scores. The selected passages are then re-
ordered based on these refined scores and returned.

B Experimental Details

Table 4 provides a comprehensive breakdown of
ColBERT-XM’s performance across individual lan-
guages on mMARCO small dev set, depending on
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Model & Engine Index Storage Latency (ms/q)
Disk Ratio GPU CPU

BM25
w/ JASS (Trotman and Crane, 2019) 1.2GB ×0.4 – 16
w/ Anserini (Yang et al., 2018) 0.7GB ×0.2 – 40
w/ PISA (Mallia et al., 2019) 0.7GB ×0.2 – 8

mE5BASE

w/ HNSW (Malkov and Yashunin, 2020) 28GB ×9.2 1 66
w/ IVF-Flat (Sivic and Zisserman, 2003) 26GB ×8.5 2 552

ColBERT(-XM)
w/ v1 (Khattab and Zaharia, 2020) 154GB ×50.5 178 –
w/ v2 (Santhanam et al., 2022b) 29GB ×9.5 122 3275
w/ PLAID (Santhanam et al., 2022a) 22GB ×7.3 55 370

Table 5: Efficiency results on MS MARCO. We report
numbers from Mackenzie et al. (2021) and Li et al.
(2023) for BM25 and ColBERT, respectively. Ratio
denotes the factor between index size and plain text size.
Measures not applicable are denoted “–”.

the number of examples used for training.

C Inference Costs

To assess our approach’s practicality for real-world
deployment, we compare its computational and
memory efficiency against sparse lexical (BM25)
and single-vector dense (mE5BASE) models.

Index size. First, we report the storage footprint
associated with indexing MS MARCO’s 8.8M
passages using several retrieval engines for each
method. All indices store dense vectors in fp32
and corpus ids in int64 (if necessary). While
ColBERTv1’s original indexing approach is highly
inefficient, we observe that ColBERTv2’s residual
compression technique matches the storage of the
widely-used HNSW nearest-neighbor index for a
768-dimensional single-vector model. Employing
the PLAID retrieval engine further enhances stor-
age efficiency by 1.3×.

Search latency. We then examine the average
retrieval latency per query (in milliseconds) across
the different retrieval engines. Following prior
work (Mackenzie et al., 2021; Santhanam et al.,
2022a), we exclude the online query encoding
latency for neural models. For reference, this
latency is identical for both ColBERT-XM and
mE5BASE models – as they derive from the same
XLM-RoBERTa architecture – with encoding
times around 11ms on GPU and 44ms on CPU. The
reported numbers are calculated by averaging the
times required to return the top-1000 candidates
for all MS MARCO dev set queries at a batch
size of 1 to simulate streaming queries. Despite
its more complex scoring mechanism, ColBERT
exhibits competitive low-latency performance

using the PLAID engine, especially on CPU
where it demonstrates efficiency comparable to
single-vector dense retrieval.

Note that the BM25 results are sourced from
Mackenzie et al. (2021), which were generated
on a 3.50 GHz Intel(R) Xeon(R) Gold 6144 CPU,
while the ColBERT results are derived from Li
et al. (2023), who used a NVIDIA A100 for GPU
search and a 3.00 GHz Intel(R) Xeon(R) Platinum
8275CL for CPU search. For mE5BASE, we measure
latency on a NVIDIA H100 for GPU search and
a 3.20 GHz AMD EPYC 7763 for CPU search.
Given these measurements were conducted on dis-
tinct hardware configurations, they are meant to
establish ColBERT(-XM)’s competitive efficiency
rather than serving as absolute comparisons.

D Reproducibility

We ensure the reproducibility of the experi-
mental results by releasing our source code on
Github at https://github.com/ant-louis/

xm-retrievers. In addition, we release our model
checkpoints on the Hugging Face Hub at https:
//huggingface.co/antoinelouis/colbert-xm

and https://huggingface.co/antoinelouis/

dpr-xm.
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