Idea23D: Collaborative LMM Agents Enable 3D Model Generation from
Interleaved Multimodal Inputs

Junhao Chen!?*, Xiang Li%", Xiaojun Ye?, Chao Li’, Zhaoxin Fan®', Hao Zhao!’
nstitute for AI Industry Research (AIR), Tsinghua University,
Tsinghua Shenzhen International Graduate School, Tsinghua University,
3School of Software and Microelectronics, Peking University,
4College of Computer Science, Zhejiang University,
>College of Computer Science and Technology, Harbin Engineering University,
6 Beijing Advanced Innovation Center for Future Blockchain and Privacy Computing,
School of Artificial Intelligence, Beihang University

Abstract

With the success of 2D diffusion models, 2D
AIGC content has already transformed our
lives. Recently, this success has been extended
to 3D AIGC, with state-of-the-art methods gen-
erating textured 3D models from single images
or text. However, we argue that current 3D
AIGC methods still don’t fully unleash human
creativity. We often imagine 3D content made
from multimodal inputs, such as what it would
look like if my pet bunny were eating a dough-
nut on the table. In this paper, we explore a
novel 3D AIGC approach: generating 3D con-
tent from IDEAs. An IDEA is a multimodal
input composed of text, image, and 3D models.
To our knowledge, this challenging and excit-
ing 3D AIGC setting has not been studied be-
fore. We propose the new framework Idea23D,
which combines three agents based on large
multimodal models (LMMs) and existing algo-
rithmic tools. These three LMM-based agents
are tasked with prompt generation, model selec-
tion, and feedback reflection. They collaborate
and critique each other in a fully automated
loop, without human intervention. The frame-
work then generates a text prompt to create
3D models that align closely with the input
IDEAs. We demonstrate impressive 3D AIGC
results that surpass previous methods. To com-
prehensively assess the 3D AIGC capabilities
of Idea23D, we introduce the Eval3DAIGC-
198 dataset, containing 198 multimodal inputs
for 3D generation tasks. This dataset evaluates
the alignment between generated 3D content
and input IDEAs. Our user study and quanti-
tative results show that Idea23D significantly
improves the success rate and accuracy of 3D
generation, with excellent compatibility across
various LMM, Text-to-Image, and Image-to-
3D models. Code and dataset are available at
https://idea23d.github.io/.
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1 Introduction

Recently the success of 2D AIGC foundation mod-
els (Rombach et al., 2022; Podell et al., 2023;
Zhang et al., 2023c; Shi et al., 2023; Liu et al.,
2023f; OpenAl, 2023b,c; Yang et al., 2023b; Chen
et al., 2023b; Labs, 2024) has been translated to the
3D domain (Liu et al., 2023d; Long et al., 2023;
Poole et al., 2022; Lin et al., 2023; Voleti et al.,
2024; Xu et al., 2024b; Tochilkin et al., 2024; Yang
et al., 2024). However, state-of-the-art models take
RGB images or text prompts as inputs, which still
fails to match the (wildest) creativity of human-
ity. Arguably, the nature of creativity is connecting
(seemingly unrelated) dots that share intrinsic har-
mony. So we propose a novel 3D AIGC setting
in which all prior arts fail: generating textured 3D
models from IDEAs. The formal definition of an
IDEA is an interleaved sequence of multi-modal
inputs, covering modalities like text, images and
3D models. We show some typical IDEAs in Fig. 1,
which contain a text prompt and images or 3D mod-
els. We use rendered 4 images to represent the 3D
model in Fig. 1. This kind of IDEAs come into
our minds now and then in the daily life: Someone
takes a doughnut into the room and looks at her pet
rabbit, imaging what it may look like if the rabbit
is eating the doughnut using front paws. This is
the moment that creativity happens but as far as we
know, no existing 3D AIGC foundation models can
take this kind of IDEAs as input. More different
types of IDEAs are shown in Fig. 3 and Fig. 8.
Existing methods in text-based 3D model gener-
ation (Wang et al., 2024b; Poole et al., 2022; Lin
et al., 2023; Liu et al., 2023d; Qian et al., 2023;
Yang et al., 2024), known as Text-to-3D (T-2-3D),
have made progress in certain aspects such as fi-
delity, but they still face substantial challenges, par-
ticularly when dealing with complex and abstract
interleaved multimodal inputs (IDEAs). A poten-
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Figure 1: The Idea23D framework synergizes the capabilities of the Large Multimodal Model (LMM), Text-to-
Image (T-2-I), and Image-to-3D (I-2-3D) models to transform complex multimodal input IDEAs into tangible 3D
models. This process begins with the user articulating high-level 3D design requirements (IDEA). Following this,
the LMM generates textual prompts (Prompt Generation) that are then converted into 3D models. These models
are evaluated through a Multiview Image Generation and Evaluation process, leading to the Selection of an
Optimal 3D Model. Subsequently, the T-2-1 prompt is refined (Feedback Generation) using insights from the
LMM. Additionally, an integrated memory module (see Sec. 3.7), meticulously records each iteration, facilitating
a multimodal, iterative self-refinement cycle within the framework. Note that this procedure is fully automatic

without any human intervention.

tial solution for adapting existing T-2-3D meth-
ods to handle IDEA inputs is converting the im-
ages and 3D models in the IDEAs into natural lan-
guage descriptions. However, this approach is time-
consuming and requires a certain level of expertise
from the user.

Our proposal is to use a multi-agent collabora-
tion framework. LLM (Large Language Model)
agent systems (Xi et al., 2023; Reworkd, 2023;
Team, 2023; Richards, 2023; Gong et al., 2023; Liu
et al., 2023h; Gu et al., 2023b; Liu et al., 2023a;
Chen et al., 2023c; Gou et al., 2023) have already
demonstrated remarkable effectiveness in solving
complex natural language processing tasks, sug-
gesting their potential application in the T-2-3D
domain. There are already some recent successful
methods that leverage LLLM agents for computer
vision applications (Gupta and Kembhavi, 2023;
Suris et al., 2023; Wei et al., 2024; Yang et al.,
2023a; Huang et al., 2023; Yang et al., 2023b; Ye
et al., 2024). They exploit the generic methodol-
ogy of prompting LL.M agents to write codes and
invoke existing computer vision functions. We in-

herit this methodology but exploit LMMs (Large
Multimodal Models) as agents because the visual
inputs are critical in understanding IDEAs.

However, designing a LMM agent system to
generate 3D models from IDEAs is not straight-
forward and presents its own set of challenges, es-
pecially effective integration and understanding of
multimodal inputs. To tackle these challenges, we
propose Idea23D, a framework that employs three
different agents based upon the powerful LMM,
for iterative self-improvement in automated 3D
design and generation. Specifically, as shown in
Fig. 1, Idea23D consists of three LMM agents
(green boxes indexed by 1,5,6) acting in the roles of
prompt generation, model selection and feedback
reflection.

ldea23D combines the capabilities of LMM
agents and other multimodal algorithmic modules
(purple boxes indexed by 2,3 and yellow box in-
dexed by 4 in Fig. 1) to generate textual prompts
from interleaved user inputs (IDEAs), which are
then converted into 3D models. This process in-
volves iterative refinement, utilizing a memory
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module to record each iteration and support contin-
uous improvement. As shown in Fig. 3 and Fig. 8§,
Idea23D can generate high-quality 3D models that
well align input IDEAs in a fully automatic man-
ner while caption-based baselines constructed from
prior T-2-3D models can hardly generate meaning-
ful results.

Our qualitative comparisons and quantitative
experiments demonstrate the effectiveness of
Idea23D, especially in handling complex and chal-
lenging IDEA inputs. The contributions of this
paper are as follows.

(1) Idea23D is the first work to achieve the trans-
formation of high-level, abstract user IDEAs
(multimodal interleaved inputs) into concrete
3D models, realizing a fully automated 3D
AIGC task.

(2) Surpassing the capabilities of existing LLM
agent systems in 3D AIGC, Idea23D demon-
strates the effectiveness of LMM-based agents
in improving, evaluating, and validating mul-
timodal content for 3D model generation.

(3) Proposes a challenging evaluation dataset
Eval3DAIGC-198 with multimodal inputs,
and proves the effectiveness of Idea23D
through comprehensive user preference stud-
ies and 3D visual caption experiments.

2 Related Works
2.1 Self-refining Agents

Our research builds on the self-refinement capa-
bility of large language models (LLMs). Re-
cent studies show that LLMs are effective at self-
refinement, when exploring unknown environments
and tasks (Xi et al., 2023; Madaan et al., 2024; Pan
et al., 2023; Shinn et al., 2023; Lee et al., 2023).
For example, projects such as Self-refine(Madaan
et al., 2024) and Reflexion(Shinn et al., 2023) uti-
lize LLMs to iteratively critique their outputs and
use feedback to improve predictions, resulting in
significant performance improvements in natural
language processing tasks. However, these ap-
proaches mainly excel in tasks dealing with nat-
ural language descriptions (Shridhar et al., 2020).
In contrast, our Idea23D project employs an iter-
ative self-refinement system based on LMM in a
multimodal environment, especially for interleaved
inputs of text, images, and 3D models (IDEAs), in
a different way other than the traditional approach
focusing solely on natural language inputs.

2.2 Large Multimodal Model

Building on the Large Language Model (LLM),
the development of the Large Multimodal Model
(LMM) marks an important evolution from uni-
modal to multimodal processing capabilities. Ini-
tial LLMs, such as the GPT family, focused on
the generation of textual data, demonstrating su-
perior capabilities in understanding and creating
natural language (Brown et al., 2020; Radford et al.,
2019; OpenAl, 2023d; Bai et al., 2023a,b; Zhang
et al., 2023b; He et al., 2024). As the field evolves,
the processing capabilities of the models expanded
from pure text to include multimodal data includ-
ing images, audio, and video (Ramesh et al., 2021;
Radford et al., 2021). For example, CLIP (Rad-
ford et al., 2021) was the first to achieve cross-
modal alignment between images and text, en-
abling cross-modal understanding between text and
image. Some models (Liu et al., 2024; Xu et al.,
2024a; Chen et al., 2024b; Bai et al., 2023c; Wang
etal., 2024a), demonstrates multimodal understand-
ing and generation of mixed text, image, and video
inputs. Further, projects such as Uni-3D (Zhang
et al., 2023d) and SDFusion (Cheng et al., 2023)
extend this concept to the 3D design domain, en-
abling good 3D model understanding, generation
and reconstruction. LMM has also enabled open-
set scene understanding in various settings (Tian
et al., 2023; Li et al., 2022, 2023; Liu et al., 2023e;
Jin et al., 2023). Despite the progress made in the
field of 3D understanding and generation, current
LMMs can still only handle input content at the
text and image level, and struggle to handle mul-
timodal high-level inputs containing text, images,
and 3D models (IDEAs in our case). In contrast, the
ldea23D project takes a much larger step forward
in multimodal 3D model generation. Our system is
capable of processing not only single-modal inputs,
but also composite multimodal inputs containing
text, images, and 3D models at the same time.

2.3 Extensions of T-2-3D Models

There is already a large literature extending seminal
T-2-3D models, including variants enabling T-2-3D
models to better follow user prompts (Black et al.,
2023; Chefer et al., 2023; Feng et al., 2022) , re-
fine keywords in T-2-3D prompts for better visual
quality (Gu et al., 2023a), support for additional
image inputs for image processing (Brooks et al.,
2023; Kawar et al., 2023), support for additional
3D model inputs for 3D model processing (Cheng
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etal., 2023), 3D style migration (Pan and Ke, 2023;
Ma et al., 2014; Segu et al., 2020), visual con-
cept customization (Wei et al., 2023; Kumari et al.,
2023), using image generation models to gener-
ate 3D textures (Chen et al., 2023a; Zeng et al.,
2024; Chen et al., 2024a; Yu et al., 2024), and
more. Going even further, Idea23D offers users
a more natural way to design and create the 3D
content they want. Similar to Visual ChatGPT (Wu
et al., 2023a), which extends ChatGPT’s (OpenAl,
2023e) ability to understand and generate 2D im-
ages, Idea23D is designed to provide a more unified
and broadly applicable framework for automated
3D model design and generation. Idea23D extends
the multimodal input and 3D model understanding
and generation capabilities of the LMM (OpenAl,
2023d) using the T-2-I model (Shi et al., 2020)
and I-2-3D model (Ramesh et al., 2021), as well
as the multimodal input capabilities of the T-2-3D
model (Wang et al., 2024b; Poole et al., 2022; Lin
et al., 2023; Wang et al., 2023; Metzer et al., 2023;
Tsalicoglou et al., 2023; Qian et al., 2023; Liu et al.,
2023d; Long et al., 2023) and other standard algo-
rithmic modules like multiview rendering.

3 Idea23D Framework

The Idea23D framework represents a novel ap-
proach to generate detailed 3D models from high-
level, abstract multimodal inputs (IDEAs), shown
in Fig. 2. It integrates three LMM-based agents
and several off-the-shelf tools for agents to in-
voke. Specifically, three agents are responsible
for prompt generation (green box indexed by 1 in
Fig. 2), model selection (green box indexed by 5
in Fig. 2) and feedback generation (green box in-
dexed by 6 in Fig. 2). Two foundation models
for T-2-I (purple box indexed by 2 in Fig. 2) and
1-2-3D (purple box indexed by 3 in Fig. 2) are ex-
ploited together to turn natural language prompts
into textured 3D models. As shown in Tab. 1, var-
ious foundation model variants are evaluated for
comprehensiveness. A unique memory module en-
hances the system, retaining insights from previous
iterations to optimize future outputs.

The process begins with the LMM (agent 1)
converting multimodal IDEAs into T-2-1 prompts,
which facilitate the creation of preliminary 3D
drafts. These drafts undergo a selection process
(agent 5) where the best 3D model is either con-
sidered finalized or subjected to further refinement
based on LMM feedback (agent 6). The cycle con-

tinues until the model satisfies the user’s IDEA (as
judged by agent 5) or reaches a pre-set iteration
limit. This framework, illustrated in our system
diagram (Fig. 2), enables continuous improvement
through a loop with automatically generated feed-
backs.

3.1 Multimodal IDEA Input

The user-provided IDEA X encapsulates the overar-
ching 3D modeling requirement, represented by a
multimodal input set composed of text, images, and
3D models. X ={T,I,M}, where T is a suite of tex-
tual directives encompassing descriptive phrases,
keywords, and design specifications that may refer
to both 2D and 3D information. / is an assortment
of images such as reference shots, diagrams, or
related illustrations. M is a compilation of 3D mod-
els, including pre-existing constructions or particu-
lar design ingredients furnished by the user. Each
element of X reflects a facet of the user’s design
intent, and their aggregation forms a comprehen-
sive IDEA. This input specification is designed
to capture the user’s intent in a multi-faceted and
multimodal manner, laying the ground for the sub-
sequent procedural stages, including initial prompt
formulation and 3D model synthesis. As mentioned
before, designing from this kind of abstract IDEAs
is of great needs and our method is the first to fulfill
this need.

3.2 Initial Prompt Generation

Recall that, technically, the Idea23D framework
is tailored to convert complex multimodal user in-
puts X into textual prompts for 3D model genera-
tion. Specifically, it employs the Large Multimodal
Model (LMM) to comprehend and articulate these
inputs into a format digestible by the Text-to-3D
(T-2-3D) model. Addressing the high dimensional-
ity of 3D models, Idea23D leverages LMM'’s text
and image processing strengths by representing 3D
models M as multi-view image sets I’ via a conver-
sion function CM2I(x):

I' = CM2I(M) (1

Specifically, Function CM2I(x) render each 3D

model into six images, depicting the model from

various perspectives: front, back, left, right, top,

and bottom. The aggregation of these images I’

with the original image set / and textual compo-
nents yields an augmented IDEA X"

X' ={r,r'ur} 2)
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T-2-3D model’s potential for user input IDEA. Green rounded rectangles represent steps completed by LMM
agents. Purple ones denote T-2-3D modules, including T-2-I and I-2-3D models. The yellow rounded rectangle
represents the algorithm for rendering 3D models into multi-view images. Blue represents the memory module,
storing feedback, the best 3D model, and the best text prompt. This cycle is fully automated by LMM agents,

requiring no human intervention.

The LMM agent 1 for prompt generation re-
ceives the IDEA X’ and generates N specific de-
scriptive instructions {Py, Py, ...,Py_1}:

P = fivm(X', pgen) (3)

Here, pgeq represents a prompt facilitating the
generation of T-2-3D prompts!. This enables
Idea23D to extract and interpret not only direct
descriptions (e.g. X’ with only T is also accept-
able) but also high-level concepts and intermixed
modalities within the IDEA, such as images and
3D models.

In subsequent iterations as denoted by iter, each
T-2-3D prompt in the set of P’ is used as input
to the T-2-3D model to produce draft 3D models
Dt = T23D(P*"), iteratively refining until the
output aligns with the user’s intents.

3.3 3D Model Generation

Idea23D transforms the set of N text prompts
{Py,Py,...,Py_1} into an equivalent set of N 3D
models {Dy,Dy,...,Dy_;} utilizing T-2-3D mod-
els. As outlined in Sec. 3.2, T-2-3D encompasses a
two-step conversion process: initial Text-to-Image
(T-2-I) generation followed by Image-to-3D (I-2-
3D) generation. To improve 3D model creation
quality, we employ a background removal mod-
ule 2 on T-2-I outputs before I-2-3D processing.

'Note here Dgen and P are prompts for LMMs and T-2-3D

models, respectively. All prompts are in our code.
Zhttps://github.com/danielgatis/rembg

The T-2-3D function is:

T23D(P;) =I123Dorembgo T2I(P,)  (4)

In detail: (1) Text-to-Image model 72/(x):
Each prompt P, generates a 2D image G; = T2I(P,).
(2) Background Removal rembg(x): The gener-
ated image G; undergoes background removal G} =
rembg(G;), enhancing the focus on foreground
(i.e., the primary subject). (3) Image-to-3D model
123D(x*): The refined image G is input into I-2-
3D, producing the 3D model D; = 123D(G!). This
methodology from text prompt to 3D model via an
intermediary image phase, particularly with back-
ground removal, ensures a more accurate and intent-
aligned 3D reconstruction, elevating the overall
quality of the generated models. These functions
are tools invoked by LMM agent 1.

3.4 Draft 3D Model Selection

Then the LMM agent 5 for model selection in
ldea23D selects the superior draft 3D model Dy
from the generated set {Dy,Dy,...,Dy_1} based
on the fidelity and relevance to the user’s IDEA.
This critical step filters out subpar models, ensuring
high-quality iterative generations.

Dpet = fselect(DhX,a pselect) (5)

Here, psclect is the prompt for the Large Mul-
timodal Model (LMM), guiding the selection of
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the best draft 3D model. fi..s uses specific few-
shot prompts for the LMM. It renders six views of
each 3D model, combines them into a single im-
age, and then inputs this image into the LMM. The
LMM then selects the 3D model that most closely
matches the user’s IDEA input to serve as the draft
model for the current iteration. This mechanism
compensates for the discrepancy observed when
high-quality T-2-1 outputs do not necessarily trans-
late into satisfactory I-2-3D models. By assessing
the semantic coherence and visual quality of N sim-
ilar draft models, the LMM identifies the best one.
This comparative analysis, akin to a find the differ-
ence task, is impossible to achieve by conventional
techniques, yet state-of-the-art LMMs like GPT-
4V (OpenAl, 2023a), GPT-40 (OpenAl, 2024) and
InternVL (Chen et al., 2024b) have demonstrated
reliable performance in this selection process.

3.5 Feedback Generation

After identifying the best draft model Dyeg, the
LMM agent S decides on whether to finalize this
model as the result D* or proceed with refinement.
In the latter case, the goal is to generate textual
feedback F' to guide enhancements for Dyeg. This
decision hinges on whether the iteration count ex-
ceeds a maximum threshold T or if the agent be-
lieves no further modifications are needed.

F :fLMM(DbeSt7X/7m7pfb> (6)

Here, pg is the LMM prompt for feedback gen-
eration, and m denotes the Memory module (dis-
cussed in Sec. 3.7). This LMM agent 6 for feed-
back generation assesses discrepancies between
Dyest and the user IDEA X', summarizing key in-
consistencies. Dy 1S converted into multi-view
images using the CM2I(x) function (from Sec. 3.2),
aiding the LMM in pinpointing and suggesting spe-
cific enhancements. This step is crucial for refining
the 3D model. Our experience suggests that clearly
defining the aspects for review in pg, significantly
enhances the quality of the resultant 3D model.

3.6 Revised Prompt Generation

In the final stage of each iteration (noted as iter),
the LMM agent 1 comes to the stage again
for Revised Prompt Generation. It uses tex-
tual feedback F and the memory module m to
create N refined 3D model generation prompts
{piertl pitertl P11 This step aims to en-
hance 3D models generated in the next iteration.

Pt = v (Fom, X' peen) (7)

Here, pge, is the LMM prompt for I-2-3D
prompt generation, which is the same with Eq. 3,
despite the inputs are augmented with F and m.
Note an LMM agent can readily handle different
inputs by prompting it that there are two differ-
ent cases: the initialization case without feedback
and memory and the refinement case with feeback
and memory. Agent 1 leverages the information
stored in m and the previous iteration’s feedback
F to generate improved prompts that effectively
address the issues identified in F'. For instance, if
feedback F indicates specific visual inaccuracies
in the best-to-date model, the revised prompts will
focus on rectifying these details through enhanced
descriptions.

3.7 Memory Module

The memory module m is integral to the Idea23D
framework, serving as a repository for data accrued
over the iterative process, as shown by the blue
rectangle in Fig. 2. It stores feedback, selected
draft 3D models, and corresponding text prompts
in a structured 3D model-image-text sequence, en-
abling the LMM to leverage past experiences and
insights gained during previous iterations.

ml‘:{P57D67F07'"7Pt*—17D;k—17E—1} (8)

In this representation, P, Dj.,, Fier represent
the optimal text prompt, 3D model, and textual
feedback from each iter'” iteration. The memory
module m aids the agent in identifying specific
T-2-3D output traits, such as misunderstood key-
words. This knowledge is then integrated into gen-
erating refined 3D model prompts, enhancing the
precision and adaptability of model generation. If
T-2-3D struggles with certain design aspects, m
guides subsequent iterations to optimize prompts
more effectively, ensuring continuous improvement
in Idea23D, thereby increasing its alignment with
complex IDEAs.

4 Experiments

4.1 Experimental Setup

In our early experiments, the LMMs used were
GPT-4V (OpenAl, 2023a) and LLaVA (Liu et al.,
2023b). Fig. 3, Fig. 7, Fig. 9, Fig. 10, and
Fig. 11 use GPT-4V as the LMM, DALLE (Ope-
nAl, 2023c) as the T-2-1 model, and zero123 (Liu
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Figure 3: Overview of 3D models generated from various types of multimodal IDEA inputs supported by Idea23D.
The light red box on the left is the user input IDEA containing text, images and 3D models. In the center are the
baseline results generated directly from the same T-2-I model with caption-based T-2-I prompt (see Sec. 4.1). The
model on the right is the result generated by iteratively self-refining the T-2-1 prompts with Idea23D. Comparison

with more existing methods is shown in Fig. 7.

et al., 2023d) as the I-2-3D model. The results of
the user study, shown in Tab. 3, were obtained from
these early experiments. With the emergence of
new LMM, T-2-1, and I-2-3D models, we have also
tested Idea23D with these new methods. Fig. 1 and
Fig. 8 use GPT-40 as the LMM, FLUX as the T-2-1
model, and InstantMesh as the I-2-3D model. The
quantitative results of the ablation study, presented
in Tab. 2, were also based on these new models.
This further demonstrates that Idea23D exhibits
excellent compatibility with the development of
LMMs, T-2-1, and I-2-3D models.

T-2-3D baseline. Our first baseline is caption-
based. Since no former 3D AIGC methods can be
used for IDEA input, we convert image inputs and
3D model inputs (after multiview rendering) into

textual descriptions by captioning them with the
LMM. In Fig. 3, Tab. 1 and Tab. 3, this baseline
is called T-2-3D. All T-2-3D baselines only use
LMM for generating captions and do not perform
iterative refinement.

Ours w/o iterative refinement. To demonstrate
the impact of an iterative self-refinement design,
we construct an Idea23D variant with only one
iteration. Compared with caption-based baselines,
this one features multiple prompt generation and
best 3D model selection. We presented the results
of this part in our early user study, see Sec. 4.4.

4.2 Evaluation Dataset

In our experiments, we found that there is a lack
of methods to align Text, Image, and 3D in the
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Comparison stage: T-2-3D vs. Avg. Iter. CLIP 1 ULIP-2 1
LMM T-2-1 I-2-3D T-2-3D Idea23D | T-2-3D Idea23D
GT prompt FLUX InstantMesh - 0.3152 - 0.3134 -
GPT-40 FLUX InstantMesh 1.49 0.3003  0.3078 | 0.2733  0.2917
InternVL2.5 FLUX InstantMesh 2.56 0.2896 03035 | 0.2379  0.2756
LLaVA-CoT FLUX InstantMesh 4.67 0.2783  0.2826 | 0.2108  0.2125
Text Only FLUX InstantMesh - 0.2745 - 0.2056 -
GT prompt FLUX Hunyuan3D - 0.3085 - 0.3057 -
GPT-40 FLUX Hunyuan3D 1.41 0.2943  0.3010 | 0.2675 0.2869
InternVL2.5 FLUX Hunyuan3D 2.68 0.2870  0.2970 | 0.2534  0.2783
LLaVA-CoT FLUX Hunyuan3D 4.48 0.2734  0.2768 | 0.2189  0.2273
Text Only FLUX Hunyuan3D - 0.2700 - 0.2115 -
GT prompt SDXL InstantMesh - 0.2972 - 0.2684 -
GPT-40 SDXL InstantMesh 2.02 0.2845 0.3001 | 0.2302  0.2599
InternVL2.5 SDXL InstantMesh 3.49 0.2810 0.2822 | 0.2196 0.2211
LLaVA-CoT SDXL InstantMesh 4.53 0.2707  0.2726 | 0.1961  0.1991
Text Only  SDXL InstantMesh - 0.2680 - 0.1979 -
GT prompt SDXL Hunyuan3D - 0.2941 - 0.2479 -
GPT-40 SDXL Hunyuan3D 2.14 0.2782 0.2903 | 0.2118  0.2404
InternVL2.5 SDXL Hunyuan3D 3.94 0.2725 0.2828 | 0.2143  0.2198
LLaVA-CoT SDXL Hunyuan3D 4.32 0.2711  0.2735 | 0.1911  0.1956
TextOnly SDXL Hunyuan3D 0.2663 - 0.1924 -

Table 1: We conducted experiments on the Eval3DAIGC-198 dataset with the configuration of generating one image
per prompt (num;y, = 1), three prompts per round (numg,.s; = 3), and up to five iteration rounds (maxrers = 5).
We used GPT-40 (OpenAl, 2024) instead of GPT-4-Vision-Preview (OpenAl, 2023a) from earlier studies. The
models used include FLUX.1-dev (Labs, 2024), SD-XL 1.0 with refinement, Hunyuan3D-1.0 (Yang et al., 2024),
InternVL2.5-78B (Chen et al., 2024b), and LLaVA-CoT-11B (Xu et al., 2024a).

evaluation of LMM’s 3D AIGC capabilities (Liu
et al., 2023g; Andriushchenko et al., 2024; Guo
et al., 2024; Wu et al., 2023b; Zhang et al., 2023a).
Therefore, following the evaluation practices of
Parti (Yu et al., 2022), we constructed a dataset for
evaluating 3D AIGC tasks, called Eval3DAIGC-
198, which involves 198 different multimodal inter-
leaved inputs of IDEA, including examples shown
in Fig. 1, Fig. 3 and Fig. 8. The distribution and ex-
amples of the dataset can be found in Appendix A.
The cases in the evaluation dataset consist of a text
prompt, which may include images or 3D mod-
els. Since the results of 3D AIGC are difficult to
represent by a specific 3D model as a standard an-
swer, we annotated a description of the 3D model
to be generated for each case based on the textual
instructions, which serves as the Ground Truth.

4.3 3D-Caption Quantitative Results

To ensure a fair and comprehensive comparison
of the alignment between user inputs and the final
generated 3D models, we employed various meth-
ods to convert the generated 3D models into textual
descriptions. These textual features were then com-
pared with the handwritten 3D annotations in the

Eval3DAIGC-198 evaluation dataset.

(1) CLIP (Radford et al., 2021) Metric. We ren-
der the 3D models from four views (front, back,
left, right) and calculate the CLIP similarity be-
tween the text description and the rendered images.
The CLIP similarity is:

SCLIP T I (9)

4
; IETHHEI |

where E7 and Ej, are the embeddings extracted
from the CLIP model for the text description T
and the rendered images I;, respectively. Here, -
denotes the dot product and || - || is the L2 norm.

(2) ULIP-2 (Xue et al., 2024) Metric. ULIP-2
is a tri-modal pre-training framework that gener-
ates text descriptions for 3D shapes without hu-
man annotations. It evaluates the alignment be-
tween 3D models and texts by comparing 3D shape
features with corresponding descriptions in the
Eval3DAIGC-198 dataset.

The quantitative experimental results are shown
in Tab. 1. The "GT prompt" row represents the
scores from generating 3D models using manu-
ally annotated 3D captions with text-to-image and

4156



image-to-3D methods. "Text Only" refers to us-
ing only textual instructions from the dataset as
the baseline. The "T-2-3D" column shows results
where LMM generates descriptions of images and
3D models, which are then combined with dataset
instructions to generate 3D models. "Idea23D"
represents our proposed method, and "Avg. Iter."
shows the average number of optimization itera-
tions for Idea23D.

The results demonstrate that Idea23D improves
success rate and accuracy in 3D AIGC tasks, pro-
ducing outputs closer to ground truth (GT prompt)
with fewer iterations. Using GPT-40 as LMM,
only two iterations are needed to generate real-
istic 3D models. Fig. 7 compares Idea23D with
current commercial models, showing that Idea23D
achieves new 3D AIGC capabilities not possible
with existing models.

4.4 User Study

We presented the results of the caption-based T-2-
3D baseline and Idea23D to the participants in our
user study. Our evaluation results are detailed in
Tab. 3, which compares the caption-based T-2-3D
baseline with Idea23D using the model specified
in each row. We asked users to assess which model
(T-2-3D model, first-round results of Idea23D, and
final-round results of Idea23D) was more satisfac-
tory, and to evaluate whether each 3D model com-
plied with the IDEA. Detailed User Study results
and explanations can be found in Appendix C.

4.5 Visualization of Self-iterative Refinement

Fig. 9 showcase the evolution and refinement of
3D models at different Idea23D stages and how
the caption-based baseline works. Fig. 10 shows
the iterative self-improvement process of a case
in Idea23D. These visual representations illustrate
the framework’s effectiveness in aligning with user
IDEAs and the incremental improvements achieved
through its iterative process.

4.6 Ablation Study

We conducted ablation experiments using the first
38 cases from the dataset, with LMM using GPT-
4o, T2I using FLUX, and 123D using InstantMesh
Iteration rounds and configurations are consistent
with Tab. 1. Results are shown in Tab. 2. The case
in Fig. 4 uses GPT-4V, SD-XL, and zero123.

As shown in the Pokemon case (Fig. 4), remov-
ing key modules slows convergence, while the
full Idea23D model generates a satisfactory result

within 3 iterations. The quantitative study in Tab. 2
reveals: (1) The memory module prevents quality
divergence, (2) The LMM feedback agent acceler-
ates convergence, (3) Removing stored information
from previous models lowers the quality limit after
convergence. Additionally, ablation results show
that removing the memory module leads to increas-
ing deviation from user inputs during iterations.
Feedback improves convergence speed, and retain-
ing prior models accelerates the process. The ULIP
score for 3D models generated with real prompts
is 0.3213, with Idea23D reaching 0.3208 after five
iterations, while a standard text-to-image pipeline
achieves only 0.2830.

iter 1 iter 2 iter 3 iter 4 iter 5 iter 6 iter 7
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Figure 4: Key module ablation across iterations. Note
that the full model reaches satisfactory results (judged
by the LMM agent 5 in Fig. 2) at iteration 3. The
illustrated experiment has no maximum iteration limit.

Avg. Iter. ULIPt

Iter1 Tter2 Iter3 Iter4 Iter5S
w/o memory 1.58 0.2953 0.2216 0.1902 0.2139 0.1960
wi/o feedback 1.87 0.2930 0.2780 0.2759 0.2773 0.2811
w/o prev. model 1.78 0.2977 03031 0.3066 0.3012 0.2974
full model 1.49 0.3021 0.3056 0.3108 0.3146 0.3208
T-2-3D - 0.2830 - - - -
GT prompt 0.3213
Text Only 0.2717

Table 2: Ablation study results with the same configu-
ration as in Tab. 1.

5 Conclusion

ldea23D, utilizing an LMM agent collaboration
framework, revolutionizes 3D AIGC by automat-
ing the creation of models from high-level, inter-
leaved multimodal user inputs (IDEAs). This in-
novative system excels in integrating text, images,
and 3D models, underpinned by a unique iterative
process that enhances model coherence and visual
alignment with IDEAs. User studies underscore its
superiority in satisfaction and comparative quality,
marking Idea23D as a significant advancement in
3D AIGC and a benchmark for future design tools.
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6 Limitations

Idea23D effectively improves the alignment be-
tween 3D generation models and user intent, but it
still relies on LMM and I-2-3D models. As shown
in Tab. 1, LMM significantly impacts the 3D gen-
eration results. However, commercial models like
GPT-4V can already generate image prompts based
on feedback very well. On the other hand, open-
source LMMs like LLaVA still have significant
shortcomings in image understanding capabilities.

According to our experiments, the main bottle-
neck of Idea23D at this stage lies in the Image-
to-3D step. Even the most advanced Image-to-3D
models can fail. In the worst-case scenario with a
very low probability, the final model output when
Idea23D reaches the maximum iteration may still
not meet user requirements. Nonetheless, Idea23D
can ensure that the final selected model is the most
aligned with user input among all generated 3D
models throughout the iterations.
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A Appendix: Evaluation Dataset

These IDEAs span a range of complexities: 9 are
text-only, 57 feature both text and image inputs, 68
include text and 3D model inputs, and 64 contain
text, image, and 3D model inputs, as shown in
Fig. 5. Each test case was meticulously designed to
represent real-world scenarios. The dataset cases
are the same as the IDEAs shown in Fig. 1, Fig. 3,
and Fig. 8.

Text + Image + 3D Model

Text only 32.3%

4.5%

28.8%
34.3%

Text + Image
Text + 3D Model

Figure 5: IDEA content distribution.

The dataset also includes a distribution of tags:
9 IDEAS contain 0 tags, 62 contain 1 tag, and 127
include 2 tags, highlighting the diversity of annota-
tion complexities, as shown in Fig. 6.

Text Only

Text + 2 Tags
4.5%
64.1%

31.3%

Text + 1 Tag

Figure 6: Tag distribution in IDEAs.

B Appendix: Visualization Results

The results of the visualization are shown in the
Fig. 1, Fig. 7 and Fig. 8. For Tab. 3, we evalu-
ate three T-2-1 mdoels: DeepFloyd IF (Lab, 2023),
DALL-E (OpenAl, 2023b), and SD-XL (Podell
et al., 2023), five I-2-3D models: Zerol123 (Guo
et al., 2023; Liu et al., 2023d), Wonder3D (Long
et al., 2023), TripoSR (Tochilkin et al., 2024), In-
stantMesh (Xu et al., 2024b) and LGM (Tang et al.,

2024), and two LMM agent options: GPT-4V (Ope-
nAl, 2023d,d) and LLaVA (Liu et al., 2024, 2023b).

Our framework has good compatibility. Af-
ter our initial experiments, advanced image-to-
3D generation models such as TripoSR (Tochilkin
et al., 2024), InstantMesh (Xu et al., 2024b), and
LGM (Tang et al., 2024) have emerged. Tab. 1
demonstrates that using these state-of-the-art mod-
els as the base modules for our T-2-1 and I-2-3D
results in significant improvements in Idea23D gen-
eration.

C Appendix: User Study Results

Tab. 3 shows the results of our user preference
study. Our user study was conducted by distribut-
ing an online web-based survey questionnaire, with
over 200 users participating. This user study’s com-
parative analysis reveals the remarkable superiority
of the Idea23D framework over existing caption-
based T-2-3D methods. Due to the lack of multi-
round iterations in the T-2-3D baseline, the empty
parts in the "Iterative self-refined" column of the
table are the same as those in the "Initial-round"
column.

Participants were presented with various IDEAs
alongside multiple 3D model outputs from both
caption-based T-2-3D baselines and Idea23D. To
aid decision-making, users viewed rotating video
representations of each 3D model. The order of
presentation for both the cases and the model out-
puts was randomized to avoid any sequence bias,
ensuring an unbiased assessment of the users’ pref-
erences.

Our evaluation, detailed in Tab. 3, compares
caption-based T-2-3D baselines and Idea23D us-
ing models specified in each row. We ask users to
evaluate which model (the T-2-3D model, the first
round results of Idea23D, and the end round results
of Idea23D) is more satifying, as well as evaluating
each 3D model for compliance with IDEA.

The results show that Idea23D markedly en-
hances user preference scores across a diverse
range of T-2-1, I-2-3D, and LMM models. Notably,
the Idea23D framework’s initial prompting stage
significantly outperforms the caption-based T-2-3D
results by effectively decomposing and interpreting
the user’s multimodal IDEA, thereby selecting the
most suitable 3D model. This improvement is fur-
ther amplified in the iterative self-refinement stage
of Idea23D.

For instance, in scenarios utilizing DALL-E,
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Comparison stage: T-2-3D vs. Idea23D (Initial-round) Idea23D (Iterative self-refined)
Model Evaluation Which is better Satistying IDEA Which is better Satistying IDEA
T-2-1 1-2-3D LMM | T-2-3D Idea23D | T-2-3D Idea23D | T-2-3D Idea23D | T-2-3D Idea23D
SD-XL TripoSR GPT-4V | 385% 61.5% 547%  80.2% 189%  81.1% - 96.2%
SD-XL InstantMesh GPT-4V | 432%  56.8% 53.1%  82.9% 20.1%  79.9% - 96.4%
SD-XL LGM GPT-4V | 413%  58.7% 56.2%  81.3% 12.5%  87.5% - 94.5%
DALL-E Zerol23 GPT-4V | 258% 74.2% 41.5%  78.2% 6.5% 93.5% - 94.2%
DALL-E Zerol23 LLaVA | 27.5% 72.5% 332%  70.6% 29.7%  70.3% - 82.3%
DALL-E Wonder3D GPT-4V | 188%  81.2% 479%  74.3% 3.5% 96.5% - 91.1%
DALL-E Wonder3D  LLaVA | 16.3%  83.7% 283%  69.4% 10.3%  89.7% - 76.2%
DeepFloyd IF Zerol123 GPT-4V | 20.0%  80.0% 385%  64.1% 283%  71.7% - 73.7%
DeepFloyd IF Zerol123 LLaVA | 29.0% 71.0% 23.1%  57.6% 34.0%  66.0% - 66.8%
DeepFloyd IF Wonder3D  GPT-4V | 293%  70.7% 32.6%  66.1% 14.8%  85.2% - 75.9%
DeepFloyd IF Wonder3D  LLaVA | 26.0%  74.0% 193%  55.3% 183% 81.7% - 64.5%
Table 3: Results of the user study.

Zero123, and GPT-4V, Idea23D models were pre-
ferred by users in 74.2% of the cases over T-2-3D in
the initial round, demonstrating a higher IDEA sat-
isfaction rate (78.2%). Conversely, T-2-3D models
achieved only 41.5% satisfaction. In the iterative
refinement comparisons, Idea23D models were fa-
vored even more (93.5% preference), achieving a
remarkable 94.2% satisfaction rate.

These findings were consistent across various
T-2-1, I-2-3D, and LMM configurations. Addition-
ally, we observed that stronger T-2-1 models, with
enhanced language understanding capabilities, con-
tributed to improved performance in Idea23D, sug-
gesting that our framework may enjoy the develop-
ment of off-the-shelf models it invokes.

D Appendix: Visualization of
Self-iterative Refinement

Fig. 9 showcase the evolution and refinement of
3D models at different Idea23D stages and how
the caption-based baseline works. Fig. 10 shows
the iterative self-improvement process of a case in
Idea23D.

E Appendix: Efficiency

Since generation from N prompts can run in par-
allel, the inference speed is agnostic of N. The
inference speed of Idea23D mainly depends on the
speed of the T-2-1 and I-2-3D models, as the aver-
age number of iterations is 2 or 3. For example,
with the Idea23D implemented using GPT-4V +
zerol123 + DALLE, generating an optimal result
takes about 10 minutes (zero123 requires approxi-
mately 4 minutes to generate a 3D model from an
image). In the Colab implementation mentioned in
our abstract, we use GPT-4V + TripoSR + SDXL

to implement the Idea23D framework, and it takes
about 5 minutes to generate a final 3D model (with
3 iterations). For reference, existing commercial
methods typically generate a model in about 5-10
minutes. For example, 3DTopia * and One-2-3-
45++(Liu et al., 2023c) take about 5 minutes on
average, while Luma* and Meshy > take about 10
minutes. Recent advanced methods such as Tri-
poSR (Tochilkin et al., 2024), InstantMesh (Xu
et al., 2024b), and LGM (Tang et al., 2024) have
compressed the time to generate 3D models from
images to within 1 minutes.

F Appendix: More Specific Domains

We tested our approach within the domain of au-
tomated design and modeling of car, chair, and
cloth. The four views are plotted as a result of
3D modeling, and the text prompts above indicate
the User Idea we entered. The result is shown in
Fig. 11. The abstract IDEA input is above the pic-
ture.

3https://github.com/3DTopia/3DTopia
“https://lumalabs.ai/genie?view=create
Shttps://www.meshy.ai/
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Figure 9: Comparison between prompts for "Caption-based T-2-1 prompt for initial round", "Idea2-3-D prompt for
initial round" and "Iterative self-refinement Idea23D end round" and the comparison between generated 3D models.

\ 1”A realistic scene of an actual elephant sitting on a wooden
An elephant 1 1 chair with four legs. The chair is large and robust, made of
sitting ona : | sturdy wood to support the elephant's size. The elephant is
d depicted in a natural, life-like manner, showcasing its grandeur
wooaden 5 ERN frarme fari
f 1 d and size. T_he setting is outdoors, possibly in a safari or nature
our-legge: reserve, with the chair placed on the ground amidst a natural

“An |mag|nat|ve scene featuring an elephant sitting ‘l
on a wooden four-legged chair. The elephant is 1
depicted in a whimsical, cartoonish style, adding an 1
element of playfulness to the scene. The chair is ]

sturdy, made of dark brown wood, and is
proportionally large enough to support the elephant.i

chair. 1 environment. The scene captures the unusual and amusing The background is simple and unobtrusive, focusing ! Revise
1 1 juxtaposition of a majestic elephant comfortably seated on a attention on the unusual and amusing 5|ght of the : or
\human-madechair_ __ _— ________________s '.elephantcomfortably seated on the chai o Output

v I From the image descriptions provided, the first and foremost requirement is that the model should clearly \l
: | represent an elephant sitting on a chair. If the images display the elephant and the chair with clear, recognizablel
11 details and from various angles, it can be considered that they meet the basic requirements. !
However, if the images show inconsistencies in texture, form, perspective, or if the elephant or chair appear
distorted or unrealistic, the generation plan may need adjustment. Suggestions for modification could include:
: 1 * Improving Texture and Color: Ensure the elephant’ s skin texture and color are represented accurately.
11+ Enhancing Perspective Consistency: Adjust the model to maintain consistent proportions from all angles.
oL Increasing Det: dd more details to the chair and elephant to improve realism.

@ Draft 3D Model Selection @ Text Feedback

’

Figure 10: An example of the process for a 3D model generated through the I/dea23D framework. An initial prompt
is first generated based on the input IDEA and pge,, then multiple images are generated from the T-2-I model, and
then the corresponding draft 3D model is generated for each image separately. The most appropriate 3D model is
selected based on pgelect and feedback is generated. The results are output after several rounds of iterations. Green
rectangles indicate text prompts for T-2-3D. blue rectangles indicate: modification suggestions given by agent based
on draft 3D models and pg,.
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Figure 11: Domain-specific results of Idea23D.
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