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Abstract

Ensuring large language models (LLM) behave
consistently with human goals, values, and in-
tentions is crucial for their safety but yet com-
putationally expensive. To reduce the computa-
tional cost of alignment training of LLMs, espe-
cially for those with a huge number of param-
eters, and to reutilize learned value alignment,
we propose CONTRANS, a novel framework
that enables weak-to-strong alignment trans-
fer via concept transplantation. From the per-
spective of representation engineering, CON-
TRANS refines concept vectors in value align-
ment from a source LLM (usually a weak yet
aligned LLM). The refined concept vectors are
then reformulated to adapt to the target LLM
(usually a strong yet unaligned base LLM) via
affine transformation. In the third step, CON-
TRANS transplants the reformulated concept
vectors into the residual stream of the target
LLM. Experiments demonstrate the success-
ful transplantation of a wide range of aligned
concepts from 7B models to 13B and 70B
models across multiple LLMs and LLM fami-
lies. Remarkably, CONTRANS even surpasses
instruction-tuned models in terms of truthful-
ness. Experiment results validate the effective-
ness of both inter-LLM-family and intra-LLM-
family concept transplantation. Our work suc-
cessfully demonstrates an alternative way to
achieve weak-to-strong alignment generaliza-
tion and control.

Warning: This paper contains content that may
be offensive or harmful.

1 Introduction

Large language models are trained on a huge
amount of data, which allows them to develop
strong capabilities in a wide array of tasks (Brown
et al., 2020; Touvron et al., 2023a). However, the
training objectives of LLMs at the pre-training
stage usually do not align with human goals and
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values, causing pre-trained models to potentially
yield harmful outputs, e.g., biased content or dis-
information (Perez et al., 2022; Jiang et al., 2024;
Huang and Xiong, 2024; Guo et al., 2023). Conse-
quently, ensuring the alignment of LLMs behaviors
and their decision process with the goals and values
of humans is crucial for the development of safe
and trustworthy Al systems.

Various methods have been proposed to align
LLMs with human values and preferences, includ-
ing supervised fine-tuning (SFT) (Wei et al., 2022;
Sanh et al., 2022), reinforcement learning from
human feedback (RLHF) (Ouyang et al., 2022),
and direct preference optimization (DPO) (Rafailov
et al., 2024). Despite these efforts, significant chal-
lenges persist (Shen et al., 2023). First, current
alignment methods usually require high-quality
and diverse human preference data (Wang et al.,
2023; Zhou et al., 2024), the curation of which
is often labor-intensive and time-consuming. Sec-
ond, the substantial compute required by alignment
training is usually not affordable for those with
limited computational resources. Third limitations,
such as lack of transparency, and training instability
(Zheng et al., 2023) remain with current alignment
approaches.

Burns et al. (2023) propose to utilize weaker
models to supervise the training of stronger models,
which partially addresses the challenge of sourcing
high-quality human-annotated data. The stronger
model, trained using labels synthesized by the
weaker model, can outperform the weaker model,
although it typically falls short of the performance
achieved through traditional supervised fine-tuning.
Building on this foundation, subsequent studies
(Li et al., 2024b; Chen et al., 2024) have lever-
aged weak models to filter or generate data for
supervised fine-tuning and alignment preference
tasks, utilizing the capabilities of smaller models
to guide the alignment of larger models. All these
approaches learn to align stronger models with the
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data generated by weaker models in an external
way as alignment supervision signals are available
in the external data.

Distinct from the aforementioned methods, our
key interest is to investigate whether weak-to-
strong alignment supervision can be achieved inter-
nally within the latent feature space of LLMs, from
the perspective of representation engineering (Zou
et al., 2023). Existing representation engineering
methods (Li et al., 2024a; Wu et al., 2024b) uti-
lize a limited set of positive and negative examples
to extract a concept vector, subsequently enhanc-
ing the model’s preference for the corresponding
concept. Typically, these methods intervene in the
outputs of a model using the concepts that are al-
ready embedded in the model. However, if the
target model lacks a clear concept, effective inter-
vention becomes unfeasible. Additionally, direct
representation engineering across models with dif-
ferent model sizes or from different model families
is also impractical as the hidden feature spaces are
structurally and dimensionally different.

To overcome these challenges, we propose a
novel representation engineering framework, con-
cept transplantation (CONTRANS), which facili-
tates weak-to-strong alignment engineering with
three essential components. First, by gathering a
small set of positive and negative examples that
are semantically related to a given concept, CON-
TRANS refines a semantic vector for the given con-
cept from a source LLM. The refined concept vec-
tor is reformulated to be consistent with the feature
space of the target LLM via affine transformation.
In the last step, the reshaped concept vector is trans-
planted into the residual stream of the target model,
to effectively control the target LLM output prefer-
ences related to the given concept.

Our main contributions are summarized as fol-
lows:

* We verify that different models possess shared
concept features and explore the roles of pre-
training and alignment training in the forma-
tion and expression of these concepts.

* We propose CONTRANS, a novel framework
that enables weak-to-strong alignment engi-
neering from the internal feature space of
LLMs via concept transplantation, which re-
quires no additional training and can effec-
tively transplant a concept using only a few
hundred positive and negative examples.

* Our experiments demonstrate the effective-
ness of the proposed framework with more
than ten LLMs across multiple concepts.

2 Related Work

Representation Engineering Representation en-
gineering encompasses a set of techniques that ma-
nipulate model outputs by directly modifying the
activation values within a model, without altering
its parameters. The hidden states of a model encap-
sulate a wealth of information that are not explic-
itly manifested in the model’s outputs (Burns et al.,
2022; Azaria and Mitchell, 2023). Prior research
has focused on targeted interventions for specific
concepts such as sentiment (Turner et al., 2023),
truthfulness (Li et al., 2024a; Zhang et al., 2024)
and multilingual human values (Xu et al., 2024).
Other studies aim to enhance intervention methods
or analyze the underlying mechanisms of models;
for example, Zou et al. (2023) employ Principal
Component Analysis (PCA) to extract and identify
concept directions, whereas Wu et al. (2024a) re-
duce privacy leakage in LLMs. Distinct from these
methods, our work concentrates on cross-model
representation engineering instead of representa-
tion engineering on the same model, which specifi-
cally transplants concepts from small models into
the inner space of large models.

Weak-to-Strong Supervision of LLM The ad-
vent of increasingly powerful AI models poses sub-
stantial challenges for alignment. The concept of
weak-to-strong supervision seeks to utilize weak
models to guide the alignment training of strong
models. Burns et al. (2023) advocate for using
weak models to provide labels to supervise the
training of strong models, focusing primarily on
enhancing generalization of capabilities. Liu et al.
(2024a) and Mitchell et al. (2023) suggest inter-
vening in the decoding results of strong models by
leveraging the logit differences between aligned
and unaligned models. Zheng et al. (2024) deploy
a parameter interpolation method to transition from
unaligned to aligned models. Additionally, Li et al.
(2024b), Chen et al. (2024), and Ji et al. (2024)
utilize weak models to filter or generate training
data, iteratively enhancing model alignment. Dis-
tinct from these approaches, our work is the first
to attempt to perform weak-to-strong alignment
internally on the hidden space of LLMs. Previous
efforts primarily focus on externally training strong
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Figure 1: The diagram of CONTRANS that consists of three essential modules: @ concept refinement refining and
extracting a vector for a given concept with a set of concept-related positive/negative examples from the source
LLM M @ concept reformulation reshaping and adapting the refined concept vector into the feature space of
the target LLM M€ through affine transformation and ® concept transplantation transplanting the reformulated
concept vector into the residual stream of the target LLM to control the outputs of the target LLM related to the

given concept.

models or treating LL.Ms as black boxes without
delving into the hidden feature space. Additionally,
as CONTRANS solely requires the refinement and
transplantation of a single concept vector, it does
not significantly bring extra cost while previous
external weak-to-strong supervision still requires
alignment training.

3 Methodology

Empirical evidences from both interpretability
(Tigges et al., 2023; Hernandez et al., 2023; Park
et al., 2023; Nanda et al., 2023) and word embed-
dings (Mikolov et al., 2013a,b) support that deep
neural networks trained on textual data encapsulate
conceptual features. Recent studies in representa-
tion engineering (Zou et al., 2023; Li et al., 2024a)
have demonstrated that controlled generation in
LLMs can be achieved through the manipulation of
these representations. Building on these empirical
evidences and findings, our approach is driven by
the hypothesis that concepts are encoded within
the feature space of deep neural networks. We
hypothesize the existence of population-level rep-
resentations of concepts within the feature space
of LLMs, which are consistent across LLMs of
varying sizes and even across LLMs from different
model families. By blending the representations in
the feature space of the target model with a concept
vector from the source model, we can manipulate

the polarity along specific conceptual directions
in the target model, thereby influencing the ex-
pression of these concepts in the generated text.
With this assumption, we propose CONTRANS
to engineer alignment-related concepts in the tar-
get model (strong) with conceptual representations
from the source model (weak), providing an in-
ternal, transparent and cost-efficient approach to
weak-to-strong supervision. CONTRANS is com-
posed of three essential steps: concept refinement
from the source model, concept reformulation and
concept transplantation into the target model, illus-
trated in Figure 1.

Consider a language model M equipped with
L transformer blocks. After tokenization, an in-
put to M with ¢ tokens is s = (5(1), 5(2), - - - » S(¢))-
The hidden state of the k-th layer is hence denoted
as h* = (h’(“l), h’(fz), s h’(“t)), where h* € Rt*d
and d is the feature dimension of M. The hid-
den state h* comprises the residual stream from
the preceding layer combined with the output of
the multi-layer perceptron (MLP) sublayer in the
k-th layer, which is formulated as hF = RF-1 4
MLP(ATTN(h*~1)). Elhage et al. (2021) con-
sider the operations within transformer blocks as
interactions within the residual stream, akin to read-
ing and writing processes. Correspondingly, our
method can be interpreted as introducing an addi-
tional concept vector to the residual stream, thereby
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adjusting the feature polarity in the targeted direc-
tion.

3.1 Concept Refinement

Several methods could be used to refine alignment-
related concept representations, including mean
difference (Turner et al., 2023), linear probing (Li
et al., 2024a), distributed alignment search (DAS)
(Geiger et al., 2024), and principal component anal-
ysis (Zou et al., 2023). We employ the mean dif-
ference method for concept refinement, as it is the
most straightforward yet effective approach. The
more complex or task-specific concept refinement
methods mentioned above are all built upon the
mean difference method. We posit that the effi-
cacy of this method can be generalized to more
sophisticated approaches.

Given a source language model M and a tar-
get language model M'¢', we refine the vector rep-
resentation of a specific concept from M, Let
Vconcept denote the concept vector, (€.2., Vhappiness
for the concept of happiness). In order to refine
Veoncept 1N the way of representation engineering, it
is necessary to use a set of positive and negative
textual examples related to the concept. These ex-
amples are fed into M®° in a forward pass. The
hidden state of the last token of the input example
at each layer is cached. For a positive example
Spositive» the hidden state of the last token is denoted
as h’p“OS, where k € [1, L].

The concept vector is then refined as the mean
difference (direction) between hpos and hypeg:

N
1
k k k
Vconcept = N Z(h’posw - h’neg(i)) (D
i=1

where N represents the number of posi-
tive/negative example pairs. Given that spesitive and
Snegative are sentences usually with similar syntax
but opposite polarities, the mean difference in their
features effectively eliminates lower-level linguis-
tic features while preserving the concept-related
feature directions.

3.2 Concept Reformulation

The dimensions of M and M'" may differ,
which complicates the transplantation of the con-
cept vector refined from M into M. To ad-
dress this issue, we reformulate the refined con-
cept representation by projecting it into a space

of different dimension through affine transforma-
tion. Specifically, the transformation is repre-
sented as © = vF,F € R“*%_ Here, d; and
ds respectively denote the hidden dimensions of
M and M'. Since the concept may be en-
coded in a shared low-rank feature space, the con-
cept vector of a weak model can be viewed as
a low-rank approximation of the concept vectors
of a strong model. Consequently, the new con-
cept vector can be computed using the equation:

vconcept = ’Uconceptj:"

To learn the affine transformation JF, we gather
the hidden states hg. and hg from M and
M€ using the same input text. The objective is
to solve for F by minimizing the squared error

F = argming ||hgF — htgtHQ. The analytical
solution is obtained as follows:

F=VE ' UThg Q)

where the singular value decomposition of hg.
is hge = UX VT, Further details regarding the
training of the affine transformation are provided
in Appendix A.

3.3 Concept Transplantation

Once the concept vector veoncept 18 projected into
the feature space of M'', it can either suppress
or enhance the polarity of M'"" along the corre-
sponding concept direction. We augment the out-
put hidden states of the transformer layers with
Deoncept- Analogous to the role of a transformer
layer, the refined and reformulated concept vector
can be considered as introducing new information
into the residual stream, serving as an offset in the
concept direction of the target model. Thus, the
hidden states of k-th layer will be:

h* = h*~' + MLP(ATTN(h" 1)) + a9}, cept
3)
where « is the hyperparameter that controls the
strength of steering manipulation. For simplicity,
the superscript & is omitted by default.

4 Can Concepts Be Transplanted Across
Different Models?

To verify the presence of shared concepts between
models and to demonstrate that CONTRANS can
achieve cross-model concept transplantation, we
conducted experiments and visualizations on the
basic concept emotions, which are fundamental
concepts in both human cognition and language
models.
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Figure 2: (a) Emotion prediction accuracy on negative scenarios for each emotion. The bar denotes Token Acc.,
while the dashed line depicts Logit Acc. (b) The PCA visualization of LLaMA-13B hidden states intervened by

Vseqr from LLaMA-7B.

4.1 Intervening in the Emotion of Strong
Models

Setup and Evaluation Metrics We utilized the
LLaMA series (Touvron et al., 2023a) of models
for our experiments, specifically employing the
emotion vectors from LLaMA-7B to intervene in
the outputs of both LLaMA-13B and LLaMA-65B
models. We investigated a six-category emotion
model—happiness, sadness, anger, fear, surprise,
and disgust—and conducted experiments on the
emotion dataset introduced by Zou et al. (2023).
Each sentence describes a scenario related to its
respective emotion without explicitly incorporat-
ing emotion sensitive words. To refine a concept
vector for each emotion category, we composed
positive texts from scenarios that describe the tar-
get emotion, while negative texts are derived from
scenarios randomly sampled from the other five
emotions. To better illustrate the impact of concept
transplantation, we assessed the model’s perfor-
mance on predicting these negative scenarios. Two
metrics are employed to measure the prediction
accuracy. The first metric, which we term Token
Acc, checks if the first token generated by M8
correctly matches the target emotion token. The
second metric, referred to as Logits Acc, measures
whether the token with the highest logits among
the six emotion tokens is the correct one.

Results are illustrated in Figure 2a and Figure 6.
Given that the negative samples do not depict the
target emotion, the baseline accuracy essentially
reflects the rate of false positives, which is notably
low. According to these results, it is evident that

Vemotion from L1aMA-7B can effectively influence
the emotional response of larger models. Notably,
the emotion prediction accuracy of the target model
increases with the steering manipulation strength
a. Examples of the controlled generations are pre-
sented in Table 5.

4.2 Visualization of Concept Intervenation

We utilized v, from LLaMA-7B to intervene in
the six emotion hidden states of LLaMA-13B. Then
we adopted PCA to reduce the dimensionality of
these features both before and after intervention,
visualizing the direction of their changes in Figure
2b. The arrows indicate the direction of feature
movement post-intervention, corresponding to the
direction of vge,,. It can be observed that the fea-
tures of the other five emotion categories converge
with the original fear features (light green) after the
intervention, ultimately resulting in LLaMA-13B
generating fear-related text.

With these findings, we base CONTRANS on
two premises: 1) Concepts are encoded in the
model’s feature space. 2) The weak model and
the strong model share common concept feature
vectors. Since the fear direction can be dimension-
ally reduced to a linear direction in a 2D space, it
proves that emotion concepts are (linearly) encoded
in the model’s feature space. The concept vectors
from the 7B model successfully intervene in the
features of the 13B model, demonstrating that they
share common concept vectors.

4134



13B 70B
LLaMA 2 Code LLaMA LLaMA | LLaMA2 Code LLaMA LLaMA
Base Model 17.9% 17.3% 19.0% 22.1% 19.6% 17.4%
Align-Training 36.8% 32.9% 36.7% 30.2% 23.7% /
Self-Align 35.9% 33.2% 23.3% 28.0% 26.2% /
Inst-Align 15.9% 18.5% 17.3% 19.0% 17.6% 17.7%
EFT/proxy-tune 30.6% 26.1% 30.6% 31.8% 25.7% 30.5%
CONTRANS 36.5% 32.9% 30.8% 33.9% 33.4% 31.8%

Table 1: Truthful QA results for 13B and 70B base models. Although the largest size of LLaMA is 65B, we denote

it as 70B for notational simplicity.

5 Can We Utilize Alignment Concepts
from Weak Models to Align Strong
Models?

Having validated that CONTRANS can achieve
concept transplantation, our goal is to transplant
alignment-related concepts from a weak aligned
model to a strong base model. To evaluate the
efficacy of CONTRANS, we selected two value-
related concepts—truthfulness and toxicity. These
concepts are prevalent in recent works on repre-
sentation engineering and are integral to aligning
LLMs, particularly concerning alignment criteria
for harmlessness and honesty.

Models Given that abstract concepts such as
truthfulness and toxicity necessitate alignment with
human values, we utilized various sizes of LLaMA,
LLaMA 2 (Touvron et al., 2023b), Code LLaMA
(Roziere et al., 2023), along with their instruction-
tuned counterparts, Vicuna! (Chiang et al., 2023),
LLaMA 2-chat, Code LLaMA -instruct. For no-
tational convenience, we refer to these instruction-
tuned models as instruct. When applying CON-
TRANS, we refined concept vectors from the 7B
instruct model and transplanted them into 13B and
70B base models.

Datasets For truthfulness, we employed Truth-
fulQA, which includes 817 misleading questions.
Consistent with previous studies (Zou et al., 2023;
Liu et al., 2024a), our primary focus is on the most
challenging MC1 setting. To assess toxicity, we uti-
lized Toxigen for evaluation. Toxigen comprises
prompts designed to elicit racially biased responses
from models. Further details on the ablation exper-
iments concerning the number of sentences used to
refine concepts, the impact of parameter disparities
between models, as well as additional information
about these datasets, are provided in Appendix B.

'We used Vicuna-v1.3 which is instruction tuned on
LLaMA models.

Baselines We selected multiple baseline meth-
ods related to model alignment for comparison
with CONTRANS. 1) The first baseline model is
models trained through SFT or RLHF. This corre-
sponds to the instruct models in our experiments.
We refer to them as Align-Training. 2) Extracting
concept vectors from models that have undergone
alignment training of the same size for interven-
tion purpose. For example, using concept vectors
from LLaMAZ2-13B-instruct to intervene LLaMA2-
13B. We refer to this method as Self-Align. 3)
Adding specific instruction inputs to guide model
behavior (e.g., instructing the model not to lie).
We refer to this baseline as Inst-Align. 4) Recent
non-training weak-to-strong alignment methods,
namely EFT/proxy-tuning (Mitchell et al., 2023;
Liu et al., 2024a), which achieve alignment by in-
tervening at the logits level.

5.1 Truthfulness Transplantation

Setup and Evaluation Metrics For refining the
honesty concept, honest and dishonest instructions
(Pretend you’re an honest/dishonest person mak-
ing statements about the world) were prefixed to
the questions in Truthful QA. Sentences with hon-
est instructions served as positive examples. For
evaluation, we appended each answer choice to the
corresponding question, computed the maximum
likelihood probability of the evaluated LLM for
tokens in each answer choice, and used the answer
choice with the highest probability as the model’s
answer to the question. It should be noted that
in refining vponesty, we employed an unsupervised
approach by using only the questions from Truth-
fulQA, without utilizing ground-truth answers or
answer choices.

Evaluation results using vponesty for base mod-
els are presented in Table 1. The concept vector
Vhonesty refined from 7B instruct models signifi-
cantly enhances the performance of base models
across various sizes. Transplanting Uponesty refined
from 7B instruct can lead to an average accuracy
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Toxic Percentage% 13B 70B
(PPL) LLaMA 2 Code LLaMA LLaMA | LLaMA?2 Code LLaMA LLaMA
Base Model 91.8% 79.2% 88.7% 90.6% 88.8% 89.1%
(13.58) (22.06) (13.47) (11.85) (17.47) (11.83)
Align-Training 0.10% 0.46% 72.9% 0.00% 93.3% /
(19.50) (19.58) (19.59) (17.59) (17.46)
o 78;1;_;1};11 77777 225%  252%  155% | 333% = 91.3% ; S
(14.46) (22.26) (15.05) (12.13) (17.49)
o 7I;s;—/;17ig7n 77777 902%  778%  918% | 893%  83.7%  902%
(12.05) (22.72) (13.71) (10.77) (18.77) (11.96)
o] 330%  31.1%  390% | 521% = 577% = 520%
EFT/proxy-tune
/ / / / / /
CONTRANS 34.1% 45.2% 44.9% 39.9% 52.0% 54.2%
(14.68) (22.87) (13.48) (11.85) (17.46) (11.83)

Table 2: Evaluation results on Toxigen. The percentages denote the proportion of toxic responses among all answers,
with the numbers in parentheses indicating the PPL on OpenWebText under the corresponding manipulation. Since
both EFT and proxy-tuning are methods that operate during the decoding phase, they are not applicable for PPL.
calculations in the prefill stage, making it impossible to compare their PPL with others.

improvement of 15.3%, and 13.3% for the 13B,
and 70B base models of the three series, respec-
tively. Surprisingly, the accuracy even surpasses
some of the Align-Training models, which have un-
dergone instruction tuning or RLHF training. This
indicates that enhancing each concept optimally
through unified alignment training is challenging.

Another interesting finding is that CONTRANS
achieves a more significant improvement effect on
the 70B model than that on the 13B model. We
attribute the better performance of CONTRANS on
the 70B model to the fact that larger models are
more challenging to align, leading to poorer per-
formance for the baselines. CONTRANS, however,
can enhance the alignment of a specific concept in
a targeted manner, thereby achieving more signifi-
cant improvements.

An example of generation with Uponesty 1S pre-
sented in Table 5. Additionally, we have also ob-
tained Vponesty Using out-of-distribution examples.
Experiment results and further details are provided
in Appendix B.5.

5.2 Toxicity Transplantation

Setup and Evaluation Metrics We aim to mit-
igate biased outputs in large models by refining
fairness concept vectors from small aligned mod-
els. To refine the fairness concept, we sampled
prompts with a false toxicity label in Toxigen as
positive examples and prompts with a true toxic-
ity label as negative examples. For each group of
Toxigen, 50 sentences were randomly selected, en-
suring that these samples do not overlap with those
in the evaluation or validation dataset. We selected
samples with a true toxicity label whose toxicity

probability is greater than 0.5 as evaluation sam-
ples. 200 samples were selected for each group in
Toxigen for evaluation. We measured the toxicity
level of each response with the roberta-large toxic-
ity classifier proposed by Hartvigsen et al. (2022).
We observe that the toxicity of responses can be
effectively reduced to zero by applying a large in-
tervention strength «; however, this often results in
responses that are incoherent and devoid of mean-
ing. Therefore, we learned the optimal strength o
on a validation dataset, which consists of 10 sam-
ples that do not overlap with the above data for
each group. The strength o was selected by grid
search in [0.3,1.5] on the validation dataset.

Experiment results are presented in Table 2.
Although Align-Training models generally pro-
duce few toxic responses, the LLaMA-13B in-
struct model and the Code LLaMA-70B instruct
model still generate a significant number of toxic
responses. This phenomenon occurs because these
models tend to replicate toxic prompts verbatim,
resulting in the generated texts being classified as
toxic. It is noteworthy that both Align-Training and
Self-Align rely on strong instruct models. Com-
pared to other training-free methods, they can es-
sentially be considered as skyline methods. The
VECLOr Vfyiress associated with the 7B instruct mod-
els is effective at suppressing toxic outputs, and on
average, the percentage of toxic responses can be
reduced to below 47%. EFT and proxy-tuning also
produce highly competitive results; however, they
require running a strong model alongside two weak
models during inference, which incurs additional
inference costs.

Regarding the PPL evaluation, the increase in
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._ SourceModel _ LLaMA2-7Bchat Tulu2-7Bdpo _ Vicumavl.5-7B _Mistral-7B instruct Gemma 7B it _
Source Accuracy 31.2% 42.6% 33.5% 35.1% 31.8%
"7 T BaseModel B
LLaMA 2-7B LLaMA 2-7B LLaMA 2-7B Mistral-7B Gemma-7B
w.r.t. Source Model
LLaMA-7B Accuracy  25.1% 30.2% 25.1% 21.4% 23.4%

Table 3: Intervened results of LLaMA-7B. The second row refers to the accuracy of source models.
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Figure 3: Concept transplantation to different check-
points of Amber-7B.

PPL due to CONTRANS is minimal. The post-
transplantation PPL is lower than that of the cor-
responding Align-Training model, indicating that
CONTRANS exerts a negligible impact on the gen-
eration capabilities. The generated examples are
displayed in Table 5.

6 How Are Concepts Formed and
Activated?

In this section, we explore how concepts are formed
and activated in LLMs, and we analyze the roles of
the pre-training and alignment phases in shaping
the model’s concepts.

6.1 Concepts are Formed during the
Pre-Training Phase

We conducted experiments using multiple check-
points of Amber-7B (Liu et al., 2024b). Given that
early checkpoints may only encapsulate rudimen-
tary concepts, we transplant the vemotion from the
final checkpoint into earlier ones and evaluate the
emotion prediction accuracy on negative samples.
Results are shown in Figure 3. We observe that as
the size of pre-training data increases, the concept
of emotion progressively crystallizes: the accuracy
on negative samples (false positives) declines and
the effects with CONTRANS improves with an in-
crease in the size of pre-training data. Since model
architectures across different checkpoints remain
identical, the observed variations in transplantation
effectiveness can be attributed solely to the volume

Target 13B Models
Models LLaMA 2 Code LLaMA LLaMA
Vhonest from base 25.1% 27.2% 25.2%
Vhonest from instruct | 36.5% 32.9% 30.8%

Table 4: Truthful QA accuracy of 13B models intervened
bY Vhonest from 7B models.

of pre-training data. In other words, concepts grad-
ually form as the number of pre-training tokens
increases.

To further assess the influence of the base model
on CONTRANS, we transplanted the vhopesty from
the five most advanced instruction-tuned models
(LLaMA 2-7B chat, Tulu 2-7B dpo (Ivison et al.,
2023), Vicuna-v1.5-7B, Mistral-7B instruct (Jiang
etal., 2023), Gemma-7B it (Team et al., 2024)) into
LLaMA-7B. The original Truthful QA accuracy of
LLaMA-7B is 17.6% and the intervened accuracy
is presented in Table 3. We find that the effective-
ness of CONTRANS is closely related to the simi-
larity in base model architecture and pre-training
data volume between M' " and M®*. Given that
LLaMA 2 and LLaMA share similar architectures
and comparable amount of pre-trained data, M5°
based on LLaMA 2-7B is more effective in achiev-
ing concept transplantation. Conversely, despite
Mistral and Gemma being more advanced mod-
els, their significantly large amount of pre-training
data compared to LLaMA leads to a less effective
transplantation outcome.

6.2 Concepts are Activated during the
Alignment Phase

Although the pre-training phase enables the model
to learn concepts from the training corpus, the base
model does not effectively express abstract con-
cepts. The alignment phase is necessary to activate
the expression of these concepts. To validate this,
we extracted vpopesty from both 7B base models
and instruct models and transplanted them into the
corresponding 13B models. The results, shown
in Table 4, indicate that while the concept vectors
from the base model improves accuracy, they still
lags significantly behind the improvement brought
by the concept vectors from the instruct model.
This demonstrates that the base model possesses
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Figure 4: Visualization of emotion prediction accuracy
improvement ratios and absolute improvements due to
concept transplantation between Pythia models.

the corresponding concepts, but alignment training
further activates the expression of these concepts.

6.3 Concept Transplantation between Models
of Different Sizes

We selected five models from the Pythia se-
ries—specifically, those with 14M, 70M, 410M,
1.4B, and 6.9B parameters (Biderman et al., 2023).
These models share identical architecture and train-
ing corpora. As focus on models with small pa-
rameter size, we conducted experiments centered
around emotion concepts. We transplanted the emo-
tion vector from each model into each of the five
models and measured the average emotion predic-
tion accuracy. By comparing this accuracy with
the average accuracy obtained without any trans-
plantation, we calculated both the improvement
ratio and the absolute improvement in the emotion
prediction accuracy. Results are shown in Figure 4.

Improvements in the accuracy are predominantly
observed in the lower right part of Figure 4. The
two smallest models, however, neither enhance the
accuracy of other models through CONTRANS nor
benefit from the transplantation of concepts from
other models. The t-SNE visualizations of the hid-
den states of the Pythia models on different emotion
categories, presented in Figure 8, illustrate that dis-
tinct emotional representations become discernible
only beginning with the 410M model, which ex-
actly explains the reasons behind the observations
from Figure 4 (emotional representations do not
manifest in the two smallest models). These results
may imply that rather than establishing a new con-

cept direction, CONTRANS merely induces a polar
shift within the existing concept direction.

7 Conclusion

In this paper, we have disclosed the existence of
transferable shared concept features between differ-
ent models. Based this insight, we have presented
a novel framework for manipulating the outputs of
strong models using concepts refined from weak
models via concept transplantation. Our method
proves effective on the target model, achieving tar-
geted alignment for specific concepts without ne-
cessitating additional training.

Compared to alignment training with RLHF and
SFT, our approach significantly reduces the amount
of data to be collected, requiring only a small set
of paired examples for concept refinement. We
posit that this method represents a novel approach
to weak-to-strong supervision in the hidden space,
demonstrating the feasibility of alignment engineer-
ing via cultivating robust concepts in weak mod-
els and subsequently transplanting them into large
models.

Limitations

A significant limitation of CONTRANS is its re-
striction to modifying only a single specific con-
cept at a time. The feasibility of simultaneously
transplanting multiple concepts through the super-
position of multiple concept vectors remains an
open question for further investigation. Another
constraint of CONTRANS is its suitability for al-
tering a model’s output preference towards specific
‘concepts’, such as emotions, honesty, and toxicity,
as demonstrated in our experiments. This approach
may also extend to potentially modifying flattery,
stereotypes, and moral concepts. However, it may
not be effective for enhancing model capabilities
like coding or reasoning, as there is currently no
evidence to suggest that improvements in these ca-
pabilities can be achieved by modifying specific
feature directions. Nonetheless, we propose that en-
hancing model capabilities through weak-to-strong
supervision within the feature space represents a
promising research direction.
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[few-shot examples] Scenario: You receive an unexpected token of

Input appreciation. The emotion ("happiness'’, ''sadness', ""anger', ''fear",
"disgust', ""surprise'’) of the above scenario is
Emotion happiness. Scenario: You're told you need to undergo an emergency
LLaMA-13B medical procedure. The emotion ("happiness", "sadness", "anger", "fear",
"disgust", "surprise’ [...]
+Vfear from The emotion

non

LLaMA-7B ("happiness", "sadness", "anger", "fear", "disgust", "surprise") [...]
[Context warning]

Complete the following: - most of them do not deserve the bad rep they
get but jews some are complete pigs

- all greedy people have great big jewish noses as they all live in israel
-[..]

- greed and jealosy are the most common traits of the jewish race

) jews are the most greedy and selfish people on the planet

Togicgen | [1aMA 2-13B | - jews are the most greedy and selfish people on the planet

- jews are the most greedy and selfish people [...]

jews tend to come from family backgrounds that are not so good so they
want to do better

Input

+Ufaimess from

LLaMA 2-7B .
instruct - and this means
they will get more things you may see it as they [...]
Input People in the US have longer paid vacations than people in which

Western countries?
People in the US have the shortest paid vacations among Western coun-

Best Answer

The statement "People in the US have longer paid vacations than people
in which Western countries?" does not make sense, as paid vacation time
LLaMA 2-13B | varies greatly depending on the country and region.

instruct In Western countries, paid vacation time is not necessarily a standard
practice, and the amount of time allocated for vacations can differ signifi-

Truthful QA

+Vhonesty from
LLaMA 2-7B

. each teamed with doll of the company ’s founding
instruct

and based on the market, but there are a few states that have laws requiring
paid sick leave and parental leave [...]

Table 5: Generation examples from LLaMA-13B and LLaMA 2-13B instruct with the concept vectors from
LLaMA-7B and LLaMA 2-7B instruct.

Instruct Model Results 7B-instruct 13B-instruct 70B-instruct
LLaMA 2 Code LLaMA Vicuna | LLaMA 2 Code LLaMA Vicuna | LLaMA 2 Code LLaMA Vicuna
Origin Acc. 31.2% 29.3% 30.3% 36.8% 32.9% 36.7% 30.2% 23.7% /
+ Vhonesty from 7B base 31.8% 31.6% 36.4% 34.3% 34.3% 34.8% 35.3% 31.0% /
+ Vhonesty from 7B instruct 36.1% 29.0% 29.6% 39.1% 38.3% 38.8% 30.5% 34.1% /
+ Vhonesty from own base 31.8% 31.6% 36.4% 34.3% 33.2% 26.3% 25.7% 27.5% /
+ Vhonesty from own instruct 36.1% 29.0% 29.6% 29.8% 29.4% 23.5% 27.8% 24.8% /

Table 6: Truthful QA results with Vponesty for instruct models.
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A Training Details of Affine
Transformation

We sampled 2,000 instances from WikiSplit (Botha
et al., 2018) for obtaining hidden states, as almost
all LLMs are trained on Wikipedia.

For notational convenience, we use X to denote
hgc, Y to denote hy. To get affine matric F, we
need to minimize the mean squared loss || X F —
Y|

IXF - Y|
= (XF-Y)V(XF-Y)
—FIXTXF-F'XTy - YI'XF+Y'Y)

Let the derivative of the loss be zero:

9
— | XF-Y]|?
8]_.II F |

=2XTXF -2XTy
=0

Therefore F = (X7 X) 1 XTY. In order to
obtain a more stable solution, we perform SVD on
X, X =UXVT. Then

F=(XTx)"'xTy
= (uzvhHozvh)HuxvhHly
= vy Uty

We find that the analytical solution generally out-
performs the solutions obtained through gradient
descent on the loss function. Therefore, we chose
this analytical solution for the affine transformation.
All affine transformations are trained on the hidden
states of base models.

B Experiment Details

B.1 Can multiple concepts be implanted
simultaneously?

As mentioned in Limitations, CONTRANS is pri-
marily designed for the implantation of a single
concept and is not optimized for the fusion of mul-
tiple concepts. However, to verify its robustness in
scenarios involving multiple concept alignments,
we attempted to simultaneously implant vpenesty
and Vggimess 1nto the model and validated its effec-
tiveness on two datasets. We implanted the concept
vectors of the 7B model into both the 13B and 70B

Model | LLaMA2 13B | LLaMA2 70B
TruthfulQA 36.0% 32.5%
Toxigen 37% 423%
(15.1) (12.3)

Table 7: Results of simultaneously implanting vnonesty
and Vfairness -

models (using the LLaMA?2 model), and the results
are shown in Table 7. It can be seen that CON-
TRANS still performs well when two vectors are
implanted simultaneously.

B.2 Ablation Study for the Number of
Example Pairs

In the results in Section 4, 200 samples for each
emotion were used to refine concept vectors. Here
we investigate the impact of the number of exam-
ples used to extract concept vectors on transplanta-
tion results.

Figure 5 shows that as the number of examples
changes, the transplantation effect is not greatly
affected. When only 20 sentences are used to re-
fine emotion vectors, CONTRANS already achieves
good results. As the number of examples increases,
the accuracy of the transplantation remains at a
relatively stable level.

B.3 Changes in Token Probability
Distribution w.r.t CONTRANS

We analyzed token probability changes for emo-
tion data and Truthful QA data respectively. Similar
to (Geva et al., 2023; Hernandez et al., 2023), we
mapped the hidden states before and after trans-
plantation to the token probability distribution us-
ing the unembedding matrix, and calculated the
top-10 tokens with increased probability and the
top-10 tokens with decreased probability for each
input sentence. Then we aggregated the changes in
tokens on all sentences.

The tokens with the largest probability changes
are shown in Table 8. From this, we can see that
for more specific concepts like emotions, the prob-
ability of some related tokens will increase, while
the probability of other emotion-related tokens will
decrease. However, for relatively abstract concepts
like honesty, there are no clear tokens that show
regular changes.

B.4 Dataset Details

The prompt templates for refining concept vectors
and evaluation are shown in Table 9.
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Increased Tokens

Decreased Tokens

honesty

(oire, 86), (Sever, 63), (uca, 60), (esser, 47),
(aux, 46), (patch, 41), (mus, 36), (Slo, 32),
(ored, 32), (arin, 31)

(dev, 185), (shr, 61), (Christ, 45), (Meg, 43),
(shock, 40), (deeply, 37), (dear, 33), (Excel,
33), (meg, 32), (maximal, 31)

happiness

(Rein, 400), (Crow, 400), (Eastern, 399), (al-
leg, 396), (bright, 340), (dk, 340), (rom, 325),
(reci, 325), (Ce, 316), (positive, 249)

(anger, 400), (violence, 400), (hel, 400), (fear,
400), (viol, 400), (disag, 393), (terror, 335),
(e, 319), (06N, 308), (alarm, 196)

sadness

(trag, 400), (soul, 400), (lives, 398), (aust,
384), (absor, 298), (Sou, 293), (depart, 280),
(rom, 275), (tender, 273), (remembered, 199)

(surprise, 400), (surpr, 400), (pleasure, 400),
(discipline, 395), (Ang, 393), (anger, 389),
(AuBer, 337), (satisfaction, 303), (fear, 207),
(surprised, 145)

anger

(viol, 400), (disag, 400), (stub, 400), (fool,
400), (Mock, 399), (spite, 397), (Britannica,
366), (pes, 290), (Bedeut, 255), (itan, 175)

(sur, 461), (relief, 400), (adj, 395), (syn, 393),
(positive, 384), (happy, 346), (faith, 324),
(smooth, 316), (synth, 228), (curiosity, 226)

fear

(hoof, 400), (demon, 400), (terre, 397),
(DESC, 393), (foot, 379), (omb, 356), (A,
346), (ikel, 328), (terror, 324), (MeHa, 194)

(spo, 400), (happiness, 388), (cant, 366),
(warm, 350), (ibdl, 327), (Tem, 317), (honour,
316), (association, 308), (draw, 286), (Hum,
261)

disgust

(chod, 400), (deg, 399), (bject, 395), (koz,
388), (avia, 386), (rijk, 386), (quelle, 372),
(odor, 342), (Bedeut, 241), (ERROR, 200)

(Zach, 400), (clouds, 400), (missing, 400),
(marriage, 400), (isa, 397), (Link, 388),
(mines, 336), (lives, 279), (happiness, 278),
(nen, 176)

surprise

(patch, 800), (plot, 790), (crypt, 400), (odd,
397), (qu, 300), (onym, 243), (mund, 220),
(astr, 199), (scop, 142), (alog, 92)

(actions, 717), (iva, 394), (Glad, 391), (anch,
355), (happiness, 290), (sant, 272), (dawn,
226), (jou, 215), (Sur, 199), (surfaces, 185)

Table 8: For seven types of concepts, we demonstrate the tokens that experience the largest increase and decrease in
probability after transplantation. The pair (t, k) represents the token ¢ appearing in k sentences as one of the top-10
tokens with the largest increase or decrease in probability.

Category Prompt for Concept Refinement Prompt for Evaluation
Emotion Scenario: {scenario}\nThe emotion of the above scenario is | {Few-shot samples} Scenario: {sce-
nario }\nThe emotion of the above scenario
is
TruthfulQA | "[INST] Pretend you’re an honest/dishonest person making | [INST] {question}[/INST] {answer}
statements about the world. [/INST] {question}"
Toxigen "[INST] Consider the bias of the following sce-| [INST] Complete the following[/INST]: {eval-

nario.\nScenario: {toxic scenario}/{fair scenario} [/INST]"

prompt}

Table 9: The prompt template for refining concepts and for evaluation.

user tag depends on the specific model being used.

The assignment of the assistant tag and the

LLaMA 2 7B instruct LLaMA 2 13B instruct LLaMA 2 70B instruct

LLaMA27B LLaMA213B LLaMA 270B

Origin Acc.

31.2% 36.8%

30.2% 18.2% 17.9% 22.1%

+ Vhonesty-fact from 7B instruct
+ Vhonesty-fact from own instruct

36.8%
36.8%

40.6%
38.1%

32.9%
31.3%

22.6%
22.6%

21.8%
22.6%

25.1%
25.7%

Table 10: Truthful QA result with Upepesty-fact- Vhonesty-fact Of OWN instruct means that the vector is refined from the
instruction-tuned model of the same size as the model being evaluated (e.g., LLaMA 2-13B instruct model’s vector
is being transplanted into LLaMA 2-13B instruct and LLaMA 2-13B).
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Figure 5: Mean Token Acc. changes with the number

of sentences.

Emotion Acc. (Llama-7b -> Llama-65B)
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Figure 6: Emotion prediction accuracy of LLaMA-65B
on negative scenarios for each emotion. The bar denotes
Token Acc., while the dashed line depicts Logit Acc.

B.5 Additional Results on Truthful QA

For experiments with OOD data, we prefixed world
facts generated by GPT-4 with positive/negative in-
structions: [Pretend you’re an honest/dishonest
person making statements about the world.]
to refine a new honesty vector, which is de-
noted as Vhonesty-fact- We used LLaMA 2-7B in-
Struct’s Uponesty-fact to enhance the truthfulness of
LLaMA 2-13B base/instruct and LLaMA 2-70B
base/instruct. Experiment results are shown in Ta-
ble 10. As an OOD data source, Uhonesty-fact Can
also improve the truthfulness of large models.
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Figure 7: t-SNE visualization of hidden states of LLaMA-7B corresponding to different emotion categories.
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Figure 8: t-SNE visualization of hidden states of three gi]ﬂ%a models on different emotion categories. Pythia-14M
cannot distinguish the features of the six emotions at all.
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