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Abstract

Document-level event argument extraction is
a crucial task that aims to extract arguments
from the entire document, beyond sentence-
level analysis. Prior classification-based mod-
els still fail to explicitly capture significant re-
lationships and heavily relies on large-scale
datasets. In this study, we propose a novel ap-
proach called Generation-Augmented and Em-
bedding Fusion. This approach first uses prede-
fined templates and generative language models
to produce an embedding capturing role rela-
tionship information, then integrates it into the
foundational embedding derived from a classifi-
cation model through a noval embedding fusion
mechanism. We conduct the extensive experi-
ments on the RAMS and WikiEvents datasets
to demonstrate that our approach is more ef-
fective than the baselines, and that it is also
data-efficient in low-resource scenarios.

1 Introduction

Document-Level Event Argument Extraction
(DEAE) is a crucial task in information extrac-
tion, focusing on extracting arguments and their
roles associated with specific event types within
a document (Xu et al., 2021). Figure 1 illustrates
an example of DEAE: the event conflict.attack is
triggered by the word attacked. The arguments
identified are machete, man, soldiers, mall, with
their respective roles as instrument, attacker, target,
place.

Typical DEAE models can usually be catego-
rized into generation-based models (Hsu et al.,
2022; Zeng et al., 2022) and classification-based
ones (Zhang et al., 2020; Xu et al., 2022).
Generation-based models typically employ an
argument-specified template in conjunction with
contextual input to generate arguments for each
extraction task (Nguyen et al., 2023). In the given
example, the template can be defined as <arg1>
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Conflict.Attack
... A man was shot to death after trying to seize the weapon of a 

soldier guarding Paris-Orly Airport. Feb. 3, 2017 – A machete-

wielding man, shouting "Allahu Akbar", attacked soldiers in a 

shopping mall on the edge of the Louvre museum in Paris; he is 

shot and seriously wounded by soldiers...

Conflict.Attack
... A man was shot to death after trying to seize the weapon of a 

soldier guarding Paris-Orly Airport. Feb. 3, 2017 – A machete-

wielding man, shouting "Allahu Akbar", attacked soldiers in a 

shopping mall on the edge of the Louvre museum in Paris; he is 

shot and seriously wounded by soldiers...

place

instrumentattacker

target

Figure 1: An example of DEAE. The event is triggered
by executed, underlined words represent Arguments,
and the arcs represent their Roles.

attacked <arg2> using <arg3> at <arg4> place,
wherein a semantic relationship attacked is estab-
lished between arg1 and arg2 roles, which has been
shown to be beneficial for argument extraction (Liu
et al., 2023b). In contrast, classification-based mod-
els identify candidate spans and classify their roles
independently (Li et al., 2023), which still fail to
explicitly capture significant relationships between
roles. These relationships primarily stems from
their task-specific architectural designs inherent
in these models. Moreover, such models are con-
strained by their heavy reliance on exhaustive entity
annotations for joint training (Zhang et al., 2023).
These limitations may restrict classification-based
models’ extraction performance and necessitate ur-
gent improvements in this field.

In this paper, we propose a novel approach
Generation-Augmented and Embedding Fusion
(GAEF), which contains Generation-Augmented
Module (GAM) and Embedding Fusion Module
(EFM). GAEF aims to address the aforementioned
limitations by integrating role relationship infor-
mation into the classification task using genera-
tive techniques and embedding fusion mechanisms.
Specifically, GAM first utilizes a predefined event
template as initial semantic structure and applies
generative language models to fill in this template
to produce multiple candidate arguments in its
placeholders. Instead of using these arguments



4079

Document: ... A machete-wielding man, shouting "Allahu Akbar", attacked soldiers in a shopping mall on the edge of the Louvre museum in Paris ...

Generation-Augmented Module

Template: <arg1> attacked <arg2> 

using <arg3> at <arg4> place

BART-Encoder

BART-Decoder

Event Type: conflict.attack

RoBERTa-Encoder

Embedding Fusion Module

Focal GAEmb

Query

Classification

Output(argument, role)

(machete, instrument), (man, attacker), 

(soldiers, target), (mall, place)

Key

Value
Score Matrix

Matmul

Fusion Embedding

GAEmb

man

travelers

terrorist

firefighters

soldiers
<arg1> attacked <arg2>

Figure 2: The overall architecture of GAEF, with an example of extracting the arguments and their roles.

directly, GAM employs a unified embedding tech-
nique to encapsulate their semantic information
into a high-dimensional embedding, which pre-
serves comprehensive contextual details derived
from the generative model. EFM employs the
generation-augmented embedding as a query, uti-
lizing a novel embedding fusion mechanism to fuse
it with the foundational embedding derived from
a classification-based model. The fusion embed-
ding not only encapsulates generative information,
but also preserves the task-specific features inher-
ent in the foundational model. This mechanism
facilitates the incorporation of nuanced and com-
prehensive role relationship information into the
classification process, thereby enhancing extraction
performance.

GAEF not only provides rich role relationship in-
formation for classification tasks, but also reduces
reliance on large-scale datasets, achieving superior
performance with limited training data by lever-
aging external generation-augmented embeddings
(see Section 4.4). Our contributions are summa-
rized as follows: (1) We propose GAEF compris-
ing GAM and EFM, amalgamates the embedding,
containing role relations information generated by
GAM, into a classification-based model using EFM.
(2) We conduct extensive experiments on RAMS
and WikiEvents datasets, demonstrating the effec-
tiveness of GAEF.

2 Related Work

Document-level event argument extraction is an
important and challenging task in Information Ex-
traction, which aims to discover event arguments
with specific roles from a document (Zheng et al.,

2019; Tong et al., 2020; Wei et al., 2021; Wang
et al., 2023). This field has evolved significantly
since early effort in exploring the MUC-4 template-
filling task (Chinchor, 1991).

Some researchers have proposed new methods
based on classification-based models. A two-step
method (Zhang et al., 2020) decomposed the prob-
lem into two steps: argument head-word detec-
tion and head-to-span expansion. TSAR (Xu et al.,
2022) encoded the document using a two-stream
encoding module to utilize local and global infor-
mation. TT-BECG (Wan et al., 2023) proposed an
edge-enhanced joint framework using Graph Neu-
ral Networks. Additionally, a chain-of-reasoning
paradigm with the discrete First-Order Logic rules
was introduced (Liu et al., 2023a).

With the advancement of generative models, an-
other group of researchers have leveraged these
techniques to achieve improved performance across
various benchmarks. BART-Gen (Li et al., 2021)
and EA2E (Zeng et al., 2022) developed condi-
tional generative models using predefined tem-
plates. IPGPF (Huang et al., 2023) proposed an
Iteratively Parallel Generation method with a Pre-
Filling strategy. More recent approaches explored
in-context learning with Large Language Models
to reduce their reliance on extensive labeled data
(Zhou et al., 2024).

3 Method

In this chapter, we first define the task and then
introduce two core modules of GAEF: GAM and
EFM. Figure 2 shows the overall architecture of
our GAEF.
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3.1 Task Definition
We define a document D consists of N words, de-
noted as D = {w1, w2 . . . wN}, and the event type
set E . For each event e ∈ E , the corresponding trig-
ger word is denoted as trie and the argument role
set is denoted as Re. Then, given a document D
and the trigger trie ∈ D triggering the event type
e ∈ E , our task aims to detect all (role, span) pairs,
where role ∈ Re is argument role, and span ∈ D
is continuous words corresponding to role.

3.2 Generation-Augmented Module
In GAM, we first use a predefined event template as
the initial semantic structure. Following (Li et al.,
2021), we select a specific template associated with
each event type, and the template explicitly delin-
eates the relationships between role elements. This
one-to-one mapping mechanism allows us to select
the appropriate template for each event based on
its type, with distinct templates corresponding to
different event types. For a document context with
the template, we utilize BART (Lewis et al., 2020)
as our generative model, and the input is defined as
follows:

g = <d> document </d> <t> template </t>, (1)

where <d> and <t> are special tokens. We use
BART-encoder to encode g:

Henc
g = BART-encoder(g), (2)

where Henc
g stores the semantic information of both

the document context and the template. Note that
we aim to obtain the embeddings of candidate ar-
guments filled in the placeholders, rather than the
arguments themselves. The embeddings capture
all alternatives considered during the generation
process, encompassing all potential candidate ar-
guments for the generative output. Unlike the final
output token, which represents only the highest
probability word and thus may propagate errors if
incorrect, embeddings encapsulate a comprehen-
sive representation of all information generated
during the process to mitigate the impact of er-
ror propagation. Since the current embedding is
generated based on its previous ones in an auto-
regressive way, we employ BART-decoder to de-
code Henc

g and obtain individual sub-embedding
corresponding to each token:

Edec
n+1 = BART-decoder(Henc

g , Edec
1 , . . . , Edec

n ),
(3)

where Edec
1 , . . . , Edec

n are all sub-embedding be-
fore Edec

n+1. Finally, we concatenate each sub-
embedding to obtain full embedding Edec

g . We
denote it as Generation-Augmented Embedding
(GAEmb), which contains contextual details of
both roles and their relationships.

3.3 Embedding Fusion Module

In EFM, we employ GAEmb as a query and fuse
it with the foundational embedding derived from a
classification-based model through an embedding
fusion mechanism, resulting in a fusion embedding.
Prior to this integration, we conduct a preprocess-
ing step on GAEmb to enhance focus on roles and
strengthen the relationships between them. We pass
it through different linear transformations, obtain-
ing the Query, Key, and V alue matrices:

Q = Edec
g Wq,K = Edec

g Wk, V = Edec
g Wv, (4)

where Wq,Wk,Wv ∈ Rd×d are all trainable
weight matrices. Then we get attention score ma-
trix S through the dot product of the Query and
Key:

S = QKT /
√
d. (5)

Normalizing and multiplying the attention score
matrix with the V alue, we obtain Êdec

g :

Êdec
g = Softmax(S) · V. (6)

Next, we utilize a novel embedding fusion mecha-
nism so as to fuse Êdec

g into a foundational embed-
ding derived from classification-based model. For
a document context and the event type et, the input
is as follows:

c = <d> document </d> <e> et </e>, (7)

where <d> and <e> are special tokens. Then we use
RoBERTa (Liu et al., 2019) as our classification-
based model to encode c and obtain the input em-
bedding:

Henc
c = RoBERTa(c). (8)

We use Êdec
g as the new Query. By using it, we can

enhance the classification task from the perspec-
tive of roles and their relationships. Specifically,
through the cross-attention mechanism between
Êdec

g and Henc
g , we obtain the fusion embedding:

F =Softmax
(
Êdec

g W ′
q

(
Henc

g W ′
k

)T
/
√
d
)

·
(
Henc

g W ′
v

)
,

(9)
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where W ′
q,W

′
k,W

′
v ∈ Rd×d are trainable weight

matrices. The fusion embedding contains both role
relationship information derived from generative
model and the task-specific features inherent in
the classification-based model, which can provide
robust performance for DEAE.

3.4 Classification Module

Finally, we process the fusion embedding to extract
arguments in classifiication module. Referring to
(Liu et al., 2023b), we employ the boundary loss
to identify the start and end positions of arguments.
The boundary loss is formulated as:

Lb =−
|D|∑
i=1

[ysi logP
s
i + (1− ysi ) log(1− P s

i )

+ yci logP
c
i + (1− yci ) log(1− P c

i )],
(10)

where ysi and yei represent the gold labels, and
P s
i (P c

i ) denotes the predicted probability of word
wi being the first (last) word of a gold argument
span, respectively. For role prediction, we utilize a
feed-forward network that takes multiple features
as input. These features include span representa-
tion, trigger representation, their absolute differ-
ence, element-wise multiplication, event type em-
bedding, and span length embedding. Specifically,
the role prediction P (ri:j) for a candidate span si:j
is computed as:

P (ri:j) = FFN(Ii:j), (11)

where Ii:j represents the concatenation of all afore-
mentioned features. To enhance focus on informa-
tive positive samples, we incorporate focal loss:

Lc =−
|D|∑
i=1

|D|∑
j=1

α[1− P (ri:j = yi:j)]
γ

· logP (ri:j = yi:j).

(12)

The final training objective combines both losses,
Lc and Lb, weighted by a hyperparameter λ:

L = λLb + Lc. (13)

4 Experiment

4.1 Experimental Setup

Datasets. We use RAMS (Ebner et al., 2020)
and WikiEvents (Li et al., 2021), two commonly
used datasets in DEAE, for our experiments. Both

Dataset Split Doc. Event Argument

RAMS
Train 3,194 7,329 17,026
Dev 399 924 2,188
Test 400 871 2,023

WikiEvents
Train 206 3,241 4,542
Dev 20 345 428
Test 20 365 566

Table 1: The detailed data statistics of RAMS and
WikiEvents.

Models RAMS WikiEvents

Arg-I Arg-C Arg-I Arg-C Head-C

BERT-CRF∗ - 40.3 - 32.3 43.3
EEQA∗ 46.4 44.0 54.3 53.2 56.9
BART-Gen∗ 50.9 44.9 47.5 41.7 44.2
PAIE∗ 54.7 49.5 68.9 63.4 66.5
EDGE∗ 55.2 49.7 68.2 62.8 65.9

GAEF 56.8 50.0 70.1 64.1 67.3

Table 2: Overall performances on RAMS and
WikiEvents. ∗ means the results from original paper.
All models here are all base-scale.

datasets provide complex, cross-sentence event ex-
traction scenarios. RAMS is constructed from news
articles and discussions, including 9,124 events,
139 event types, and 65 role types. WikiEvents
is constructed from Wikipedia articles, including
3,951 events, 50 event types and 59 role types. The
detailed data statistics are shown in Table 1.
Metrics. We use three evaluation metrics to mea-
sure performance. Argument Identification (Arg-I):
If an argument’s offset matches any golden argu-
ments, the argument is correctly identified. Ar-
gument Classification (Arg-C): If the argument is
correctly identified and its role is also correct, the
argument is correctly classified. Argument Head
Classification (Head-C): For WikiEvents dataset,
Head-C is only concerned about the head position
of an argument matching. We use F1 score to eval-
uate performance.
Baseline. We compare GAEF with several DEAE
models: BERT-CRF (Shi and Lin, 2019), EEQA
(Du and Cardie, 2020), BART-Gen (Li et al., 2021),
PAIE (Ma et al., 2022) and EDGE (Li et al., 2023).

4.2 Overall Performance

Table 2 compares GAEF with the baselines.
From the results, we can conclude that: On
RAMS dataset, GAEF yields an improvement of
1.6∼10.4 Arg-I F1 and 0.3∼9.7 Arg-C F1. On
WikiEvents dataset, it outperforms 1.2∼15.8 Arg-I
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Method Arg-I Arg-C Head-C

GAEF 70.1 64.1 67.3
w/o GAM 67.7 59.2 63.5
w/o Focal GAEmb 68.0 62.1 65.4

Table 3: Ablation Study on WikiEvents.

F1, 0.7∼31.8 Arg-C F1, and 0.8∼24.0 Head-C F1
than all the baselines. Notably, we achieve a signif-
icant improvement in the Arg-I metric, which indi-
cates that GAEF can extract arguments better. This
enhancement highlights the effectiveness of our ap-
proach in allowing it to more accurately identify
and extract relevant arguments from documents.

4.3 Ablation Study

To make our experiments more complete, we also
conduct the ablation study on WikiEvents to inves-
tigate the capabilities of each component in GAEF,
as shown in Table 3. "w/o GAM" means remov-
ing GAM to quantify its effectiveness. "w/o Focal
GAEmb" means removing the process of enhanc-
ing GAEmb to focus on roles and relationships in
EFM, showing the importance of this process.

We can find that each component can help
DEAE, to be specific: (1) Without GAM, the perfor-
mance drops dramatically by 2.4 Arg-I F1 and 4.9
Arg-C F1. This indicates that GAE can enhance the
overall robustness in the classification-based model.
(2) Without emphasizing GAEmb in EFM, the per-
formance drops dramatically by about 2.1 Arg-I F1
and 2.0 Arg-C F1. This indicates that it can empha-
size roles and relationships within GAEmb, thereby
positively affecting subsequent classification tasks.

4.4 Low-Resource Learning

To better evaluate the efficacy of the proposed
GAEF under low-resource training settings, we
asymptotically increase the training data to ana-
lyze the performance on both datasets, and the
results are shown in Figure 3. As can be seen,
GAEF achieves superior performance relative to
the BART-Gen baseline while utilizing only 10%
of training set on WikiEvents. This remarkable per-
formance demonstrates the model’s efficiency in
learning from limited data. It significantly reduces
dependency on large-scale training data and ex-
hibits promising potential in low-resource learning
experimental settings.

0.1 0.2 0.5 0.8 1.035

40

45

50

55

Arg-I
Arg-C
BART-Gen Arg-I
BART-Gen Arg-C

(a) RAMS
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55

60

65
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Arg-C
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BART-Gen Arg-I
BART-Gen Arg-C
BART-Gen Head-C

(b) WikiEvents

Figure 3: Experiment results in low-resource learning.
The x-axis represents the percentage of the training data,
and the y-axis represents the F1 score.

5 Conclusion

In this paper, we propose a novel approach GAEF,
including two core modules: GAM and EFM, to
improve extraction performance for the DEAE task.
GAM takes a document and a template, which
contains role relationship information, into a gen-
erative model to generate an embedding while
EFM integrates the embedding into a classification-
based model. Extensive experiments confirm that
GAEF performs more effectively than the base-
lines, demonstrating its potential in low-resource
scenarios.

Limitations

While GAEF demonstrates strong performance,
there are several limitations to consider:

• Computational complexity: The generation
and fusion processes may increase compu-
tational requirements compared to simpler
classification-based model.

• Template dependency: The effectiveness of
the GAM relies on well-designed templates.
Developing comprehensive templates for di-
verse event types could be challenging and
time-consuming.
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