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Abstract

The advancement of social media has intensi-
fied interest in the research direction of Mul-
timodal Sentiment Analysis (MSA). However,
current methodologies exhibit relative limita-
tions, particularly in their fusion mechanisms
that overlook nuanced differences and similar-
ities across modalities, leading to potential bi-
ases in MSA. In addition, indiscriminate fusion
across modalities can introduce unnecessary
complexity and noise, undermining the effec-
tiveness of the analysis. In this essay, a Modal-
Preserving and Interaction-Driven Fusion Net-
work is introduced to address the aforemen-
tioned challenges. The compressed represen-
tations of each modality are initially obtained
through a Token Refinement Module. Subse-
quently, we employ a Dual Perception Fusion
Module to integrate text with audio and a sepa-
rate Adaptive Graded Fusion Module for text
and visual data. The final step leverages text
representation to enhance composite represen-
tation. Our experiments on CMU-MOSI, CMU-
MOSEI, and CH-SIMS datasets demonstrate
that our model achieves state-of-the-art perfor-
mance.

1 Introduction

With the development of online social media plat-
forms such as TIKTOK, more and more people use
various social media to express their emotions and
views, such as sharing pictures and videos. Conse-
quencely, the task of Multimodal Sentiment Analy-
sis (MSA) has been extended to multimodel data,
and is no longer limited to unimodel data. With the
increase of multimodel data, MSA has become a
popular research direction (Baltrušaitis et al., 2018).
Extracting user emotions from multimodel data can
help decision makers understand historical situa-
tions, predict future trends, and make more wise
decisions (Chatterjee et al., 2019). These emotions
are usually classified as positive, negative or neu-
tral.

Previous works mostly focused on integrating
three modalities with equal importance, while ig-
noring the individual information of each modality
itself. Some works simply utilize feature cascading
as a multimodal fusion mechanism for fusion (Ma-
jumder et al., 2019; Joshi et al., 2022). Although
some works focus on text as the main modality for
fusion (Ma et al., 2023), in some cases, analyzing
the speaker’s emotions solely through text modality
is not enough, such as the following sentence."The
song is sick." The meaning conveyed by this sen-
tence is ambiguous, but if the speaker is smiling
while saying it, it will be considered positive. Con-
versely, if the speaker is frowning while saying this
sentence, it will be considered negative. And dif-
ferent tones will also affect the result, as shown in
Figure 1.

Text Negaivte

Vision smile

Audio Positive

Text : The song is bad.

Emotion : Postive

Figure 1: Illustration of the significance of different
modalities for accurate prediction.

To address the above challenges, we need to con-
sider the individual information of each modality in
order to better understand and utilize their unique
characteristics. To the best of our knowledge, when
considering semantic alignment and contextual co-
herence, the similarity between text and audio, as
well as text and visual content, is higher. The ex-
ploitation of this higher similarity is crucial to our
research, as it directly impacts the effectiveness of
feature fusion in MSA. Text and audio both convey
linguistic and semantic information, with text pro-
viding clear language and audio adding elements
like tone and intonation. Visual content, such as
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text or symbols in images, can complement textual
information and enhance contextual understanding.
While text and audio share semantic similarities,
visual and audio modalities differ significantly. Vi-
sual content relies on images, colors, and shapes,
whereas audio uses sound waves, intonation, and
speech rate.

The perceptual mechanisms and expression
forms of these modalities are fundamentally dif-
ferent, leading to significant differences in informa-
tion representation and understanding. Although
cross-modal learning can integrate these pieces of
information, it still does not fully and effectively
utilize the unique information of each modality.
In this paper, we propose a Modality-Preserving
and Interaction-Driven Fusion Network (MPID),
which includes two modules: the Dual Perception
Fusion (DPF) Module and the Adaptive Gradual
Fusion (AGF) Module, designed to ensure that the
unique information of each modality is thoroughly
utilized.

Furthermore, the information density of multi-
modal data varies, and noise and irrelevant infor-
mation may be introduced during the fusion pro-
cess. We propose a Token Refinement Module
(TRM) to condense the information of each modal-
ity, thereby reducing redundant data, improving the
processing efficiency of the model, and reducing
computational and storage overhead.

The main contributions of our paper can be
roughly summarized as follows:

• We propose a Dual Perception Fusion Mod-
ule that addresses inconsistencies between
text and audio while preserving contextual
integrity. It employs semantic and distance-
based fusion to enhance text and audio utiliza-
tion.

• We present a Adaptive Gradual Fusion Mod-
ule dynamically adjusts attention weights to
better combine local and global features, mini-
mizing information loss and improving fusion,
especially for complex visual and textual data.

• We conducted experiments on the represen-
tative CMU-MOSI, CMU-MOSEI and CH-
SIMS datasets, demonstrating that our model
achieves state-of-the-art performance.

2 Related Work

MSA seeks to harness data from diverse modalities
to achieve a comprehensive understanding of sen-

timent, thereby mitigating ambiguity and enhanc-
ing accuracy in sentiment classification. Previous
works has mainly focused on unimodal representa-
tion learning and multimodal fusion.

For unimodal representations, data from differ-
ent modalities are integrated into a single feature
representation before being fed into the model.
(Zadeh et al., 2017; Pham et al., 2019) propose
respective feature vectors concatenated to create an
extended feature vector. This combined representa-
tion is then input into the neural network, allowing
the model to simultaneously process and consider
information from all modalities during its learning
and inference stages. (Hazarika et al., 2020) at-
tempts to decompose modal features in the joint
space to represent modal invariance and specific
representations.

For multimodal fusion, a good method should ef-
fectively integrate information from various modal-
ities and address the heterogeneity between them.
(Rahman et al., 2020; Tsai et al., 2018) uses word
boundary alignment to learn associations within
and between modalities. Due to the increasing pop-
ularity of (Vaswani, 2017; Tsai et al., 2019) pro-
posed a cross-modal fusion method for unaligned
sequences. Recently, (Yu et al., 2023) introduces
knowledge injection based on Adapter architecture
for comparative learning with general knowledge
representation in order to ignore the influence of
domain specific knowledge.

Unlike the previous work, our work proposes a
novel fusion network that maximizes interaction
between modalities while retaining specific person-
ality information for each modality.

3 Methodology

3.1 Overview

The overall architecture of our model (MPID) is
shown in Figure 2. The model mainly consists of
four modules, Token Refinement Module, Dual Per-
ception Fusion Module, Adaptive Graded Fusion
Module, and Text Augmented Transformer (TAT).

In TRM, unimodal features are first processed to
uniformly condense the features of each modality.
Subsequently, DPF is used to fuse the condensed
text and audio features, while AGF is used to fuse
the condensed text and visual features. Considering
the importance of textual information, we further
enhance the fusion representation obtained using
TAT to improve the efficiency and accuracy of the
model’s utilization of textual information.
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Figure 2: The overall architecture of MPID. This network utilizes Dual Perception Fusion Module and Dual Percep-
tion Fusion Module to achieve efficient complementary learning while retaining specific personality information for
each modality.

3.2 Problem Definition

In this work, the MSA task encompasses three pri-
mary modalities, text (t), visual (v), and audio (a).
Each modality contributes unique information to
the analysis of sentiment within a video clip.

The input data for our model is derived from
video clips, each consisting of a sequence of frames.
We leverage precomputed representations for each
modality, which are obtained through established
methods: BERT (Kenton and Toutanova, 2019)
for text, Librosa (McFee et al., 2015) for audio,
and OpenFace (Baltrušaitis et al., 2016) for visual
features.

For each modality Xm ∈ Rlm×dm , we denote lm
as the sequence length and dm as the vector dimen-
sion, which m ∈ {t, v, a}.

3.3 Token Refinement Module

To compress the high-dimensional representations
of each modality, we have designed a generic mod-
ule termed the TRM. The initial representations of
all three modalities will be subjected to this module
for dimensionality reduction.

Taking text input as an example, we introduce
Bottleneck Tokens, denoted as HB . To achieve
a condensed representation of multimodal infor-
mation, the most straightforward approach is to
concatenate the text input Xt with HB to form a
unified sequence. This sequence is then processed
by the original transformer model without altering
its architecture.

In the experiment, we first performed prelimi-
nary modal feature extraction through a mapping

Visual Transformer

Text  Projection

Figure 3: The framework of Token Refinement Module,
realize compression of high-dimensional data.

layer,
X

′
t = g(Xt;Et), (1)

where Xt is the original text input and Et is the
projection matrix corresponding to the text.

And the structure of the Transformer layer was
designed to be consistent with the Visual Trans-
former (ViT) with a depth of 1 (Yuan et al., 2021),
as shown in Figure 3.

For layer i, the calculation procedure is as fol-
lows,

[Hi+1
t ||Hi+1

Bt
] = ViT([Hi

t||Hi
Bt
]; θi), (2)

where H1
t denotes the final Bottleneck Tokens, ||

representing the cascading operation, and θi refers
to the associated parameter.

Through the TRM, basic modal information is
mapped to randomly initialize Bottleneck Tokens.
This process effectively reduces redundant infor-
mation and achieves greater efficiency while main-
taining a compact parameter space.
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Figure 4: The structure of the Dual Perception Fusion
Module adaptively adjusts the semantic and distance
based fusion representations to obtain more representa-
tive fusion results.

3.4 Dual Perception Fusion Module

In cascading operations involving text and audio,
crucial information is often concentrated in specific
segments or phrases. For instance, in conversations,
certain words are closely related to specific tones.
Traditional global interaction models may not ef-
fectively capture these nuanced details. To address
this, we proposed DPF that combines semantic and
distance based dual perception fusion, as shown in
Figure 4.

Based on semantic level, by processing and fo-
cusing on the specific pairs of each local interac-
tion separately for audio tokens and text tokens,
we have evaluated various interaction representa-
tion techniques, such as bi-linear and kernel-based
approaches. Our findings suggest that linear ag-
gregation is sufficient for capturing the semantic
interactions between text and audio in practical
tasks. Formally,

Xta
ij = W tXt

i +W aXa
j , (3)

Xta =
[
Xta

ij | i = 1, ..., nt; j = 1, ...na

]
, (4)

where W t and W a are the projection matrices cor-
responding to Xt and Xa, respectively, and Xta is
the calculated density matrix.

Additionally, we have introduced Semantic To-
kens as an intermediate representation post-fusion,
which enhances flexibility in adapting to diverse
data and scenarios. For the semantic fusion repre-
sentation of layer Xs

l , formally,

Xs
l = CrossAttention

(
Xta

l−1, X
s
l−1

)
. (5)

Based on distance perception, we calculated the
Manhattan distance between input sequences. Man-
hattan distance is a measure that sums the abso-
lute differences between point pairs in a feature

space. It can capture linear changes between fea-
tures, which is particularly effective for handling
high-dimensional sparse data, formally,

Dij =
d∑

k=1

|xt,ik − xv,jk|, (6)

AttDij =
exp(−φDij)∑
j exp(−φDij)

, (7)

x̃v,i = xv,i ·
1

|St|
∑
j

Dij , (8)

x̃t,j = xt,j ·
1

|Sv|
∑
i

Dij , (9)

where Dij represents the distance between the i-
th position in the input sequence and the j-th po-
sition in the target sequence. This distance can
be Manhattan distance, Euclidean distance, etc.
Through experiments, we have chosen Manhat-
tan distance here. And φ is used to adjust the de-
gree of influence of distance on attention weights.
x̃v,i and x̃t,j are weighted feature representations,
and |St| and |Sv| are the sequence lengths of xa
and xv.

The output based on distance fusion Od can be
represented as,

Od = FCout(concat(x̃v, x̃t)). (10)

where FCout is a fully connected layer.
Since direct averaging or concatenation may

weaken the representational capacity, we propose a
gated fusion method inspired by (Mai et al., 2019)
to adaptively combine semantic and distance fea-
tures. This method integrates these features from
both local and global perspectives, and is formu-
lated as follows,

gatec = FusionFC(Concat(Os, Od)), (11)

Semg = f(gatec[:, :, 0]), (12)

Distg = f(gatec[:, :, 1]), (13)

Output = Semg ⊙Os +Distg ⊙Od, (14)

where f is the activation function, ⊙ is the dot
product.

Through the above operations, we can automati-
cally adjust the contribution of different levels of
fusion results based on the characteristics of in-
put data, thereby capturing more complex interac-
tions and improving the representation ability of
the model.
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3.5 Adaptive Gradual Fusion Module
Text and visual features inherently possess differ-
ent representations and contextual dependencies,
and it is important to consider the role of local
visual information. Local details, such as facial
expressions, postures, and other subtle visual cues,
are critical for accurately understanding emotions.
Local features aid in identifying and interpreting
nuanced emotional changes, while global informa-
tion provides the overall context and background.
Therefore, integrating local visual information with
textual data can offer a more comprehensive analy-
sis and recognition of emotional states. To address
these challenges, we propose AGF.

Initial fusion is achieved by calculating cross-
attention maps. The text features Xt and visual
features Xv are mapped into queries, keys, and
values. Attention scores are computed by taking the
dot product of queries and keys, and local attention
maps M are generated using softmax. This stage
of local information fusion focuses on aligning
each text position with the specific visual features,
ensuring precise local feature alignment,

M = softmax

(
Xt ·XT

a√
dk

)
·Xa. (15)

Building on local information fusion, we intro-
duce global average attention map G and compute
the average of the attention maps, which represents
the overall average attention of the features. For-
mally,

G =
1

n

n∑
i=1

Mi. (16)

By combining global and local information
through a dynamic weighting coefficient G,

F = α ·M + (1− α)(softmax(G ·M)). (17)

This approach facilitates a gradual transition to
global information fusion, enabling the feature fu-
sion process to integrate both detailed local infor-
mation and global context, thereby enhancing the
overall representational capacity of the features.

3.6 Text-Augmented Transformer and Output
Cross-modal attention operations leverage informa-
tion from one modality to enhance another modal-
ity by learning directed attention between paired
modalities. Given that advanced semantic features
from text, speech, and visual fusion have been ac-
quired, we apply cross-modal attention operations

to further enhance the text modality. By weight-
ing these representations and then utilizing a fully
connected layer for classification, the text modality
serves as a consistent reference. It not only guides
the learning process of visual and audio representa-
tions but also improves sentiment analysis accuracy
by integrating the fused representations.

3.7 Overall Learning Objectives

In summary, this method has only one learning ob-
jective, which is the loss function (L) of sentiment
analysis, which is used to measure the gap between
predicted emotions and true emotions.

L =
1

N

N∑
n=0

∥yn − ŷn∥22 , (18)

where N represents the number of samples in the
training set, yn denotes the sentiment label of the n-
th sample, and ŷn is the prediction made by MPID.

Additionally, due to the simplicity of its opti-
mization objective, MPID is easier to train com-
pared to advanced methods with multiple optimiza-
tion objectives (e.g.Hazarika et al., 2020), as it does
not require the tuning of additional hyperparame-
ters.

4 Evaluation

4.1 Datasets and Metrics

In this work, we employ the CMU-MOSI,CMU-
MOSEI and CH-SIMS dataset to evaluate our pro-
posed method.

CMU-MOSI (Zadeh et al., 2016) includes 93
opinion videos sourced from YouTube, which have
been carefully processed into 2,199 distinct utter-
ance clips. Each clip is required to feature both
the speaker’s voice and face clearly, without inter-
ference from other individuals. Additionally, each
clip must have a sufficient duration and is assigned
a sentiment score within the range of [-3, 3]. The
sentiment scores are not fixed but encompass all
values within this interval. For dataset division,
1,284 utterances are used for training, 229 for vali-
dation, and 686 for testing.

CMU-MOSEI (Zadeh et al., 2018b), created by
the same authors as CMU-MOSI, offers a larger
and more advanced dataset. CMU-MOSEI in-
cludes 22,852 annotated video clips (utterances)
from 1,000 different speakers and 250 topics from
online video platforms. Each utterance is labeled
with sentiment intensity on a scale from [-3, 3].
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CH-SIMS (Yu et al., 2020) comprises 60 orig-
inal videos sourced from movies, TV shows, and
variety programs, segmented into 2,281 individual
clips. Each clip is annotated with sentiment inten-
sity ranging from [-1, 1]. The dataset is partitioned
into training, validation, and test subsets in a 60%
to 20% to 20% split.

Consistent with recent research (Han et al.,
2021), sentiment in the CMU-MOSI and CMU-
MOSEI datasets is classified into seven levels based
on intensity: [-3, -2) for highly negative, [-2, -1) for
negative, [-1, 0) for weakly negative, [0] for neutral,
(0, 1] for weakly positive, (1, 2] for positive, and
(2, 3] for highly positive.

Our evaluation metrics include 7-class accuracy
(Acc-7), 5-class accuracy (Acc-5), 2-class accu-
racy (Acc-2), F1 score (F1), Mean Absolute Error
(MAE), and Pearson Correlation Coefficient (Corr).
The 5-class classification includes negative, weakly
negative, neutral, weakly positive, and positive sen-
timents. Acc-2 and F1 are assessed in two contexts:
one excluding neutral (negative/non-negative) and
one including neutral (negative/positive). The Pear-
son Correlation Coefficient (Corr) measures the
covariance normalized by the standard deviations
of the variables, while MAE indicates the average
magnitude of errors between predicted and actual
values.

We train our model on a single RTX 3080 GPU.
The codes for our implementation are available at
https://github.com/Caroline-L11/MPID.

4.2 Baselines
To verify the performance and effectiveness of the
proposed model, we compared its performance
with the following models.

EF-LSTM, the EF-LSTM model (Williams
et al., 2018) integrates various feature vectors
and inputs them into a Long Short-Term Memory
(LSTM) network to forecast sentiment polarity.

MFN, the MFN model (Zadeh et al., 2018a)
merges LSTM with a memory mechanism to cap-
ture the temporal dependencies.

MulT, the MulT model (Baltrušaitis et al., 2018)
employs a cross-modal attention module based on
the Transformer architecture to capture interactions
between sequences.

Self-MM, the Self-MM model (Yu et al., 2021)
is a multi-task framework based on self-supervised
learning, where unimodal sentiment labels are au-
tomatically generated by the model.

MMIM, the MMIM model (Han et al., 2021)

maximizes mutual information (MI) at a hierarchi-
cal level between unimodal input pairs and between
multimodal fusion results and unimodal inputs.

ALMT, the ALMT model (Zhang et al., 2023)
proposed an adaptive language guidance network
through the AHL module.

MISA, the MISA model (Hazarika et al., 2020)
learns modal invariants and representations of spe-
cific modalities.

4.3 Main Results

The experimental results on the MOSI and MOSEI
datasets are shown in Table 1.

For the MOSEI dataset, the MPID model outper-
forms baseline models across all evaluation metrics.
In the binary classification task, the MPID model
achieves an accuracy of 85.1%, representing a 4%
improvement over the ALMT and other models,
highlighting its enhanced ability to predict senti-
ment polarity. In the multi-classification task, the
MPID model scores 53.64% on Acc-7, exceeding
all baseline models and indicating superior perfor-
mance in capturing fine-grained emotional informa-
tion. Additionally, the model achieves a MAE of
0.533, the lowest among all models, demonstrating
its accuracy in predicting emotional intensity.

For the MOSI dataset, MPID exceeded the per-
formance of both ALMT and Self MM, achieving
the highest F1 score of 84.52%, reflecting excellent
stability and accuracy in sentiment classification.

And the experimental results on the CH-SIMS
datasets are shown in Table 2.

For the CH-SIMS dataset, the MPID model sig-
nificantly outperforms all baseline models on the
CH-SIMS dataset. In binary classification tasks,
MPID shows an improvement of approximately
1.5% to 2% compared to other models. In the multi-
class classification task, MPID achieved an accu-
racy of 44.21% on Acc-5. In the regression task,
our model achieved MAE of 0.421, outperforming
all baseline models.

In summary, MPID performs better than existing
SOTA models.

CH-SIMS
Model

Year Acc-2 (%)↑ Acc-5(%)↑ MAE↓ F1 (%)↑ Corr↑
MulT 2019 77.55 36.84 0.443 78.99 0.554
MISA 2020 75.54 - 0.447 75.59 0.559

Self-MM 2021 79.92 42.53 0.435 79.44 0.596
MPID(ours) 81.56 44.21 0.421 81.91 0.618

Table 2: Performances of MPID on the CH-SIMS
datasets.

https://github.com/Caroline-L11/MPID
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MOSI MOSEI
Model

Year Acc-2 (%)↑ Acc-5(%)↑ Acc-7 (%)↑ MAE↓ F1 (%)↑ Corr↑ Acc-2 (%)↑ Acc-5(%)↑ Acc-7 (%)↑ MAE F1 (%)↑ Corr↑
EF-LSTM 2018 77.39 40.12 35.6 0.949 77.36 0.668 77.82 50.19 50.03 0.603 78.33 0.683

MFN 2018 77.66 40.46 35.83 0.926 77.62 0.671 78.91 51.74 51.33 0.574 79.99 0.716
MulT 2019 78.6 - 33.59 1.147 78.29 0.662 80.15 - 46.61 0.651 79.8 0.662

Self-MM 2021 79.79 - 43.77 0.923 79.68 0.753 80.02 - 51.47 0.501 79.95 0.745
MMIM 2021 79.19 - 44.35 0.682 81.01 0.785 82.11 - 51.11 0.541 85.91 0.757
ALMT 2023 81.7 47.81 42.13 0.761 81.8 0.783 - 52.99 51.1 0.586 83.69 0.759
MPID(Ours) 85.4 55.7 48.4 0.706 84.52 0.792 85.1 55.3 53.64 0.533 85.3 0.776

Table 1: Performances of MPID on the CMU-MOSI and CMU-MOSEI datasets.

4.4 Ablation Experiment

The following ablation experiments will be con-
ducted using the CMU-MOSI dataset. To assess
the effectiveness of these experiments, we will fo-
cus on challenging multi-class indicators, such as
ACC-5, as the primary evaluation metrics.

4.4.1 Effects of Different Components
To evaluate the effectiveness of our proposed mod-
ule, we performed extensive experiments, the re-
sults of which are summarized in the Table 3.

Configs Acc-5(%) Acc-7(%) MAE F1 (%) Corr
MPID 55.7 48.4 0.706 84.52 0.792
w/o TRM 48.98 44.02 0.7507 82.08 0.784
w/o TAT 46.5 41.2 0.779 81.65 0.777
w/o DPF 50.01 45.77 0.747 81.68 0.784
w/o AGF 50.87 45.34 0.749 80.94 0.78
w/o DPF,AGF 18.8 18.22 1.48 53.79 0.208

Table 3: Research on ablation of MPID under different
module settings.

The absence of the TRM led to a notable decline
in model performance, with Acc-5 and Acc-7 drop-
ping to 48.98% and 44.02%, respectively, while
MAE increased to 0.7507. This suggests that the
TRM is crucial for enhancing feature representa-
tion and reducing errors. Removing the TAT re-
sulted in a decrease of 9.2% in Acc-5 and 7.2%
in Acc-7, highlighting the importance of the TAT
in capturing fine-grained textual information. The
overall performance significantly declined after its
removal.

Excluding the DPF and AGF individually led
to a decrease of approximately 5% in both Acc-5
and Acc-7, accompanied by an increase in MAE.
This underscores the importance of incorporating
multimodal information for optimal performance.

When both DPF and AGF were removed simul-
taneously, the model’s performance deteriorated
sharply, with Acc-5 and Acc-7 significantly drop-
ping and MAE rising to 1.48. This indicates that
cross-modal fusion is essential for effective MSA.
The absence of these modules severely hampers the

model’s ability to integrate multimodal information,
resulting in substantial performance degradation.

In summary, each module plays an indispens-
able role in MSA. Their effective integration sig-
nificantly enhances the model’s capability to under-
stand and analyze multimodal data, thereby con-
tributing to the outstanding performance of MPID
in this task.

4.4.2 Effects of Different Settings in DPF
In order to substantiate the efficacy of the DPF,
an extensive series of experiments was conducted.
The outcomes of these experiments are delineated
in Table 4.

Configs Acc-5(%) Acc-7(%) MAE F1 (%) Corr
Effect of Integrating Different Modalities

DPF(a-t) 45.63 41.25 0.792 81.21 0.761
DPF(v-t) 43.73 39.8 0.784 81.98 0.774
DPF(a-v) 15.6 15.45 1.461 56.15 0.281

Impact of Activation Function
MPID(sigmoid,tanh) 55.7 48.4 0.706 84.52 0.792
DPF(sigmiod,sigmoid) 51.9 46.06 0.734 82.52 0.791
DPF(tanh,sigmoid) 51.31 45.48 0.738 82.1 0.789
DPF(tanh,tanh) 49.27 44.02 0.747 81.19 0.785
DPF(relu,tanh) 47.81 43.88 0.776 80.05 0.771
DPF(relu,relu) 51.46 46.21 0.746 80.93 0.78
DPF(relu,sigmoid) 48.98 43.88 0.776 79.72 0.765
DPF(sigmoid,relu) 46.79 41.98 0.787 80.1 0.764
DPF(tanh,relu) 48.4 42.86 0.763 81.4 0.773

Table 4: Ablation studies for DPF, m− n denotes the
fusion of m and n modalities.

The outcomes presented in the upper section of
Table 4 robustly substantiate the effectiveness of
the DPF’s design. The visual-audio fusion is less
effective due to the weak correlation between vi-
sual and audio information, such as environmental
sounds or speech that do not directly match image
content. This results in less intuitive distance-based
measurements and poorer fusion. In contrast, audio
and text exhibit higher semantic alignment, allow-
ing the DPF to effectively capture and align their
semantic information. This enhances fusion accu-
racy by focusing on their complementary features.

Ablation studies on activation functions revealed
that combining Sigmoid and Tanh optimizes our
model by utilizing Sigmoid for precise weighting



4320

of semantic information and Tanh for broader ad-
justment of distance information. As shown in
Table 4, incorporating the ReLU function reduced
performance, likely due to its range not being well-
suited for the fine-tuning required in our module’s
fusion process.

4.4.3 Effects of Different Modalities in AGF
To evaluate the effectiveness of the AGF, we con-
ducted experiments retaining only TRM, with re-
sults summarized in the Table 5.

Configs Acc-5(%) Acc-7(%) MAE F1 (%) Corr
AGF(v-t) 50.44 44.75 0.739 82.14 0.782
AGF(v-a) 16.62 16.47 1.45 55.93 0.195
AGF(t-a) 50.29 44.46 0.742 81.41 0.78

Table 5: The effect of using AGF with different modali-
ties for fusion,

The results indicate that visual-text fusion
achieves the best performance, whereas visual-
audio fusion performs poorly. This disparity may
stem from the strong semantic correlation between
visual and textual features, which facilitates more
effective fusion. In contrast, audio features are
more complex.

Additionally, visual features possess a clear spa-
tial structure that supports effective local informa-
tion preservation, while textual features have strong
semantic associations and are easier to handle in
terms of local information. Audio features, being
time series data, have local information such as
pitch and rhythm that is less intuitive compared to
visual and textual features.

4.4.4 Visualization of Attention in AGF
To evaluate the effectiveness of AGF, we visualized
attention maps at different training stages (Epoch
20, Epoch 60, and Epoch 100), as shown in Figure
5. These maps illustrate how the module dynami-
cally attends to different visual features based on
textual guidance during the fusion process.

At the early training stage (Epoch 20), the atten-
tion weights are concentrated on specific regions,
suggesting that the module initially emphasizes
localized visual features guided by the text. By
Epoch 60, the attention maps show a broader dis-
tribution, indicating the incorporation of more con-
textual visual features influenced by the textual
modality. At Epoch 100, the attention achieves
a balanced distribution, effectively capturing both
fine-grained local details and global contextual pat-
terns in the visual information.

This progressive evolution highlights the capa-
bility of the module to adaptively fuse visual and
textual modalities. By transitioning from local to
global feature emphasis, the module effectively
leverages complementary cues from both modali-
ties.

4.4.5 Effects of Different Fusion
Combinations

In addition, we evaluated the impact of various
modal fusion combinations.

Configs Acc-5(%) Acc-7(%) MAE F1 (%) Corr
MPID

DPF(a-t),AGF(v-t)
55.7 48.4 0.706 84.52 0.792

DPF(a-t),AGF(a-t) 50.4 44.9 0.743 81.54 0.784
DPF(v-t),AGF(a-t) 50.2 45.3 0.735 82.45 0.789
DPF(v-t),AGF(v-t) 51.17 45.48 0.751 82.29 0.774

Table 6: The impact of various modal fusion combina-
tions.

The Table 6 shows that omitting fusion for
any modality leads to a significant drop in multi-
classification accuracy. Specifically, using vi-
sual text fusion with DPF and audio text fusion
with AGF results in a 5.5% decrease in ACC-5.
This underscores the importance of designing DPF
and AGF to leverage the unique characteristics of
each modality, thereby optimizing the retention of
modality-specific information.

4.4.6 Effects of the Guidance of Different
Features in TAT

To assess the effectiveness of the TAT module, we
used various modalities as reinforcement inputs,
with results summarized in the Table 7.

Configs Acc-5(%) Acc-7(%) MAE F1 (%) Corr
MPID(t) 55.7 48.4 0.706 84.52 0.792
TAT(a) 50.29 45.19 0.735 81.31 0.791
TAT(v) 50.15 45.34 0.743 80.62 0.79

Table 7: Performances of using TAT modules with dif-
ferent modalities.

Our proposed MPID approach, utilizing text
as the reinforcement modality, outperforms the
other modalities. Specifically, it achieves an ACC-
5 score approximately 5% higher and an ACC-7
score about 3% higher. These results underscore
the significant advantage and effectiveness of using
text as the reinforcement modality.

5 Conclusion

Our findings confirm that the MPID network’s ap-
proach to multimodal sentiment analysis effectively
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Figure 5: Attention maps of AGF across different training epochs (20, 60, and 100) for the same batch of data. The
maps illustrate the module’s evolving focus from localized visual features to progressively incorporating global
contextual information, guided by textual inputs.

leverages and preserves the unique traits of each
data modality. In this study, we found that the inte-
gration of DPF and AGF modules substantially en-
hances the fusion process, leading to improved sen-
timent analysis. Our results also indicate that the
TRM and TAT module further refines the model’s
accuracy. The validation of each module’s con-
tribution reaffirms the network’s robust and effi-
cient design. Results from CMU-MOSI, CMU-
MOSEI, and CH-SIMS datasets indicate that our
model achieves superior performance.

6 Limitation

Our MPID model uses multiple fusion modules,
which may face efficiency challenges due to com-
puting resource limitations and processing speed.
Handling large feature data for effective fusion can
result in high computational complexity and mem-
ory usage, creating potential bottlenecks.

Furthermore, integrating and managing informa-
tion across the four modules may increase system
complexity, potentially affecting overall model per-
formance.

Meanwhile, we will conduct further research on
the issues related to modal loss and noisy data in
our future work.
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