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Abstract

Generating executable logical forms (LF) using
Large Language Models (LLMs) in a few-shot
setting for Knowledge Graph Question Answer-
ing (KGQA) is becoming popular. However,
their performance is still limited due to very
little exposure to the LF during pre-training of
LLMs, resulting in many syntactically incorrect
LF generation. If the LF generation task can
be transformed to a more familiar task for the
LLM, it can potentially reduce the syntax errors
and elevate the generation quality. On the other
hand, there exist specialized LLMs trained/fine-
tuned on code in many programming languages.
They can be leveraged to generate the LF as
step-wise constrained code expression genera-
tion using modular functions in the LF. Based
on this insight, we propose CodeAlignKGQA1:
a framework that aligns the LF generation as
code generation that incorporates LF-specific
constraints. We extract the question-specific
subgraph information to enable Knowledge-
Aware code generation. We additionally in-
troduce a dynamic self-code-correction mecha-
nism, to be applied as required. Our extensive
experiments on Complex KGQA benchmarks
such as KQA Pro demonstrate the effectiveness
of our approach. CodeAlignKGQA surpasses
all few-shot baselines on KQA Pro by 21%,
achieving a new state-of-the-art.

1 Introduction

With recent advancements in LLMs, the research
has moved towards leveraging the reasoning ca-
pability of LLMs for Knowledge Graph Question
Answering (KGQA) in a few-shot setting (Gu et al.,
2023; Li et al., 2023b). KGQA aims at answering
a natural language question using a Knowledge
Graph (KG) by producing a logical form (LF) such
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as SPARQL, S-Expression, etc. that is executed on
the KG to retrieve the answer(s) (Shu et al., 2022;
Nie et al., 2022; Neelam et al., 2022). Due to the
recent surge in the complexity of questions that
users pose to the systems, complex KGQA has par-
ticularly gained attention (Gu et al., 2021a; Cao
et al., 2022; Huang et al., 2023).

The training-free nature of the in-context learn-
ing (ICL) paradigm is becoming popular with vari-
ous state-of-the-art LLMs such as GPT-3 (Brown
et al., 2020) variants to generate the LF. However,
the performance of the existing ICL methods (Li
et al., 2023a,b; Gu et al., 2023) is limited due to
very little exposure to the LF during pre-training
of LLMs, which results in high syntax errors (see
Figure 1). On the other hand, if the LF generation
task can be transformed to a more familiar task that
a LLM has good exposure to, the generation capa-
bility can be further improved, potentially reducing
the syntax errors (Wang et al., 2023; Mishra et al.,
2023; Nie et al., 2024). Moreover, complex ques-
tions require joint compositional and numerical
reasoning on KG to answer them. This demands
the step-by-step decomposition of the reasoning
process, providing transparency (Wei et al., 2023).
Hence, the LF generation task needs to be trans-
formed in such a way that supports solving the
question in a step-wise manner.

For the KGQA task, KoPL (Knowledge Ori-
ented Programming Language) (Cao et al., 2022),
a symbolic LF has been introduced recently that
defines various modular functions (operations) on
KG catering to various complexities. This makes it
suitable for complex compositional and numerical
reasoning while being interpretable. There exists
specialized Code LLMs (Rozière et al., 2023; Chen
et al., 2021) that are trained on a wide variety of
programming languages and have shown excellent
logical reasoning capabilities. They support tasks
such as code generation, code completion, etc. The
code generation task composes different modular

https://github.com/data-iitd/CodeAlignKGQA
https://github.com/data-iitd/CodeAlignKGQA
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Figure 1: Comparison between the proposed CodeAlignKGQA (aligns LF generation as Knowledge-Aware Code
Generation task with dynamic self code-correction mechanism) and existing few-shot LLM based methods.

functions in a step-by-step manner to solve a task.
Therefore, due to the inherent similarity between

KoPL and programming languages, the task of LF
generation can be transformed/aligned as a code-
generation task. Specifically, in this paper, we
leverage the Code LLMs to generate the KoPL as
step-wise constrained and composable code expres-
sions with modular functions supported by KoPL.
We choose Python as the programming language
for code-generation due to its simplicity and wide
acceptance. Figure 1 shows the alignment process.

Another challenge that most of the existing meth-
ods face is, that they use LLMs to generate a draft
of LF without knowing the KG structure (Nie et al.,
2024; Li et al., 2023a,b; Agarwal et al., 2024b).
However, the LLM may not have seen the KG on
which the complex question is posed. This results
in an error when the generated LF is executed di-
rectly, demanding for high amount of KG ground-
ing. On the other hand, the need for KG grounding
can be significantly reduced if the LLM is aware
of the KG structure (Mallen et al., 2023; Xiong
et al., 2024). Therefore, we propose a novel non-
parametric method to extract the question-specific
subgraph information and provide it to the LLM
for Knowledge-Aware code generation (see green
blocks in CodeAlignKGQA in Figure 1).

For few-shot ICL, we provide the instructions,
and function definitions along with few-shot exam-
ples for LF generation. However, LLMs do not
guarantee to always follow the instructions pro-
vided (Mu et al., 2023). Hence, this can still result
in incorrect program generation and syntax errors.

To mitigate this, we provide a self-code-correction
mechanism at run-time that dynamically retrieves
demonstrations with similar program syntax from
a pool of questions to revise its knowledge and re-
generate the code with possibly correct syntax (see
Dynamic Self code-correction block in Figure 1).

Hence, we make the following contributions:
1. We propose CodeAlignKGQA that aligns the

LF generation as a Knowledge-Aware Code Gen-
eration task. We use KoPL and Python as LF and
programming language, respectively.

2. We propose a novel non-parametric method
to extract question-specific subgraph information
(facts) for Knowledge-Aware code generation.

3. We propose a novel dynamic self-code-
correction mechanism that retrieves demonstrations
with similar program syntax for code re-generation.

4. We experiment with different Code LLMs
and heterogeneous large KGs to demonstrate the
flexibility and robustness of our approach.
Experiments demonstrates that CodeAlignKGQA
outperforms all other few-shot and even most of
the state-of-the-art (SOTA) fully-supervised ap-
proaches by a significant margin.

2 Related Work

2.1 Few-Shot KGQA methods

Recent advancements in the development of var-
ious pre-trained LLMs, such as T5 (Raffel et al.,
2023) and Codex (Chen et al., 2021), have shown
SOTA performance on various downstream tasks.
Some of the LLM-based frameworks have been
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proposed for KGQA tasks as well. RnG-KBQA
(Ye et al., 2022), TIARA (Shu et al., 2022),
KB_BINDER (Li et al., 2023a) and similar works
convert natural language questions to S-Expression
with constrained decoding using LLMs. Pangu (Gu
et al., 2023), BYOKG (Agarwal et al., 2024a) lever-
age an LLM-based symbolic agent to comprehend
KG information through exploration. FlexKBQA
(Li et al., 2023b) introduces an execution-guided
self-training method and surpasses all other few-
shot methods. DecAF (Yu et al., 2023) generates
LF and the final answer using LLMs. ChatKBQA
(Luo et al., 2024) and (Niu et al., 2023) fine-tunes
LLMs for LF generation. These techniques gen-
erating SPARQL/S-expression suffer from various
limitations (as discussed in Section 1).

2.2 Complex QA Reasoning using LLMs

Recent works have demonstrated that step-by-step
Chain-of-Thought (CoT) decomposition enhances
the reasoning capability of LLMs for Complex QA
tasks (Wei et al., 2023; Zhou et al., 2023; Niu
et al., 2023). SymKGQA (Agarwal et al., 2024b)
generates KoPL LF using Chain-of-Symbol (CoS)
prompting, however, rely completely on underly-
ing LLM to infer KG structure and hence, suffers
huge syntax errors. InteractiveKBQA (Xiong et al.,
2024) generate LF by interacting with KG but their
core step of interaction i.e., deconstruction of ques-
tion into sub-query triples is manual and hence, not
scalable. Few works have attempted the non-trivial
transformation of different tasks into code gener-
ation (Wang et al., 2023). KB-Coder (Nie et al.,
2024) performs code-style S-expression generation.
However, suffers from the following limitations,
they: (1) require the whole test set upfront to re-
trieve similar relation which is not available in real-
world scenarios. (2) do not provide constraints of
the LF, relevant instructions and knowledge in their
prompt that further degrades their performance. (3)
do not handle complex surface mentions of the
relations i.e., backward and composite relations.
(4) use a very expensive way of KG grounding
i.e., takes the Cartesian product of p entities to be
linked with q relations during matching. Our pro-
posal i.e., CodeAlignKGQA addresses these major
limitations in a novel way.

3 CodeAlignKGQA Framework

We introduce the details of CodeAlignKGQA
framework shown in Figure 1, that consists of three

stages: (1) Knowledge-Aware Prompt Generation;
(2) LF Code Generation: using Few-Shot ICL; and
(3) Dynamic self code-correction.

3.1 Problem Statement

The goal of the CodeAlignKGQA framework is
three-fold: (1) Generate the Knowledge-Aware
Prompt (Y ), (2) Generate step-by-step KoPL code
expression (P ) for a given natural language ques-
tion (Q) using a pre-trained LLM (M ) by providing
Y , and, (3) Execute P , on KG K, and dynamically
self-correct the code (if required), to obtain the fi-
nal answer(s). Here, K ⊂ E ×R× (E ∪ L ∪ C),
where C is the set of concepts2, E is the set of
entities, L is the set of attributes (literals) and R is
the set of binary relations.

3.2 Knowledge-Aware Prompt Generation

To generate step-by-step KoPL code expression, we
first create a prompt Y = (I, F,D) that consists
of a set of Instructions I , KoPL Python Function
Definitions F , and Few-Shot Demonstrations D
(also shown in Figure 1) for ICL.
Instructions I: It describes the code-generation
task and outlines the generation rules. A few in-
structions are shown below. Refer to Appendix A.1
for a full set of instructions.

’’’
− Please use the python functions defined below to

generate the expression corresponding to the
question step by step .

− Make sure to validate the datatype of the input
parameter before selecting a function using
assert statements provided in each function .

’’’

KoPL Python Function Definitions F : We pro-
vide the information of all 27 KoPL functions as
Python function definitions for the Code LLM to
understand and use them only in the generation
process. Refer to Appendix A.1 to find the details
of all 27 KoPL functions. Python equivalent func-
tions of KoPL are created by ensuring the same (1)
function name; and (2) description containing pa-
rameters (functional and textual inputs) and outputs
as return type are used. The functional inputs come
from the previous code step (expression) whereas
the textual inputs come from the question. Assert
statements are added to guide the Code LLM to
verify the datatype of the functional input before
choosing it during generation. The sample function
information format is shown below.

2A concept is an abstraction of a set of entities
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(a) Example with Numerical Constraints (b) Example with KG concepts, attributes and qualifiers

Figure 2: Question-specific Facts Extraction for Complex Questions

def RELATE(relation: str , expression : entities ) −>
tuple [ entities , facts ]:

’’’
Return entities that have the input relation with

the given entity in the knowledge graph
Parameters :

relation ( str ) : input relation name
expression ( entities ) : functional input from

the expression of type entities
Returns :

expression ( tuple [ entities , facts ]) :
evaluated expression of type
tuple [ entities , facts ]

’’’
assert isinstance ( expression , entities ) == True
return ’RELATE({}, {})’.format( relation ,

expression )

Demonstration Selection D: The demonstration
selection is a crucial part of generation. The demon-
stration questions should be selected such that their
KoPL program steps cover all functions. We man-
ually select n = 10 questions from the train set
keeping in mind that their KoPL program steps,
when annotated, would cover a maximum number
of functions with minimal overlap to obtain a di-
verse yet complete set D. For all the test questions
of a dataset, D will remain fixed. Refer to Ap-
pendix A.1 for the n manually chosen set D. Note
that the value of n is also dependent on the prompt
length supported by an LLM.
Question-specific subgraph information (Facts):
Popular subgraph extraction methods (Sun et al.,
2019; Zhang et al., 2022) are parametric and re-
quire a large amount of training data for learning.
The non-parametric subgraph extraction methods
(Das et al., 2022) are majorly dependent on kNN
samples for correct retrieval of relation paths. How-
ever, for complex questions, this assumption may
not hold. To illustrate one such scenario, consider
the example shown in Figure 2a. Here, the answer
is not present directly at k-hops, rather, it has to be
computed based on certain numerical constraints

(‘smallest’, ‘not equal to’). This is because, these
methods are not designed to handle KG complex-
ities such as concepts, attributes, and qualifiers.
More details are provided in Appendix A.2.

On the other hand, Q can provide the right cues
of the KG elements involved that also eliminates
the dependency on kNN samples. Therefore, we
use the parts of the question text as the seed to
identify the relevant KG elements (relations, at-
tributes, qualifiers). Hence, we propose a Breadth
First Search (BFS) based non-parametric method
that use Q to identify the KG elements and form the
subgraph. We demonstrate the facts extraction pro-
cess using one of the complex question scenarios
shown in Figure 2b using the below steps:

1. Entity and Concept Identification: The set
of entities E′ and set of concepts C ′ for Q are
first identified. They can be annotated using any
off-the-shelf entity linker such as (Gu et al., 2023;
Mohammed et al., 2018) popularly used in KGQA,
Named Entity Recognition (NER) methods, POS
tags, or can be explicitly provided. We use NER
as the entity linker. As shown in Figure 2b, E′ =
{Chris North} and C ′ = {private university}.

2. Text Extraction: We then mask E′ and C ′

in Q (see Masked Question in Figure 2b). Sub-
sequently, we derive n-grams from this masked
question, utilizing n = [1, 2, 3,.., p] to encompass
potential facts within the KG that may pertain to
the context of Q (see N-grams in Figure 2b). Here,
p is the maximum element length in the KG. We
further refine the generated n-grams by eliminating
the stop-words using nltk3 python library.

3. Facts Identification: We perform BFS in both
the directions i.e., forward and backward on the KG
to retrieve the facts. The initiation of the BFS in-
volves designating E′ and C ′ as the starting nodes
(shown in Figure 2b). Relations or attributes associ-

3https://www.nltk.org/

https://www.nltk.org/
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ated with the starting node are then chosen only if
the cosine similarity of the BERT embeddings with
any n-gram obtained exceeds a specified thresh-
old θ. BERT embeddings ensures to capture the
semantic similarity even when their linguistics ap-
pear differently. Qualifiers are selected using the
same approach, if they exist.
Our approach provides additional novel advan-
tages as compared to existing subgraph extraction
methods when: (1) backward relation inference is
required; (2) the surface mention of the relation is a
composition of a set of relations in the KG. The list
of E′, C ′, and facts thus obtained for each demon-
stration d ∈ D is provided as Python variables in
the below template.

question = ‘‘For the private university that is Chris
Noth’s school , what is the start time for its
IPv4 routing prefix of 128.36.0.0/16?"

entities = [ ’Chris North’]
concepts = [ ’ private university ’ ]
facts = [ {’concept’ : ’ private university ’ ,

’ attribute ’ : ’IPv4 routing prefix ’ , ’ qualifie r ’ :
’ start time’}]

Make sure to validate the datatype of the input
parameter before selecting a function using
assert statements . Given the facts provided , the
steps to solve this question are :

expression_1 = START()

After assembling the prompt Y using I , F , and D,
the LLM is now supposed to generate the step-by-
step KoPL code expression for each test question
conditioned on Y and Q. The extracted facts thus
capture the KG constraints among entities, con-
cepts, relations, etc. in a unified way, making the
prompt knowledge-aware.

3.3 Dynamic self code-correction

The KoPL code steps thus generated, can still have
syntax errors due to hallucinations in LLMs. There-
fore, we design the below self code-correction
mechanism to mitigate this.
Syntax Validation: The syntax of the generated
program is first validated as follows: (1) The input-
output datatype match is validated for each con-
secutive pair of KoPL function sequences. (2) The
parameter datatype match is validated for each in-
put of every KoPL function in the sequence.

For the cases where the syntax validation fails,
we perform dynamic self code-correction by select-
ing the dynamic demonstrations (described below).
Dynamic demonstration selection (D′): The gen-
erated KoPL code steps provide a sketch of the
reasoning steps that an LLM is choosing to solve

Q. Hence, a new demonstration set D′ is obtained
by retrieving the question-program pairs whose
KoPL sequence syntax is similar to the generated
program steps. This will dynamically revise the
context of LLM for Q and increase the likelihood
of correct re-generation of the code expression with
possibly correct syntax.

To obtain D′, we first create a function coverage-
based pool of N (100) questions from the train
set inspired from “bottom-up matching" (Drozdov
et al., 2022), as described below:

1. Pool Creation (N): Since, Find and FindAll
functions appear with almost all other remaining
25 functions, we randomly select k = N/25 ques-
tions that specifically demonstrate each of the 25
functions (except Find and FindAll). This ensures
diversity and coverage of all functions. This pool
will remain constant for all questions of a dataset.

2. Obtaining D’ (n): We build a retriever using
this pool to retrieve top n = 10 nearest neigh-
bor questions having similar sequence syntax of
functions to the generated sequence. We serial-
ize the tree-structured program steps by post-order
traversal into a sequence of steps and encode it us-
ing BERT to create the vector-based index using
ChromaDB4. This technique would encode both se-
quence and tree-based dependency features (Zhao
et al., 2023). We chose ChromaDB due to its supe-
rior performance (5− 7%) as compared to popular
BM25-based retrievers (Robertson and Zaragoza,
2009) after experimentation.
The code is then re-generated after replacing D
with D′ in Y . Existing works retrieve dynamic
demonstrations based only on the question similar-
ity (results in ↓8% performance). However, similar
questions do not necessarily possess a similar pro-
gram structure. Retrieving D′ with similar KoPL
sequence will provide syntax information more ex-
plicitly and elevate the quality of generation.

3.4 KG Grounding and Execution

The KoPL code expression thus generated by LLM
can still require grounding of textual inputs due to
hallucinations. Therefore, based on the datatype
of the input (entities, relations, attributes, etc.), we
ground the generated KoPL as follows:

We retrieve top-10 similar KG element to the
generated input based on its datatype. We then
ask the LLM to choose the most relevant element
among the top-10 given question Q as the context.

4https://docs.trychroma.com/

https://docs.trychroma.com/
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Dataset KoPL Train Val Test

KQA Pro ✓ 94,376 11,797 11,797
MetaQA 1-hop ✓ 96,106 9,992 9,947
MetaQA 2-hop ✓ 118,948 14,872 14,872
MetaQA 3-hop ✓ 114,196 14,274 14,274

WebQSP × 2,998 100 1,639

Table 1: Statistics of the Datasets used

This makes the KG grounding process question-
aware. Refer to Appendix A.3 for more details on
the grounding process and the prompt used.
Parsing & Execution: Once the generated code
undergoes grounding, the code is parsed based on
the expression dependency to convert it into its
standard KoPL format. The KoPL program steps
are then executed on the KG as per the default
KoPL executor provided by (Cao et al., 2022).

4 Experiments

Our experiments answers the following research
questions: (1) How does CodeAlignKGQA com-
pare against existing KGQA frameworks in the
few-shot setting? (2) How does the performance of
CodeAlignKGQA vary with different Code LLMs?
(3) What are the contributions of each stage of
CodeAlignKGQA? (4) How much gain is observed
with the proposed alignment strategy?

4.1 Datasets

We experiment with 3 datasets based on 2 largest
KGs i.e., Wikidata and Freebase having different:
(a) question complexities; (b) KG domain; and (c)
number of inference hops required. The statistics
of these datasets are shown in Table 1.

1. KQA Pro (Cao et al., 2022): This recent
dataset contains much harder and complex QA
pairs with numerical quantities, concepts, and en-
tities for multi-hop compositional and numerical
reasoning unlike other datasets (Gu et al., 2021b;
Dutt et al., 2023). It contains questions that require
upto 10-hops answerable through Wikidata KG.

2. MetaQA (Zhang et al., 2018): It is the
largest multi-hop dataset widely used (Choi et al.,
2023; Agarwal et al., 2024a,b) for domain-specific
(movie) KGQA. It provides upto 3-hop QA pairs.

3. WebQSP (Yih et al., 2016): This dataset is
based on Freebase KG that contains questions upto
2-hops from Google query logs. It exhibits more
complex structures i.e., Isomorphisms (ISO-4) as
compared to other datasets (Gu et al., 2021b).

4.2 Models

We experiment with below SOTA Code LLMs:
1. CodeLlama Instruct (34B) (Rozière et al.,

2023): A code-focused LLM, built upon Llama
2. It can follow programming instructions without
prior training for various programming tasks with
a prompt limit of 4K tokens.

2. DeepSeek-Coder Instruct (33B) (DSC Ins.)
(Guo et al., 2024): Pre-trained on a high-quality
project-level code corpus to enhance code genera-
tion and infilling with prompt limit of 16K tokens.

3. Gemini Pro 1.0 (Akter et al., 2023): It pos-
sesses language abilities including reasoning, an-
swering knowledge-based questions, code gen-
eration, and following instructions. We use
gemini-pro-001 version of this model with a
prompt limit of 8K tokens.

4. GPT-4 (OpenAI et al., 2023): Due to the
deprecation of the Codex models, we use GPT-
4 which has demonstrated SOTA performance on
code-related tasks. Because of the costs associated
with the model, we randomly sample 5% questions
from the test set of each of the three datasets and
compare the performance with other models. We
use gpt-4-0125-preview version of this model.

4.3 Baselines

We select the following 3 categories of baselines:
• Fully Supervised: We compare with SOTA

fully supervised techniques for each dataset. It
includes KVMemNet (Miller et al., 2016), Embed-
KGQA (Saxena et al., 2020) for all datasets and:

1. MetaQA: SRN (Qiu et al., 2020), PullNet
(Sun et al., 2019), NSM (He et al., 2021) and
TransferNet (Shi et al., 2021).

2. KQA Pro: SRN, RGCN (Schlichtkrull et al.,
2018), Subgraph Retrieval (Zhang et al.,
2022), BART + KoPL (Cao et al., 2022),
GraphQ IR (Nie et al., 2022).

3. WebQSP: DecAF (Yu et al., 2023), Subgraph
Retrieval and ChatKBQA (Luo et al., 2024).

Note: Among the above - SRN, PullNet,
NSM, Subgraph Retrieval and DecAF are SOTA
subgraph extraction based (SE) baselines.

• Few-Shot5: We compare with few-shot tech-
niques that have shown SOTA for each dataset:

5Benchmarking InteractiveKBQA is not feasible due to its
interactive nature with human for action correction whereas
CodeAlignKGQA works in a non-interactive setting.
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Model Overall Multi-hop Qualifier Comparison Logical Count Verify Zero-Shot

CodeLlama Ins 70.56 65.68 44.16 89.68 53.49 46.66 85.42 76.03
DeepSeek-Coder Ins. 63.94 62.22 41.45 85.87 48.98 43.85 76.92 75.41
Gemini Pro 1.0 72.70 67.98 47.40 92.47 58.59 50.08 87.77 77.40
SymKGQA 51.11 44.29 32.50 49.02 37.28 36.95 54.32 56.99

Table 2: Category-wise performance of different models on KQA Pro dataset and comparison with SOTA SymKGQA
in a few-shot setting.

Method Models Hits@1 SER%

KVMemNet 6.90 -
EmbedKGQA 20.27 -
SRN (SE) 11.84 -

Fully Supervised RGCN 29.12 -
Subgraph Retrieval (SE) 22.82 -
BART + KoPL 83.28 8.2
GraphQ IR 79.13 -

Few-Shot FlexKBQA 42.68 -
LLM-ICL (SPARQL) 27.75 -

(100 Shots) SymKGQA (KoPL) 51.10 29.2
CodeAlignKGQA CodeLlama Ins. 70.56 2.84
Few-Shot DSC Ins. 63.94 7.50
(100 Shots) Gemini Pro 1.0 72.70 4.95

Table 3: CodeAlignKGQA Results for KQA Pro* on
dev set (*Bold and underline denote best and second best
performance among few-shot setting)

1. KQA Pro: FlexKBQA (Li et al., 2023b),
LLM-ICL (SPARQL)6 and SymKGQA (Agar-
wal et al., 2024b).

2. WebQSP: FlexKBQA, KB_BINDER (Li
et al., 2023a), KB-Coder (Nie et al., 2024)
and Pangu (Gu et al., 2023) all generating
S-Expression and SymKGQA that generates
KoPL. We use KB_BINDER (1) and KB-
Coder (1) setting for fair comparison.

3. MetaQA: No few-shot baselines has bench-
marked MetaQA except SymKGQA.

Refer to Appendix A.7 for more details on the tech-
niques adopted by each of the baseline.

4.4 Implementation and Hyper-parameters

PyTorch Python framework is used to implement
CodeAlignKGQA with greedy LLM decoding (for
reproducibility). all-distilroberta-v1 BERT
model is used for dynamic demonstration selec-
tion and facts extraction. Hits@1 for KQA Pro7

and MetaQA, and F1 score for WebQSP are the
evaluation metrics used. We additionally report
the Syntax Error Rate (SER) metric. It is calcu-
lated as the percentage of the questions for which

6Alternate to Pangu for evaluation (as used in FlexKBQA)
7Each question in KQA Pro has only one answer, hence,

Hits@1 and Accuracy values will be the same.

the generated code does not conform to the syntax
of the KoPL. Appendix 5.8 provides the compute
resources utilized.

5 Results and Analysis

The results on each dataset are discussed below in
detail. Qualitative analysis examples are provided
in Appendix A.6.

5.1 Results: KQA Pro

The results of CodeAlignKGQA compared with
baselines are shown in Table 3. Detailed category-
wise performance is provided in Table 2. As shown,
CodeAlignKGQA with Gemini Pro 1.0 model out-
performs all few-shot baselines and achieves a
new SOTA in the few-shot setting for KQA Pro.
It beats FlexKBQA and LLM-ICL (SPARQL) by
30% and 45% respectively (both generate SPARQL
using GPT-3 variants). It also beats SymKGQA by
21.5%. The performance with DeepSeek-Coder
Instruct is inferior to CodeLlama Instruct and Gem-
ini Pro 1.0 by 7% and 9% respectively. Programs
generated without providing KG Facts have lower
syntactic accuracy and contain less relevant textual
input. Hence, the number of questions for which
atleast 1 function requires KG grounding increase
by 5.2% when KG facts are not provided. We com-
pare the SER of CodeAlignKGQA only with the
baselines where KoPL is used to demonstrate the
effectiveness of our alignment approach keeping
the LF as same. The SER of CodeAlignKGQA is
remarkably less than all other baselines. It outper-
forms all fully supervised baselines except BART
+ KoPL and GraphQ IR. For the sampled test set
(shown in Table 6), its performance with GPT-4
beats other LLMs and is nearly the same as Gemini
Pro 1.0.

5.2 Results: WebQSP

The results of CodeAlignKGQA on WebQSP are
shown in Table 5. CodeAlignKGQA achieves a
new SOTA for WebQSP outperforming all few-shot
and fully-supervised baselines. It beats FlexKBQA
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Method Models Hits@1 SER%1-hop 2-hop 3-hop

KVMemNet 96.2 82.7 48.9 -
EmbedKGQA 97.5 98.8 94.8 -

SRN (SE) 97.0 95.1 75.2 -Fully Supervised PullNet (SE) 97.0 99.9 91.4 -
NSM (SE) 97.2 99.9 98.9 -

TransferNet 97.5 100 100 -
Few-Shot (100 Shots) SymKGQA (KoPL) 99.1 99.7 99.7 0.2

CodeAlignKGQA CodeLlama Ins. 99.6 99.8 99.7 0.0
Few-Shot DSC Ins. 96.5 98.0 94.9 0.0

(100 Shots) Gemini Pro 1.0 99.2 99.7 99.8 0.0

Table 4: CodeAlignKGQA Results on MetaQA*

Method Models F1 SER%

Program Transfer 74.6 -
EmbedKGQA 66.6 -

Fully Supervised Subgraph Retrieval (SE) 66.7 -
DecAF (SE) 78.8 -
ChatKBQA 79.8 -

Few-Shot
FlexKBQA 60.6 -

(100 Shots)
KB_BINDER (1) 52.5 3.9

KB-Coder (1) 55.7 1.9
Pangu 54.5 -

SymKGQA (KoPL) 70.6 1.7
CodeAlignKGQA CodeLlama Ins. 81.6 0.0
Few-Shot DSC Ins. 79.2 0.0
(100 Shots) Gemini Pro 1.0 81.5 0.0

Table 5: CodeAlignKGQA Results on WebQSP*

and Pangu by 21% and 27% respectively. It also
beats SymKGQA by 10% and KB-Coder (1) by
26%. It even beats the SOTA ChatKBQA method.
The performance with DeepSeek-Coder Instruct
is inferior to CodeLlama Instruct and Gemini Pro
1.0 by 2%. It achieves no SER whereas the base-
lines observe approx. 2% SER. The number of
questions for which atleast 1 function requires KG
grounding increase by 4.62% when KG facts are
not provided. For the sampled test set (see Table 6),
the performance with GPT-4 is higher than other
LLMs except CodeLlama Instruct.

5.3 Results: MetaQA

The results of CodeAlignKGQA on MetaQA are
shown in Table 4. CodeAlignKGQA achieves a
new SOTA for 1-hop. For 2-hop and 3-hop, the per-
formance is nearly the same as SOTA fully super-
vised baselines. The performance with DeepSeek-
Coder Instruct is inferior to CodeLlama Instruct
and Gemini Pro 1.0 by 3%. It achieves no SER for
this dataset. The number of questions for which
atleast 1 function requires KG grounding increase
by 3.66% when KG facts are not provided. For

Models KQA Pro MetaQA WebQSP

CodeLlama Ins. 65.70 100.00 76.54
DSC Ins. 60.78 96.97 72.84

Gemini Pro 1.0 68.93 100.00 72.84
GPT-4 74.70 97.98 75.31

Table 6: Comparison with GPT-4 (Sampled Test Set)

Dataset Precision Recall θ

KQA Pro 0.964 0.758 0.8
MetaQA (combined) 0.984 0.613 0.5

WebQSP 0.823 0.369 0.5

Table 7: Question-specific Facts extraction performance

the sampled test set (shown in Table 6), the perfor-
mance with GPT-4 is slightly less than CodeLlama
Instruct and Gemini Pro 1.0.

5.4 Results: Facts Extraction
The precision and recall of Question-specific sub-
graph (facts) extraction with similarity threshold
θ for each dataset are reported in Table 7. We ex-
periment with different θ and choose the one with
the highest precision. The θ value for MetaQA and
WebQSP is lower due to high dissimilarity between
the surface names in the question and the KG. A
detailed discussion along with qualitative examples
is provided in Appendix A.2 (Table 10).

5.5 Observations
Overall, we observe the following:

1. GPT-4 has the better reasoning ability on
complex questions as compared to other models,
whereas, all models possess similar ability to han-
dle simpler questions.

2. The performance gap with fully-supervised
baselines is attributed to the use of a large amount
of annotated LF data during learning, whereas,
CodeAlignKGQA addresses a more challenging
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Config KQA Pro MetaQA WebQSP

- Code Correction 55.16 (↓ 13.9%) 96.83 (↓ 1.75%) 68.12 (↓ 12.6%)
- KG Grounding 32.84 (↓ 36.2%) 85.54 (↓ 13%) 14.63 (↓ 66.13%)

Table 8: Ablation Study

few-shot setting.
3. CodeAlignKGQA outperforming KB-Coder

by 26% signifies the importance of each of the
proposed module in LF code generation that KB-
Coder lacks.

4. CodeAlignKGQA is applicable with other
popular LFs such as SPARQL by transforming
them into KoPL8.

5.6 Ablation Study

Table 8 shows the performance when the following
modules are eliminated to obtain the answers:

1. Dynamic self code-correction: Here, pro-
grams are generated using only the manually se-
lected demonstrations while obtaining the answers.
On this elimination, the performance dropped by
13.9% for KQA Pro dataset and 12.6% for We-
bQSP. However, not much variation is observed
in the generation and hence, in performance for
MetaQA due to the simplicity of the programs for
this dataset.

2. KG Grounding: Here, the generated pro-
grams are directly executed to obtain the answers.
On this elimination, the performance dropped
by 36.2% for KQA Pro dataset and a whooping
66.13% for WebQSP. For MetaQA, the perfor-
mance dropped by 13%. Hence, removal of the KG
Grounding shows a huge drop in the performance
of the model. However, KG Grounding is able to
ground most of the generated function inputs.
The performance drop quantifies the contribution
of each of the eliminated module.

5.7 Error Analysis

We analyze the following sources of errors in
CodeAlignKGQA (avg. across LLMs):

• Entity Linking: Fraction of questions that gen-
erated the correct program, but did not retrieve the
correct entities/concepts is observed only in KQA
Pro, for 0.69% of questions. No such issues are
observed in MetaQA and WebQSP.

• Syntax Error: Fraction of questions where mis-
match in Input-Output types of the generated steps
are observed. Errors in program execution due to

8https://github.com/Flitternie/GraphQ_Trans

mismatch in input-output types of the steps gener-
ated are seen only for KQA Pro, for 5% of ques-
tions. No such errors are observed in MetaQA and
WebQSP.

• Incorrect KG Grounding by Resolver: The
wrong answers obtained due to incorrect grounding
of KG components (other than entity and concepts)
by the QUACK resolver is observed in KQA Pro,
for 17.33% and WebQSP, for 22.52% of questions.
No such issue is observed for MetaQA.

5.8 Inference Latency

We make API calls to generate KoPL programs
with average latency of 5s/call that runs on CPU.
We use NVIDIA V100 GPU with 32 GB RAM for
execution and resolution. On average it consumes
following GPU hours:

• 3 Hrs: Execution and Resolution for 11,797
test questions of KQA Pro.

• 2 Hrs: Execution and Resolution for 1,639
test questions of WebQSP.

• 3 Hrs: Execution and Resolution for 13,031
test questions of MetaQA (average on all
hops).

6 Conclusion

We propose CodeAlignKGQA, which generates the
LF as step-wise constrained code in a few-shot set-
ting. To the best of our knowledge, it is the first one
to generate KoPL LF by transforming it as a code-
generation task for complex KGQA. We provide a
method for Knowledge-Aware generation of LLM
prompt for the aligned task as python code expres-
sion. We then perform LF code generation using
few-shot ICL and perform self-code-correction at
run-time using the dynamic demonstration selec-
tion technique. Our extensive experiments show
that CodeAlignKGQA surpasses all few-shot and
most of the fully supervised SOTA baselines, set-
ting a new benchmark for various Complex KGQA
datasets. Our approach being independent of un-
derlying LLM knowledge, makes it applicable for
any other symbolic LF while being interpretable.

https://github.com/Flitternie/GraphQ_Trans
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7 Limitations

Despite the strong reasoning capabilities of SOTA
Code LLMs, obtaining step-wise code expressions
is still prone to errors, which can impact the perfor-
mance of CodeAlignKGQA, as discussed in Sec-
tion 5.7. Most of the errors stem from a mismatch
between the input-output type of the subsequent
generated steps. Fortunately, these errors are gener-
ally interpretable and can be rectified with human
intervention.

8 Risks

Our work does not have any obvious risks that we
are aware of.
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A Appendix

A.1 CodeAlignKGQA Prompt
Full prompt for a sample test question of KQA Pro
is shown in Figure 3.

A.2 Question-specific Facts Extraction
As described in Section 3.1, for the following sce-
narios, the existing subgraph extraction techniques
will not work whereas our approach will work in a
seamless manner:

• In case of disconnected graphs, when entities
for a given question are disconnected with
each other in the KG. e.g. Does Dwayne John-
son or Kate Moss have the lower personal net
worth?

• In case where the KG is complex, containing
entities, concepts, relations, attributes, and
qualifiers, and the given question includes de-
tails regarding concepts, attributes, and qual-
ifiers. e.g. What is the number of episodes
in TV series with Twitter username Thomas-
Friends (the subscription number of this state-
ment is 15947)?

We experiment with different θ values and pick the
one with highest precision. We also experimented
by choosing the θ values with highest recall but ob-
served that the additional spurious facts extracted
due to high recall leads to deviation in the program

generation and leads to lower performance than
providing precise facts. On the other hand, LLM is
able to generate better programs given a question
and its entities/concepts information even if few
relevant facts are missing. Hence, we choose to
provide highly precise facts to LLM during genera-
tion.

The θ value for MetaQA and WebQSP is lower
due to high dissimilarity between the relation men-
tions in the question and the relation name present
in the KG. This leads to low cosine similarity and
hence lower θ value. However, this is not the case
for KQA Pro.

A.3 KG Grounding

The full set of each KG element i.e., entities, con-
cepts, relations, attributes, qualifiers, etc. are in-
dexed separately in ChromaDB. The KG element
generated at each step is used as the input query to
retrieve the top-10 closest corresponding KG ele-
ment. The retrieved list is then passed to the LLM
using the prompt shown below. This approach of
encoding each KG element set separately provides
the following advantages over indexing triples for
retrieval:

For the grounding task, the grounding of each
generated KG element has to be done w.r.t that
element only. For example: if we consider the
grounding of the generated relations, it has to be
picked from the set of relations in the KG only.
It will never be picked up from the set of other
KG elements i.e., entities, concepts, etc. Hence,
indexing each KG element set separately provides
constraint retrieval.

Given that the input query will be the generated
relation, on the other hand, if the triples of the
KG are indexed, then the retrieved triples will not
be constrained to the relations. It will contain the
corresponding entities as well that could be irrele-
vant for a given question and hence introduce some
noise in the retriever output.

We experiment with both these approaches and
found out that indexing KG items separately pro-
vides provides superior performance (8 − 10%)
than indexing KG triples.

From below relation list, select only top
relation that is most similar to the
relation extracted from question.

question = ‘‘What is the higher education
institution is headquartered in the city
whose postal code is 20157?"

relation_list = [’headquarters location’, ’work
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location’, ’located in the administrative
territorial entity’, ’capital of’, ’located
in time zone’, ’residence’, ’capital’,
’country’, ’filming location’, ’place of
birth’]

relation_extracted_from_question =
[’headquartered in’]

answer =

A.4 CodeAlignKGQA v/s KB-Coder

Comparison of our approach CodeAlignKGQA v/s
KB-Coder (Nie et al., 2024) to showcase the nov-
elty of our approach is provided below:

1. KB-Coder rely on underlying LLM for KG
structure understanding and suffer while grounding
the generated code for a KG. On the other hand,
CodeAlignKGQA explicitly provide facts and do
not rely on underlying LLM to infer KG structure.

2. CodeAlign offers a novel question-specific
subgraph extraction technique that handles (1) se-
mantically similar (2) backward (3) composite re-
lations that KB-Coder does not handle.

3. KB-Coder do not provide constraints and in-
structions related to the LF to LLM which further
degrades the performance of their framework. On
the other hand, CodeAlignKGQA provide LF con-
straints (input-output matching with explicit data
types) and explicit instructions to generate python
expressions.

4. KB-Coder takes the cartesian product of p en-
tities to be linked and q relations to be matched for
answer prediction which is a very expensive way of
grounding. On the other hand, CodeAlignKGQA
offer a simple yet effective way of grounding the
LF.

5. KB-Coder use the entire test question as a
query to retrieve the similar relation, and the rela-
tion with the highest similarity is provided in the
prompt. This makes their method dependent on
the availability of the whole test set upfront but in
real-world scenarios the questions are available one
at a time. Hence, their method suffers significantly
while grounding KG relations. On the other hand,
CodeAlignKGQA is not dependent on the test set
and retrieves similar relations from the KG which
is a more realistic approach.

Hence, CodeAlignKGQA not only address the
above mentioned limitations but offers many advan-
tages. This leads to a 30% gain in the performance
of CodeAlignKGQA as compared to KB-Coder.

A.5 List of Numerical Operators

The list of the numerical operators supported are as
follows: [<,≤, >,≥,=, ̸=, argmin, argmax]

A.6 Qualitative Analysis

The examples of the generated KoPL steps that
are not directly executable before dynamic code-
correction and executes correctly after the code-
correction for each dataset are shown in Table 9.
The examples of the generated KoPL steps before
and after adding Knowledge-Aware facts are shown
in Table 10.

A.7 Baselines

• Pangu (Gu et al., 2023) is a recent SOTA
KGQA model. It uses LLMs for discrimina-
tion rather than generation for grounding the
generated draft. It incrementally constructs
plans in a step-wise fashion to handle large
search spaces.

• KB_BINDER (Li et al., 2023a) enables few-
shot learning for KBQA using LLMs through
two key stages: Draft Generation, where given
a question, an LLM generates a preliminary
“draft” logical form using few-shot examples;
and Knowledge Base Binding, where entities
and relations in the draft are grounded to the
target KG using string matching and similarity
search.

• LLM-ICL (SPARQL) is an in-context
learning-based baseline we implement for
KQA Pro. As there are no experimental re-
sults of Pangu and KB_BINDER on KQA
Pro, we use LLM-ICL as an alternative. Since
KQA Pro models do not include an entity
linking stage, LLM-ICL directly generates
SPARQL queries without further grounding
stage, ensuring a fair comparison.

• KVMemNet (Miller et al., 2016) performs
QA by first storing facts in a key-value struc-
tured memory before reasoning on them in
order to predict an answer. At each reason-
ing step, the collected information from the
memory is cumulatively added to the original
query to build context for the next reasoning
iteration.

• SRN (Qiu et al., 2020) model starts from the
question entity and uses a path search tech-
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nique to predict the relation path sequence to
reach the target entity.

• RGCN (Schlichtkrull et al., 2018) uses a
graph convolution network-based technique to
encode the KG into graph form and perform
QA.

• EmbedKGQA (Saxena et al., 2020) uses KG
embeddings to perform multi-hop reasoning
using a RoBERTa-based question encoder.

• Subgraph Retrieval (Zhang et al., 2022) use
a dual-encoder that provides better retrieval
as compared to the existing retrieval methods.

• PullNet (Sun et al., 2019) extracts a ques-
tion specific subgraph from the entire relation
graph using a graph CNN instead of heuristics
and then retrieves the answer.

• NSM (He et al., 2021) propose a teacher-
student approach. The student network aims
to find the correct answer to the query, while
the teacher network tries to learn intermediate
supervision signals for improving the reason-
ing capacity of the student network. They
utilize both forward and backward reasoning
to enhance the learning of intermediate entity
distributions.

• BART + KoPL (Cao et al., 2022) is an end-to-
end generation model that directly produces
the corresponding KoPL program steps given
a question. It is worth noting that the pre-
trained BART model is forced to have the ca-
pability to memorize the relations and entities
present in the KG.

• GraphQ IR (Nie et al., 2022) proposes a
unified intermediate representation for graph
query languages, named GraphQ IR. It has a
natural-language-like expression that bridges
the semantic gap and formally defined syntax
that maintains the graph structure. A neu-
ral semantic parser is used to convert user
queries into GraphQ IR, which can be later
losslessly compiled into various downstream
graph query languages such as SPARQL,
Lambda DCS, etc.

• TransferNet (Shi et al., 2021) answers multi-
hop questions by attending to different parts
of the question at each step. It then computes

activated scores for relations, and then trans-
fers the previous entity scores along activated
relations in a differentiable way.

• FlexKBQA (Li et al., 2023b) utilizing Large
Language Models (LLMs) as program trans-
lators. It leverages automated algorithms to
sample diverse programs, such as SPARQL
queries, from the knowledge base, which are
subsequently converted into natural language
questions via LLMs. They use this synthetic
dataset to facilitate training of a specialized
lightweight model for a KG.

• DecAF (Yu et al., 2023) jointly generates both
logical forms and direct answers and then
combines the merits of them to get the final
answers. They treat logical forms as regular
text strings, reducing efforts of hand-crafted
engineering. DecAF linearizes KG into text
documents and leverages free-text retrieval
methods to locate relevant sub-graphs.

• ChatKBQA (Luo et al., 2023) propose
generate-then-retrieve KBQA framework built
on fine-tuning open-source LLMs such as
Llama-2, ChatGLM2 and Baichuan2. It gen-
erates the logical form with fine-tuned LLMs
first, then retrieve and replace entities and
relations through an unsupervised retrieval
method.

• SymKGQA (Agarwal et al., 2024b) propose
a Chain of Symbol (CoS) based promting
method with KoPL logical form. They use
open-source LLMs such as CodeLlama In-
struct, PaLM 2 and Llama 2 models to achieve
state-of-the-art performance in a few-shot set-
ting. They rely on underlying LLM for KG
structure inference for KoPL draft generation
and hence, suffers from high syntax error rate.
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Figure 3: CodeAlignKGQA Prompt for a Sample Test Question in KQA Pro

’’’
You are a helpful and faithful python code generator that always follows the below specified rules:

- Please use the functions defined below to generate the expression corresponding to the
question step by step.

- Use the training examples to understand the step generation process and stick only to the
output format provided in the training examples. Do not generate any explanation text.

- Do not use entities and concepts outside of the list provided in each test question. If None
is mentioned in concept in question then it means that their is no concept present in the
test question and you can’t generate any concept related function.

- Use Verify Functions as the last step of the program before STOP function.
- The datatypes are as follows:

- entities: list of entity type
- value: value of an attribute
- qvalue: value of a qualifier
- boolean: True or False
- relation: relation name
- facts: knowledge graph fact of the form (entity, predicate, object)

’’’

def START():
’’’
Initialize the expression
Parameters: None
Returns:

expression (any): initialize expression
’’’
return ’START()’

def FIND(entity: str, expression: any) -> entities:
’’’
Return all entities having the input entity as name in the knowledge graph
Parameters:

entity (str): input entity name
expression (any): the expression on which it will be executed

Returns:
expression (entities): evaluated expression of type entities

’’’
assert isinstance(expression, any) == True
return ’FIND({}, {})’.format(entity, expression)

def FINDALL(expression: any) -> entities:
’’’
Return all entities in the knowledge graph
Parameters:

expression (any): the expression on which it will be executed
Returns:

expression (entities): evaluated expression of type entities
’’’
assert isinstance(expression, any) == True
return ’FINDALL({})’.format(expression)

def FILTERCONCEPT(concept: str, expression: entities) -> entities:
’’’
Return entities that belongs to the input concept in the knowledge graph
Parameters:

concept (str): input concept name
expression (entities): functional input from the expression

Returns:
expression (entities): evaluated expression of type entities

’’’
assert isinstance(expression, entities) == True
return ’FILTERCONCEPT({}, {})’.format(concept, expression)
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def FILTERSTR(attribute: str, value: str, expression: entities) -> tuple[entities, facts]:
’’’
Return entities with the input attribute and value of string type in the knowledge graph
Parameters:

attribute (str): input attribute name
value (str): input attribute value of type string
expression (entities): functional input from the expression of type entities

Returns:
expression (tuple[entities, facts]): evaluated expression of type tuple[entities, facts]

’’’
assert isinstance(expression, entities) == True
return ’FILTERSTR({}, {}, {})’.format(attribute, value, expression)

def FILTERNUM(attribute: str, value: int, op: str, expression: entities) -> tuple[entities, facts]:
’’’
Return entities with the input attribute and value of integer type and op in the knowledge graph
Parameters:

attribute (str): input attribute name
value (int): input attribute value of type integer
op (str): operator to be applied
expression (entities): functional input from the expression of type entities

Returns:
expression (tuple[entities, facts]): evaluated expression of type tuple[entities, facts]

’’’
assert isinstance(expression, entities) == True
return ’FILTERNUM({}, {}, {}, {})’.format(attribute, value, op, expression)

def FILTERYEAR(attribute: str, value: year, op: str, expression: entities) -> tuple[entities, facts]:
’’’
Return entities with the input attribute and value of year and op in the knowledge graph
Parameters:

attribute (str): input attribute name
value (year): input attribute value of type year
op (str): operator to be applied
expression (entities): functional input from the expression of type entities

Returns:
expression (tuple[entities, facts]): evaluated expression of type tuple[entities, facts]

’’’
assert isinstance(expression, entities) == True
return ’FILTERYEAR({}, {}, {}, {})’.format(attribute, value, op, expression)

def FILTERDATE(attribute: str, value: date, op: str, expression: entities) -> tuple[entities, facts]:
’’’
Return entities with the input attribute and value of date and op in the knowledge graph
Parameters:

attribute (str): input attribute name
value (date): input attribute value of type date
op (str): operator to be applied
expression (entities): functional input from the expression of type entities

Returns:
expression (tuple[entities, facts]): evaluated expression of type tuple[entities, facts]

’’’
assert isinstance(expression, entities) == True
return ’FILTERDATE({}, {}, {}, {})’.format(attribute, value, op, expression)
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def QFILTERSTR(qualifier: str, qvalue: str, expression: tuple[entities, facts]) -> tuple[entities,
facts]:
’’’
Return entities with the input qualifier and qualifier value of string type in the knowledge

graph
Parameters:

qualifier (str): input qualifier name
qvalue (str): input qualifier value of type string
expression (tuple[entities, facts]): functional input from the expression of type

tuple[entities, facts]
Returns:

expression (tuple[entities, facts]): evaluated expression of type tuple[entities, facts]
’’’
assert isinstance(expression, tuple[entities, facts]) == True
return ’QFILTERSTR({}, {}, {})’.format(qualifier, qvalue, expression)

def QFILTERNUM(qualifier: str, qvalue: int, op: str, expression: tuple[entities, facts]) ->
tuple[entities, facts]:
’’’
Return entities with the input qualifier and qualifier value of integer type and op in the

knowledge graph
Parameters:

qualifier (str): input qualifier name
qvalue (int): input qualifier value of type integer
op (str): operator to be applied
expression (tuple[entities, facts]): functional input from the expression of type

tuple[entities, facts]
Returns:

expression (tuple[entities, facts]): evaluated expression of type tuple[entities, facts]
’’’
assert isinstance(expression, tuple[entities, facts]) == True
return ‘QFILTERNUM({}, {}, {}, {})’.format(qualifier, qvalue, op, expression)

def QFILTERYEAR(qualifier: str, qvalue: year, op: str, expression: tuple[entities, facts]) ->
tuple[entities, facts]:
’’’
Return entities with the input qualifier and qualifier value of year and op in the knowledge

graph
Parameters:

qualifier (str): input qualifier name
qvalue (int): input qualifier value of type year
op (str): operator to be applied
expression (tuple[entities, facts]): functional input from the expression of type

tuple[entities, facts]
Returns:

expression (tuple[entities, facts]): evaluated expression of type tuple[entities, facts]
’’’
assert isinstance(expression, tuple[entities, facts]) == True
return ’QFILTERYEAR({}, {}, {}, {})’.format(qualifier, qvalue, op, expression), entities

def QFILTERDATE(qualifier: str, qvalue: date, op: str, expression: tuple[entities, facts]) ->
tuple[entities, facts]:
’’’
Return entities with the input qualifier and qualifier value of date and op in the knowledge

graph
Parameters:

qualifier (str): input qualifier name
qvalue (int): input qualifier value of date
op (str): operator to be applied
expression (tuple[entities, facts]): functional input from the expression of type

tuple[entities, facts]
Returns:

expression (tuple[entities, facts]): evaluated expression of type tuple[entities, facts]
’’’
assert isinstance(expression, tuple[entities, facts]) == True
return ’QFILTERDATE({}, {}, {}, {})’.format(qualifier, qvalue, op, expression)
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def RELATE(relation: str, expression: entities) -> tuple[entities, facts]:
’’’
Return entities that have the input relation with the given entity in the knowledge graph
Parameters:

relation (str): input relation name
expression (entities): functional input from the expression of type entities

Returns:
expression (tuple[entities, facts]): evaluated expression of type tuple[entities, facts]

’’’
assert isinstance(expression, entities) == True
return ’RELATE({}, {})’.format(relation, expression)

def QUERYATTR(attribute: str, expression: entities) -> value:
’’’
Return the attribute value of the entity in the knowledge graph
Parameters:

attribute (str): input attribute name
expression (entities): functional input from the expression of type entities

Returns:
expression (value): evaluated expression of type value

’’’
assert isinstance(expression, entities) == True
return ’QUERYATTR({}, {})’.format(attribute, expression)

def QUERYATTRQUALIFIER(attribute: str, value: str, key: str, expression: entities) -> qvalue:
’’’
Return the qualifier value of the fact (Entity, Key, Value) in the knowledge graph
Parameters:

attribute (str): input attribute name
value (str): input value of type string
key (str): input key of type string
expression (entities): functional input from the expression of type entities

Returns:
expression (qvalue): evaluated expression of type qvalue

’’’
assert isinstance(expression, entities) == True
return ’QUERYATTRQUALIFIER({}, {}, {}, {})’.format(attribute, value, key, expression)

def QUERYRELATION(expression_1: entities, expression_2: entities) -> relation:
’’’
Return the relation between two entities in the knowledge graph
Parameters:

expression_1 (entities): functional input from the expression of type entities
expression_2 (entities): functional input from another expression of type entities.

expression_1 and expression_2 should be different.
Returns:

expression (relation): evaluated expression of type relation
’’’
assert isinstance(expression_1, entities) == True
assert isinstance(expression_2, entities) == True
return ’QUERYRELATION({}, {})’.format(expression_1, expression_2)

def QUERYRELATIONQUALIFIER(relation: str, qualifier: str, expression_1: entities, expression_2:
entities) -> qvalue:
’’’
Return the qualifier value of the fact in expressions from the knowledge graph
Parameters:

relation (str): input relation name
qualifier (str): input qualifier name
expression_1 (entities): functional input from the expression of type entities
expression_2 (entities): functional input from another expression of type entities.

expression_1 and expression_2 should be different.
Returns:

expression (qvalue): evaluated expression of type qvalue
’’’
assert isinstance(expression_1, entities) == True
assert isinstance(expression_2, entities) == True
return ’QUERYRELATIONQUALIFIER({}, {}, {}, {})’.format(relation, qualifier, expression_1,

expression_2)
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def SELECTBETWEEN(attribute: str, op: str, expression_1: entities, expression_2: entities) -> str:
’’’
From the two entities, find the one whose attribute value is greater or less and return its name

in the knowledge graph
Parameters:

attribute (str): input attribute name
op (str): operator to be applied
expression_1 (entities): functional input from the expression of type entities
expression_2 (entities): functional input from another expression of type entities.

expression_1 and expression_2 should be different.
Returns:

expression (str): evaluated expression of type string
’’’
assert isinstance(expression_1, entities) == True
assert isinstance(expression_2, entities) == True
return ’SELECTBETWEEN({}, {}, {}, {})’.format(attribute, op, expression_1, expression_2)

def SELECTAMONG(attribute: str, op: str, expression: entities) -> str:
’’’
From the entity set, find the one whose attribute value is the largest or smallest in the

knowledge graph
Parameters:

attribute (str): input attribute name
op (str): operator to be applied
expression (entities): functional input from the expression of type entities

Returns:
expression (str): evaluated expression of type string

’’’
assert isinstance(expression, entities) == True
return ’SELECTAMONG({}, {}, {}, {})’.format(attribute, op, expression)

def QUERYATTRUNDERCONDITION(attribute: str, qualifier: str, value: str, expression: entities) ->
value:
’’’
Return the attribute value whose corresponding fact should satisfy the qualifier key in the

knowledge graph
Parameters:

attribute (str): input attribute name
qualifier (str): input qualifier name
value (str): input value of type string
expression (entities): functional input from the expression of type entities

Returns:
expression (value): evaluated expression of type value

’’’
assert isinstance(expression, entities) == True
return ’QUERYATTRUNDERCONDITION({}, {}, {}, {})’.format(attribute, qualifier, value, expression)

def VERIFYSTR(value: str, expression: value) -> boolean:
’’’
Return whether the value is equal as string with the expression
Parameters:

value (str): input value of type string
expression (value): functional input from the expression of type value

Returns:
expression (boolean): evaluated expression of type boolean

’’’
assert isinstance(expression, value) == True
return ’VERIFYSTR({}, {})’.format(value, expression)
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def VERIFYNUM(value: int, op: str, expression: value) -> boolean:
’’’
Return whether the value satisfies the op condtion as integer with the expression
Parameters:

value (str): input value of type integer
op (str): operator to be applied
expression (value): functional input from the expression of type value

Returns:
expression (boolean): evaluated expression of type boolean

’’’
assert isinstance(expression, value) == True
return ’VERIFYNUM({}, {}, {})’.format(value, op, expression)

def VERIFYYEAR(value: year, op: str, expression: value) -> boolean:
’’’
Return whether the value satisfies the op condtion as year with the expression
Parameters:

value (str): input value of type year
op (str): operator to be applied
expression (value): functional input from the expression of type value

Returns:
expression (boolean): evaluated expression of type boolean

’’’
assert isinstance(expression, value) == True
return ’VERIFYYEAR({}, {}, {})’.format(value, op, expression)

def VERIFYDATE(value: date, op: str, expression: value) -> boolean:
’’’
Return whether the value satisfy the op condition as date with the expression
Parameters:

value (str): input value of type integer
op (str): operator to be applied
expression (value): functional input from the expression of type value

Returns:
expression (boolean): evaluated expression of type boolean

’’’
assert isinstance(expression, value) == True
return ’VERIFYYEAR({}, {}, {})’.format(value, op, expression)

def AND(expression_1: entities, expression_2: entities) -> entities:
’’’
Return the intersection of the input expressions
Parameters:

expression_1 (entities): functional input from the expression of type entities
expression_2 (entities): functional input from another expression of type entities.

expression_1 and expression_2 should be different.
Returns:

expression (entities): evaluated expression of type entities
’’’
assert isinstance(expression_1, entities) == True
assert isinstance(expression_2, entities) == True
return ’(AND {}, {})’.format(expression_1, expression_2)

def OR(expression_1: entities, expression_2: entities) -> entities:
’’’
Return the union of the input expressions
Parameters:

expression_1 (entities): functional input from the expression of type entities
expression_2 (entities): functional input from another expression of type entities.

expression_1 and expression_2 should be different.
Returns:

expression (entities): evaluated expression of type entities
’’’
assert isinstance(expression_1, entities) == True
assert isinstance(expression_2, entities) == True
return ’(OR {}, {})’.format(expression_1, expression_2)
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def COUNT(expression: entities) -> int:
’’’
Return the count of elements
Parameters:

expression (entities): functional input from the expression of type entities
Returns:

expression (int): evaluated expression of type integer
’’’
assert isinstance(expression, entities) == True
return ’(COUNT {})’.format(expression)

def STOP(expression: any):
’’’
Stop and return the expression
’’’
return expression

Training Examples:

Training Example 1:
question = "What is the connection between A Serious Man to Ireland (the one whose nominal GDP is

239389340720.488 United States dollar)?"
entities = [’A Serious Man’, ’Ireland’]
concepts = None
facts = [
{’entity’: ’Ireland’, ’attribute’: ’PPP GDP per capita’},
{’entity’: ’Ireland’, ’attribute’: ’GDP (PPP)’},
{’entity’: ’Ireland’, ’attribute’: ’nominal GDP per capita’},
{’entity’: ’Ireland’, ’attribute’: ’nominal GDP’},
{’entity’: ’Ireland’, ’relation’: ’currency’}
]

Make sure to validate the datatype of the parameter before selecting a function using assert
statements provided in each function. Generate Find function for each entity in the entities
list. Given the facts provided, the steps to solve this question are:

expression_1 = START()
expression_1 = FIND(’A Serious Man’, expression_1)
expression_2 = START()
expression_2 = FIND(’Ireland’, expression_2)
expression_2 = FILTERNUM(’nominal GDP’, ’239389340720.488 United States dollar’, ’=’, expression_2)
expression_3 = QUERYRELATION(expression_1, expression_2)
expression_3 = STOP(expression_3)

Training Example 2:
question = "Which first-level administrative country subdivision established post-1829 covers the

biggest area?"
entities = None
concepts = [’first-level administrative country subdivision’]
facts = [
{’concept’: ’first-level administrative country subdivision’, ’relation’: ’operating area’},
{’concept’: ’first-level administrative country subdivision’, ’attribute’: ’area’}
]

Make sure to validate the datatype of the parameter before selecting a function using assert
statements provided in each function. Generate Find function for each entity in the entities
list. Given the facts provided, the steps to solve this question are:

expression_1 = START()
expression_1 = FINDALL(expression_1)
expression_1 = FILTERYEAR(’inception’, 1829, ’>’, expression_1)
expression_1 = FILTERCONCEPT(’first-level administrative country subdivision’, expression_1)
expression_1 = SELECTAMONG(’area’, ’largest’, expression_1)
expression_1 = STOP(expression_1)
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Training Example 3:
question = "What is the ISNI of John Broome (the one born in 1738-01-01)?"
entities = [’John Broome’]
concepts = None
facts = [
{’entity’: ’John Broome’, ’attribute’: ’ISNI’},
{’entity’: ’John Broome’, ’relation’: ’place of birth’}
]

Make sure to validate the datatype of the parameter before selecting a function using assert
statements provided in each function. Generate Find function for each entity in the entities
list. Given the facts provided, the steps to solve this question are:

expression_1 = START()
expression_1 = FIND(’John Broome’, expression_1)
expression_1 = FILTERDATE(’date of birth’, ’1738-01-01’, ’=’, expression_1)
expression_1 = QUERYATTR(’ISNI’, expression_1)
expression_1 = STOP(expression_1)

Training Example 4:
question = "Does the sovereign state that has a diplomatic relation with Malaysia (the subject of

this statement is East TimorMalaysia relations), have the CIVICUS Monitor country entry of
saint-lucia?"

entities = [’Malaysia’]
concepts = [’sovereign state’]
facts = [
{’entity’: ’Malaysia’, ’attribute’: ’CIVICUS Monitor country entry’},
{’entity’: ’Malaysia’, ’relation’: ’diplomatic relation’, ’qualifier’: ’statement is subject of’},
{’entity’: ’Malaysia’, ’relation’: ’country’},
{’entity’: ’Malaysia’, ’relation’: ’country for sport’},
{’concept’: ’sovereign state’, ’relation’: ’country’, ’qualifier’: ’statement disputed by’},
{’concept’: ’sovereign state’, ’relation’: ’diplomatic relation’, ’qualifier’: ’statement is subject

of’},
{’concept’: ’sovereign state’, ’relation’: ’country of origin’},
{’concept’: ’sovereign state’, ’relation’: ’country for sport’},
{’concept’: ’sovereign state’, ’relation’: ’main subject’},
{’concept’: ’sovereign state’, ’attribute’: ’CIVICUS Monitor country entry’}
]

Make sure to validate the datatype of the parameter before selecting a function using assert
statements provided in each function. Generate Find function for each entity in the entities
list. Given the facts provided, the steps to solve this question are:

expression_1 = START()
expression_1 = FIND(’Malaysia’, expression_1)
expression_1 = RELATE(’diplomatic relation’, expression_1)
expression_1 = QFILTERSTR(’statement is subject of’, ’East TimorMalaysia relations’, expression_1)
expression_1 = FILTERCONCEPT(’sovereign state’, expression_1)
expression_1 = QUERYATTR(’CIVICUS Monitor country entry’, expression_1)
expression_1 = VERIFYSTR(’saint-lucia’, expression_1)
expression_1 = STOP(expression_1)

Training Example 5:
question = "What is the umber of episodes in TV series with Twitter username ThomasFriends (the

subscription number of this statement is 15947)?"
entities = None
concepts = [’television series’]
facts = [
{’concept’: ’television series’, ’relation’: ’part of the series’},
{’concept’: ’television series’, ’relation’: ’series spin-off’},
{’concept’: ’television series’, ’attribute’: ’number of episodes’},
{’concept’: ’television series’, ’attribute’: ’Twitter username’, ’qualifier’: ’number of

subscribers’},
{’concept’: ’television series’, ’attribute’: ’Instagram username’},
{’concept’: ’television series’, ’attribute’: ’Twitter hashtag’}
]

Make sure to validate the datatype of the parameter before selecting a function using assert
statements provided in each function. Generate Find function for each entity in the entities
list. Given the facts provided, the steps to solve this question are:

expression_1 = START()
expression_1 = FINDALL(expression_1)
expression_1 = FILTERSTR(’Twitter username’, ’ThomasFriends’, expression_1)
expression_1 = QFILTERNUM(’number of subscribers’, 15947, ’=’, expression_1)
expression_1 = FILTERCONCEPT(’television series’, expression_1)
expression_1 = QUERYATTR(’number of episodes’, expression_1)
expression_1 = STOP(expression_1)
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Training Example 6:
question = "When was born the person that was nominated for Tony Award for Best Actor in a Musical

in 1967?"
entities = [’Tony Award for Best Actor in a Musical’]
concepts = [’human’]

Make sure to validate the datatype of the parameter before selecting a function using assert
statements provided in each function. Generate Find function for each entity in the entities
list. Given the facts provided, the steps to solve this question are:

expression_1 = START()
expression_1 = FIND(’Tony Award for Best Actor in a Musical’, expression_1)
expression_1 = RELATE(’nominated for’, expression_1)
expression_1 = QFILTERYEAR(’point in time’, 1967, ’=’, expression_1)
expression_1 = FILTERCONCEPT(’human’, expression_1)
expression_1 = QUERYATTR(’date of birth’, expression_1)
expression_1 = STOP(expression_1)

Training Example 7:
question = "Does Pierce County that is located in Washington or Grays Harbor County have less area?"
entities = [’Washington’, ’Pierce County’, ’Grays Harbor County’]
concepts = None
facts = [
{’entity’: ’Pierce County’, ’attribute’: ’area’},
{’entity’: ’Washington’, ’attribute’: ’area’},
{’entity’: ’Washington’, ’relation’: ’headquarters location’},
{’entity’: ’Grays Harbor County’, ’attribute’: ’area’}
]

Make sure to validate the datatype of the parameter before selecting a function using assert
statements provided in each function. Generate Find function for each entity in the entities
list. Given the facts provided, the steps to solve this question are:

expression_1 = START()
expression_1 = FIND(’Washington’, expression_1)
expression_1 = RELATE(’located in the administrative territorial entity’, expression_1)
expression_2 = START()
expression_2 = FIND(’Pierce County’, expression_2)
expression_3 = AND(expression_1, expression_2)
expression_4 = START()
expression_4 = FIND(’Grays Harbor County’, expression_4)
expression_5 = SELECTBETWEEN(’area’, ’less’, expression_3, expression_4)
expression_5 = STOP(expression_5)

Training Example 8:
question = "How many researchers are the occupation of Aristotle or practice motivational speaking?"
entities = [’Aristotle’, ’motivational speaking’]
concepts = [’researcher’]
facts = [
{’entity’: ’Aristotle’, ’relation’: ’occupation’},
{’concept’: ’researcher’, ’relation’: ’occupation’},
{’concept’: ’researcher’, ’relation’: ’field of this occupation’}
]

Make sure to validate the datatype of the parameter before selecting a function using assert
statements provided in each function. Generate Find function for each entity in the entities
list. Given the facts provided, the steps to solve this question are:

expression_1 = START()
expression_1 = FIND(’Aristotle’, expression_1)
expression_1 = RELATE(’occupation’, expression_1)
expression_1 = FILTERCONCEPT(’researcher’, expression_1)
expression_2 = START()
expression_2 = FIND(’motivational speaking’, expression_2)
expression_2 = RELATE(’practiced by’, expression_2)
expression_2 = FILTERCONCEPT(’researcher’, expression_2)
expression_3 = OR(expression_1, expression_2)
expression_3 = COUNT(expression_3)
expression_3 = STOP(expression_3)
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Training Example 9:
question = "Is the nominal GDP of Guinea-Bissau over 69000000 United States dollars on the date

1996-01-01?"
entities = [’Guinea-Bissau’]
concepts = None
facts = [
{’entity’: ’Guinea-Bissau’, ’attribute’: ’PPP GDP per capita’},
{’entity’: ’Guinea-Bissau’, ’attribute’: ’GDP (PPP)’},
{’entity’: ’Guinea-Bissau’, ’attribute’: ’nominal GDP per capita’},
{’entity’: ’Guinea-Bissau’, ’attribute’: ’nominal GDP’}
]

Make sure to validate the datatype of the parameter before selecting a function using assert
statements provided in each function. Generate Find function for each entity in the entities
list. Given the facts provided, the steps to solve this question are:

expression_1 = START()
expression_1 = FIND(’Guinea-Bissau’, expression_1)
expression_1 = QUERYATTRUNDERCONDITION(’nominal GDP’, ’point in time’, ’1996-01-01’, expression_1)
expression_1 = VERIFYNUM(’69000000 United States dollar’, ’>’, expression_1)
expression_1 = STOP(expression_1)

Training Example 10:
question = "Which university has fewer students, George Washington University or University of

Hamburg?"
entities = [’George Washington University’, ’University of Hamburg’]
concepts = None
facts = [
{’entity’: ’George Washington University’, ’attribute’: ’students count’},
{’entity’: ’University of Hamburg’, ’attribute’: ’students count’}
]

Make sure to validate the datatype of the parameter before selecting a function using assert
statements provided in each function. Generate Find function for each entity in the entities
list. Given the facts provided, the steps to solve this question are:

expression_1 = START()
expression_1 = FIND(’George Washington University’, expression_1)
expression_2 = START()
expression_2 = FIND(’University of Hamburg’, expression_2)
expression_3 = SELECTBETWEEN(’students count’, ’less’, expression_1, expression_2)
expression_3 = STOP(expression_3)

Test Question:
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KQA Pro Question: What was the cost of The Maltese Falcon (the one that received National Film Registry)?
Gold KoPL Step 1: FIND(National Film Registry), Step 2: RELATE(award received), Step 3: FIND(The Maltese

Falcon), Step 4: AND(), Step 5: QUERYATTR(cost)

Gold Answer 300000 United States dollar

Generated KoPL Step 1: FIND(National Film Registry), Step 2: FIND(The Maltese Falcon), Step 3: RELATE(award
received), Step 4: QUERYRELATION(), Step 5: QUERYATTR(cost)

×

After dynamic code-correction Step 1: FIND(National Film Registry), Step 2: RELATE(award received), Step 3: FIND(The Maltese
Falcon), Step 4: AND(), Step 5: QUERYATTR(cost)

✓

MetaQA (1-hop) Question: What kind of film is Road to Morocco?
Gold KoPL Step 1: FIND(Road to Morocco), Step 2: RELATE(has genre), Step 3: WHAT()

Gold Answer Comedy

Generated KoPL Step 1: FIND(Road to Morocco), Step 2: RELATE(has tags), Step 3: WHAT() ×

After dynamic code-correction Step 1: FIND(Road to Morocco), Step 2: RELATE(has genre), Step 3: WHAT() ✓

MetaQA (2-hop) Question: Which movies share the screenwriter with Ugly?
Gold KoPL Step 1: FIND(Ugly), Step 2: RELATE(written by), Step 3: RELATE(written by), Step 4: WHAT()

Gold Answer Udaan, Water

Generated KoPL Step 1: FIND(Ugly), Step 2: RELATE(screenwriter), Step 3: WHAT() ×

After dynamic code-correction Step 1: FIND(Ugly), Step 2: RELATE(written by), Step 3: RELATE(written by), Step 4: WHAT() ✓

MetaQA (3-hop) Question: Which person wrote the movies starred by the actors in The Gift?
Gold KoPL Step 1: FIND(The Gift), Step 2: RELATE(starred actors), Step 3: RELATE(starred actors), Step 4:

RELATE(written by), Step 5: WHAT()

Gold Answer Harvey Weitzman, Neal Jimenez, Robert L. Freedman, Mark Miller, Jacquelin Perske, Katja von
Garnier, Joseph Kanon, Vittorio de Benedetti, Robert Mark Kamen, George Lucas, Ben Younger,
Woody Allen, George Gallo, Cesare Zavattini, Anthony Minghella, Harry Bates, Jeff Nathanson, Noah
Baumbach, Piero Tellini, Robert M. Edsel, Garth Ennis, Marc Norman, John Logan, Kate Kondell,
Nancy Meyers, Dean DeBlois, Charles Perrault, Sebastian Faulks, Robin Swicord, F. Scott Fitzgerald,
James Ellroy, Herman Raucher, Garry Marshall, George Clooney, Peter Carey, Neal Cassady, Patrick
Marber, Scott Caan, Gus Van Sant, Kevin Brodbin, William Gibson, Andy Weiss, Patricia Highsmith,
Oliver Parker, Ernest K. Gann, Edmund H. North, Jerry O’Connell, Stephen Gaghan, Scott Silver,
Grant Heslov, David Auburn, Christopher Nolan, Kon Ichikawa, Michael Hirst, Philip K. Dick, John
August, Eric Roth, Matthew Robbins, Cressida Cowell, Jessica Bendinger, Steven Baigelman, Douglas
Fairbanks, Richard Linklater, David S. Goyer, Derek Kolstad, David Koepp, Bernardo Bertolucci,
Guillermo del Toro, Oscar Wilde, Wes Anderson, Kevin Williamson, Annie Proulx, Chris Weitz, Bruce
Beresford

Generated KoPL Step 1: FIND(The Gift), Step 2: RELATE(written by), Step 3: RELATE(written by), Step 4: RE-
LATE(starred actors), Step 5: WHAT()

×

After dynamic code-correction Step 1: FIND(The Gift), Step 2: RELATE(starred actors), Step 3: RELATE(starred actors), Step 4:
RELATE(written by), Step 5: WHAT()

✓

WebQSP Question: Who was vice president after kennedy died?
Gold KoPL Step 1: FIND(John F. Kennedy), Step 2: RELATE(vice president)

Gold Answer Lyndon B. Johnson

Generated KoPL Step 1: FIND(John F. Kennedy), Step 2: RELATE(successor) Step 3: RELATE(vice president) ×

After dynamic code-correction Step 1: FIND(John F. Kennedy), Step 2: RELATE(vice president) ✓

Table 9: KoPL Program Steps before and after dynamic code-correction
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KQA Pro Question: How are the Atlanta Silverbacks related to association football?
Gold KoPL Step 1: FIND(Atlanta Silverbacks), Step 2: FIND(association football), Step 3:

QUERYRELATION()

Gold Answer sport

Generated KoPL without facts Step 1: FIND(Atlanta Silverbacks), Step 2: RELATE(member of sports team),
Step 3: FIND(association football), Step 4: AND(), Step 5: QUERYRELA-
TION(member of sports team)

×

Generated KoPL with facts Step 1: FIND(Atlanta Silverbacks), Step 2: FIND(association football), Step 3:
QUERYRELATION(member of sports team)

✓

MetaQA (1-hop) Question: What does Dexter Fletcher appear in?
Gold KoPL Step 1: FIND(Dexter Fletcher), Step 2: RELATE(starred actors), Step 3:

WHAT()

Gold Answer Below, The Rachel Papers

Generated KoPL without facts Step 1: FIND(Dexter Fletcher), Step 2: RELATE(appeared in), Step 3: WHAT() ×

Generated KoPL with fact Step 1: FIND(Dexter Fletcher), Step 2: RELATE(starred actors), Step 3:
WHAT()

✓

MetaQA (2-hop) Question: What are the movies that have the same screenwriter of Rubin and
Ed?

Gold KoPL Step 1: FIND(Rubin and Ed), Step 2: RELATE(written by), Step 3: RE-
LATE(written by), Step 4: WHAT()

Gold Answer The Beaver Trilogy

Generated KoPL without facts Step 1: FIND(Rubin and Ed), Step 2: RELATE(written by), Step 3: WHAT() ×

Generated KoPL with fact Step 1: FIND(Rubin and Ed), Step 2: RELATE(written by), Step 3: RE-
LATE(written by), Step 4: WHAT()

✓

MetaQA (3-hop) Question: Which person wrote the films acted by the actors in The Slingshot?
Gold KoPL Step 1: FIND(The Slingshot), Step 2: RELATE(starred actors), Step 3: RE-

LATE(starred actors), Step 4: RELATE(written by), Step 5: WHAT()

Gold Answer Matt Damon, Ben Affleck, J.D. Zeik, Dashiell Hammett, Eric Lomax, Ronald
Harwood, David Mamet, Hans Petter Moland, Aimee Lagos, Catherine Johnson,
Steve Barancik, Hans Alfredson, Wesley Strick, Zafar Hai, Kjell Grede

Generated KoPL without facts Step 1: FIND(The Slingshot), Step 2: RELATE(starred actors), Step 3: RE-
LATE(written by), Step 4: WHAT()

×

Generated KoPL with fact Step 1: FIND(The Slingshot), Step 2: RELATE(starred actors), Step 3: RE-
LATE(starred actors), Step 4: RELATE(written by), Step 5: WHAT()

✓

WebQSP Question: Who was vice president after kennedy died?
Gold KoPL FIND(John F. Kennedy), Step 2: RELATE(vice president)

Gold Answer Lyndon B. Johnson

Generated KoPL without facts Step 1: FIND(Franklin D. Roosevelt), Step 2: RELATE(successor), Step 3:
RELATE(vice president)

×

Generated KoPL with facts Step 1: FIND(Franklin D. Roosevelt), Step 2: RELATE(vice president) ✓

Table 10: KoPL Program Steps with and without Knowledge-Aware Facts Extraction
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