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Abstract

The impact of social media on critical issues
such as echo chambers, needs to be addressed,
as these phenomena can have disruptive conse-
quences for our society. Traditional research
often oversimplifies emotional tendencies and
opinion evolution into numbers and formulas,
neglecting that news and communication are
conveyed through text, which limits these ap-
proaches. Hence, in this work, we propose an
LLM-based simulation for the social opinion
network to evaluate and counter polarization
phenomena. We first construct three typical
network structures to simulate different char-
acteristics of social interactions. Then, agents
interact based on recommendation algorithms
and update their strategies through reasoning
and analysis. By comparing these interactions
with the classic Bounded Confidence Model
(BCM), the Friedkin-Johnsen (FJ) model, and
using echo chamber-related indices, we demon-
strate the effectiveness of our framework in
simulating opinion dynamics and reproducing
phenomena such as opinion polarization and
echo chambers. We propose two mitigation
methods—active and passive nudges—that can
help reduce echo chambers, specifically within
language-based simulations. We hope our work
will offer valuable insights and guidance for so-
cial polarization mitigation.1

1 Introduction

Echo chambers occur when individuals are primar-
ily exposed to information or opinions that align
with their own. This limits their exposure to di-
verse perspectives, reinforces their beliefs, and con-
tributes to increased polarization. Echo chambers
on social media are a serious issue that can lead
to a range of negative consequences. For exam-
ple, during elections, echo chambers can amplify
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1 Available on: https://github.com/ZongfangLiu/
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Figure 1: Our language-based simulation provides an
explainable and dynamic environment compared with
numeric simulation for echo chamber study.

misinformation and false claims about candidates,
policies, or voting processes, contributing to in-
creased political polarization and mistrust in the
democratic system (Grömping, 2014; Terren and
Borge-Bravo, 2021). This reinforcement of ho-
mogenous perspectives not only distorts the flow
of accurate information but also deepens polariza-
tion and divisions within society (Levy and Razin,
2019; Dahlgren, 2020).

Many efforts have been made to evaluate and
mitigate echo chambers. The Friedkin-Johnsen Dy-
namics (FJ) model (Friedkin and Johnsen, 1990) is
a classic framework for modeling opinion forma-
tion, and Chitra and Musco (2020a) used it to sim-
ulate user leanings on a spectrum from -1 (opposi-
tion) to 1 (support). Deffuant et al. (2000) proposed
the Bounded Confidence Model (BCM), where in-
dividuals only interact and adjust their opinions if
the difference between their opinions is within a
certain threshold. However, these models oversim-
plify social interactions, reducing complex discus-

https://github.com/ZongfangLiu/EchoChamberSim
https://github.com/ZongfangLiu/EchoChamberSim


3914

sions and opinions to numerical values, rather than
capturing the nuanced meaning conveyed through
text, language, and context. In this work, we ad-
dress the above problem by proposing a Social
Simulation Framework (SSF), with each individual
represented as an LLM agent. Our SSF effectively
replicates the textual nature of news, complex hu-
man reasoning, and dynamic opinion shifts, thereby
enhancing explainability.

Concretely, we set up three different social net-
works: small-world (Watts and Strogatz, 1998),
scale-free network (Barabási and Albert, 1999),
and random graph model (Wang and Chen, 2003),
where the first two are proposed to simulate real-
world social networks. Agents are initialized with
unique personas, including attributes such as name,
gender, age, educational background, and personal
traits. Each agent is equipped with a short-term
memory to capture the day’s interactions and a
long-term memory for broader context, along with
a reflective reasoning process to mimic the human
thought process. Each day, agents exchange opin-
ions with their adjacent neighbors—either all of
them or selectively—analyze, reason, and update
their opinions accordingly. Here, we investigate
the influence of commonly used recommendation
algorithms (Li et al., 2010), which push similar
opinions to users. This common practice on so-
cial media connects users with content they are
likely to agree with, aiming to increase engage-
ment (Pariser, 2011). For evaluation, we compare
our framework with the classic BCM and FJ model
using echo chamber-related metrics, including the
neighbor correlation index, polarization index, and
global disagreement. The results on different met-
rics show that our simulation replicates the echo
chamber phenomenon observed in the real world,
and the trend is generally consistent with numerical
simulations, while providing different insights.

Furthermore, we propose two strategies—active
and passive nudges—that effectively alleviate echo
chambers and promote a more diverse and healthy
conversational environment. These methods offer a
more realistic approach, focusing on the language
itself and providing convincing content, unlike pre-
vious mitigation efforts that involve adding addi-
tional, non-explainable nodes (Orbach et al., 2020).

Our contributions can be summarized as follows:

• We present the first language-based simulation
framework SSF for studying echo chambers
and polarization.

• Our experiments align with conclusions
drawn from real-world studies and are mostly
consistent with numerical simulations, validat-
ing the utility of our SSF as a research tool.

• We propose a language-based intervention ap-
proach to mitigate opinion polarization and
the echo chamber effect, offering new insights
for community governance and management.

2 Related Work

Echo Chambers Modeling. Researchers have pro-
posed various strategies to model echo chambers.
One well-known approach is the Friedkin-Johnson
Dynamics (Friedkin and Johnsen, 1990; Chitra and
Musco, 2020a), which models how individuals’
opinions evolve based on both their inherent beliefs
and social influences. Other notable models include
the bounded confidence model (BCM) (Deffuant
et al., 2000), which assumes that individuals only
interact with others whose opinions are within a
certain range, and cascade models (Zhou and Za-
farani, 2020), represented as trees where each node
is a user in the social network and the root node rep-
resents the user who began the discourse. Addition-
ally, Epidemic Models, inspired by the spread of
diseases, have been employed to detect the forma-
tion of echo chambers in social networks (Cinelli
et al., 2021). In our work, we compare our ap-
proach with the bounded confidence model due to
its ability to model the interplay between social
influence and individual stubbornness.

Echo Chambers Mitigation. Mitigation strate-
gies can be broadly categorized into two types:
algorithm-focused and human-focused. Algorithm-
focused strategies aim to address the causes of echo
chambers that arise from algorithmic curation and
content recommendation. For instance, modify-
ing the objective function of a recommender sys-
tem has been shown to mitigate the filter bubble
effect (Chitra and Musco, 2020a). Similarly, Or-
bach et al. (2020) attempted to identify speeches
on the same topic, but with opposing stances, that
directly counter one another. On the other hand,
human-focused strategies empower users to have
more control over their information environment by
encouraging them to critically evaluate the quality
of information, such as through labeling misinfor-
mation or fake news, fact-checking, and nudging
users to reflect on the accuracy of the informa-
tion (Alatawi et al., 2021). These methods have
been tested publicly by platforms like Microblog,
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with varying degrees of success (Fu et al., 2013).
LLM-based Agent Simulation. Integrating

LLMs into the simulation of social dynamics is
an emerging area of research, yielding promising
outcomes (Park et al., 2023; Kaiya et al., 2023; Li
et al., 2023; Zhang et al., 2024; Guo et al., 2024;
Liu et al., 2024b). These LLM-based generative
agents have shown exceptional performance in dig-
ital environments, particularly in natural language
tasks. For example, Xie et al. investigated whether
LLM agents can simulate human trust behaviors,
which are among the most critical aspects of hu-
man interactions. Park et al. (2022) demonstrated
that LLM-based agents could generate social me-
dia content that is indistinguishable from human-
produced content. These advancements underscore
the vast potential of LLM agents in modeling hu-
man social behaviors at the group level. Our simu-
lation differs from previous work by exploring the
unstudied topic of echo chambers and constructing
graphs and recommendation systems, rather than
relying on random interactions, providing a new
approach to studying social dynamics.

3 Method

3.1 Problem Formulation

Formally, we construct a simulation with a pool
of N LLM agents, denoted as A = (a1, ..., aN ),
and an examined topic F . During initialization,
the agents construct a network based on different
structures such as small-world network, scale-free
network, or random graph. Each agent is assigned
a unique persona, including their initial belief to-
wards the discussed topic. On the t-th day, each
agent ai interacts with its neighboring agents from
the pool A, either all of them or selectively, accord-
ing to a recommendation algorithm. At the end
of each day, each agent reflects on the exchanged
information and updates its belief toward the topic,
producing an opinion expression and a belief value
vi, where the range of -2 to 2 represents the degree
of opposition or support. This process is iterated
over T days. Our goal is to replicate the echo cham-
ber and polarization phenomena observed in real-
world social network structures, including small-
world and scale-free networks (Watts and Strogatz,
1998; Bessi et al., 2016; Cinelli et al., 2021).

3.2 Social Network Structure

One significant drawback of previous simulation
works is that they lack graph structures, assuming

that each agent knows all other agents (Liu et al.,
2024a; Wang et al., 2023; Williams et al., 2023;
Chuang et al., 2024). While this might be true in
small societies, as the simulation scale increases,
different social structures should be considered.

Hence, in this work, we set up three types of
network graphs, with the first two being commonly
observed in the real world. A small-world network,
introduced by Watts and Strogatz (1998), is char-
acterized by high clustering and short average path
lengths, similar to social networks. Formally, the
average shortest path length L grows logarithmi-
cally with the number of nodes N , L ∼ logN ,
while maintaining a high clustering coefficient. In
social networks, this reflects tight-knit communi-
ties with short paths between individuals. A scale-
free network, as described by Barabási and Albert
(1999), exhibits a power-law degree distribution,
meaning the probability P (k) that a node has k
connections follows P (k) ∼ k−γ . This is com-
mon in social networks where a few hubs have far
more connections than others. Finally, a random
graph, defined by ERDdS and R&wi (1959), is
constructed by connecting nodes randomly with a
fixed probability, leading to a binomial degree dis-
tribution. In social networks, this type of structure
models random connections between individuals
without clear clusters or hubs. Figure 2 gives an in-
tuitive understanding of these three types of graphs.

3.3 Interaction Algorithm
A key part of our architecture is deciding the inter-
action strategies between different agents. In previ-
ous simulation networks (Liu et al., 2024a; Chuang
et al., 2024), agents typically interact randomly
with each other without a structured network. How-
ever, in real social networks, the frequency of inter-
actions between agents depends on the graph struc-
ture. It’s unlikely for a regular user to comment on
a stranger or frequently comment on a popular fig-
ure without following them. Hence, our interaction
algorithms account for social network relationships,
where users only interact with neighboring agents.
Meanwhile, in social networks, interactions are
also influenced by recommendation mechanisms.
Common practice on social media connects users
with content they are likely to agree with, aiming
to increase engagement (Pariser, 2011).

Based on the above observations, and to facilitate
comparison with the numeric modeling method
BCM (Deffuant et al., 2000), for a given agent, we
recommend those neighbors with similar opinions.



3916

Interactive Belief AgentInteraction Algorithm

𝐹𝑟𝑜𝑚	𝑡𝑖𝑚𝑒 = 1 𝑡𝑜	𝑡𝑖𝑚𝑒 = n
Time evolving

I think that mandatory vaccination 
is a violation of freedom

I think if not vaccinated, 
people put others at risk 

I am somewhat inclined 
to get people vaccinated

Vaccination should 
be fully encouraged 
to safeguard the 
community!

Long-term 
memory 

Short-term 
memory

Update
-Reasoning
-Reflection

𝑧! 𝑛 =0.1𝑧! 1 =0.3

0.3 0.9

0.2

Numeric update mechanism
𝑧! 𝑡 − 1 𝑧! 𝑡

Textual update mechanism

Echo chamber

I firmly believe that enforced 
vaccinations should be applied 

Social Network Structure

Sm
al
l-w

or
ld

Sc
al

e-
fr

ee
 

ne
tw

or
k

Ra
nd

om
 

gr
ap

h

Persona:
-Name: Adam 
-Age: 27
-Education: Master
-Personalities: Integrity, 
Curiosity, Compassion

Figure 2: Our framework is evaluated on three different network structures that mimic real-world observations.
Each agent is initialized with personal information, dual memory, and a reasoning process. Through random or
recommendation-based interactions, they update their opinions each day.

Assumption BCM Model Advanced LLM
Opinion update Weighted averaging Dynamic adjustment with

context
Determinism Opinion changes are

fully predetermined.
Opinion changes are not
fully predetermined.

Structure Social structure remains unchanged.
Continuance Opinion changes continue until settled.
Decomposability Process splits into time periods.
Simultaneity Simultaneously predict influence events.

Table 1: Comparison of assumptions between BCM
Model and our SSF model.

The process is as:

R = {j ∈ N (i) | |vSSFi − vSSFj | ≤ 2},

where vSSFi and vSSFj represent the belief values of
nodes i and j, indicating their respective opinions.
Here, N (i) denotes the neighbors of node i, and R
represents the set of recommended neighbors.

In the ablation study in Appendix, we also show
the performance when we remove the recommen-
dation, where the echo chamber effect exists.

3.4 Language-based Opinion Updates

After introducing the graph setting and interaction
mechanism, we explain how the agent updates its
opinion within this framework. Each agent is ran-
domly assigned a persona pi, which includes at-
tributes such as name, gender, age, traits, and edu-
cation level, as these factors may influence their be-
lief toward the topic. For trait design, we follow the
widely accepted Big Five personality model (Bar-
rick and Mount, 1991), known for effectively cap-
turing key dimensions of personality.

In our model, we consider that an individual’s
opinion is influenced not only by their own belief

but also by their interactions with others. This
interaction-driven change in thought is gradual and
cumulative, rather than immediate. Accordingly,
in our simulation, agents engage with a random
number of others’ opinions each day, leading to a
periodic update of their views. However, owing to
the potentially vast volume of interactions, storing
all of them in detail is impractical. To address this
challenge, we implement a dual memory system
for each agent, comprising a long-term memory ml

i

and a short-term memory ms
i . The long-term mem-

ory compresses and stores a summarized history
of past interactions, while the short-term memory
reflects and summarizes conversations from the
current day. The long-term memory mechanism
is consistent with real human behavior, as people
don’t remember every single word they hear. At
the end of each day, agents reflect on these interac-
tions, and through a reasoning process, allow their
opinions to evolve.

Comparison with Number-based Opinion Up-
dates. As introduced above, our opinion updates
are purely based on language, mimicking the hu-
man thinking process. For comparison, here we in-
troduce how traditional methods update an agent’s
opinion, where the setting comparison is in Table 1.

The Bounded Confidence Model (BCM) is
a widely used framework for studying opinion
dynamics in social networks. In the BCM model,
each agent holds an initial opinion, denoted as
vBCM
i , which represents their belief about a given

topic. Opinions are updated iteratively based on
the opinions of neighboring agents, but only if
the opinion difference between them is within a
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certain threshold, ϵ. Formally, at each time step
t, the opinion of agent i is updated if and only if
the opinion difference with its neighbor j satisfies
|vBCM

i (t − 1) − vBCM
j (t − 1)| ≤ ϵ. When this

condition holds, the opinions are updated as:
vBCM
i (t) = vBCM

i (t− 1) + µ
(
vBCM
j (t− 1)− vBCM

i (t− 1)
)
,

where µ is a parameter that controls the rate of
opinion change.

This update algorithm can be seen as a numerical
version of our update process, where the opinion
changes o are simplified into numbers vBCM , and
the diverse character p is fixed to ϵ and µ. We will
show in §4.3 that the two simulations reach broadly
consistent conclusions.

3.5 Polarization Mitigation Operation

The objective of our framework extends beyond
merely providing a more explainable model of so-
cial opinion dynamics. It also aims to offer action-
able insights for better governance and to foster a
healthier social environment. To achieve this, we
implemented two language-based mitigation ap-
proaches that are not feasible through traditional
numerical methods.

Active Nudge. The philosophy behind this is en-
capsulated in the saying, "listening to all sides leads
to wisdom." In our implementation, when a user
expresses a polarized stance, we actively present
an opposing viewpoint from another user with a
contradictory position. This method broadens the
user’s exposure to various perspectives, promoting
a more balanced and reflective consideration of the
issues. By doing so, we aim to counteract the re-
inforcement of one-sided arguments, fostering a
more nuanced and critical discourse.

Passive Nudge. Unlike previous methods that
explicitly prompt users to reconsider their positions,
Passive Nudge subtly shares content with users
holding extreme views, emphasizing the value of
maintaining an open perspective. For example, the
suggested content could be: ‘Issues are rarely black
and white,’ or ‘Many societal and political issues
are complex and multifaceted.’ This approach em-
phasizes the benefits of open-mindedness without
persuading users to adopt a neutral or any specific
belief, thereby leaving them the freedom to think
independently. While this is difficult to simulate
using traditional numerical methods, it can be eas-
ily implemented within our simulation system. The
prompts for all experiments are in the Appendix.

4 Experiments

4.1 Implementation Details
We use Python to conduct our SSF simulation, uti-
lizing the GPT-4o-mini model accessed via Ope-
nAI API calls. The agents and their environment
are defined using the Python library Mesa (Kazil
et al., 2020). To eliminate any bias associated with
names, each agent is identified solely by their agent
index. Genders are randomly assigned, and ages
are randomly selected within the range of 18 to
64 years. The simulation includes 50 agents, a
number significantly larger than in previous LLM-
based simulations (Liu et al., 2024a; Chuang et al.,
2024). Agent characteristics are based on the Big
Five personality traits commonly used in psychol-
ogy (Barrick and Mount, 1991), with each agent
having a 50% chance of exhibiting either a posi-
tive or negative version of each trait. We introduce
more details in Appendix.

4.2 Metrics
We use these three metrics to jointly measure the
formation of echo chambers and the degree of
opinion polarization within the network: Polariza-
tion (Chitra and Musco, 2020b), Global Disagree-
ment, and Normalized Clustering Index (NCI) fol-
lowing (Cinus et al., 2021).

Polarization (Pz) measures the overall variance
in opinions within a network and is defined as:

Pz =

∑N
i=1(vi −mean(v))2

N
,

where mean(z) is the average belief value across
all nodes. A high polarization value signals a sharp
divide in opinions, typical of echo chambers.

Global Disagreement (DG) quantifies how much
a node disagrees with its neighbors. It aggregates
the local disagreement (DGi) of each node i, which
measures the difference in opinions between a node
and its neighbors. The local disagreement is as:

DGi =

∑
j∈N (ai)

(vi − vj)
2

|N (ai)|
.

The overall global disagreement is calculated by
summing over all nodes:

DG = 1
2N

∑N
i=1DGi,

This metric offers insight into the opinion diver-
gence at a local level, indicating the level of dis-
agreement between connected nodes.
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Figure 3: We present projection and curve graphs from BCM and our SSF simulations under three settings to
demonstrate our framework’s macro-level effectiveness. The main conclusions are similar: small-world and scale-
free networks lead to severe echo chamber effects, while the random graph does not.

Finally, NCI measures how closely a node’s opin-
ions align with those of its direct neighbors. For an
agent ai, the NCIi is calculated as the pearson cor-
relation between the opinion of ai and the average
opinion of its neighbors, and is defined as:

NCIi =
∑

aj∈N (ai)
ρ(vi, vj),

where ρ is the person correlation. This metric helps
identify the extent to which all nodes in the network
are embedded in groups of similar opinions, with
values close to 0 indicating that most nodes are
exposed to diverse opinions.

It is worth noting that a single metric cannot
fully demonstrate the presence of echo chambers;
multiple metrics must be considered for a more
accurate understanding.

4.3 Macro-level Observation
Visual analysis. To give a fair comparison, the
initial beliefs follow uniform distributions in both
the BCM and SSF settings. For different network

structures, the initialized agents remain consistent.
The left side of Figure 3 shows the final belief
values of each node after 30 days of message prop-
agation across different social network structures.
Node colors represent belief strength, with red for
support and blue for opposition. The color blocks
indicate clusters of similar opinions.

In small-world and scale-free networks, fewer
but larger clusters emerge, reflecting clear echo
chambers. In random networks, clusters are
smaller and more numerous, with no large echo
chambers. We can also observe that in the small-
world network, numerical simulation oversimpli-
fications result in many neutral nodes, averaging
their neighbors’ opinions. In the right plots in Fig-
ure 3, a significant increase in the NCI index can be
observed under both small-world and scale-free net-
work structures. This indicates that the similarity of
opinions between each node and its neighbors has
increased, clearly signaling the emergence of echo
chambers. Additionally, in the small-world plots
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Figure 4: Case study: The same person in a non-mitigation environment and during our mitigation operation. His
opinion is more peaceful and less aggressive in our setting.

Small-world Scale-free Network Random Graph
FJ BCM SSF FJ BCM SSF FJ BCM SSF

∆Polarization ↑ -0.240 -0.219 +0.584 -0.227 +0.238 +0.584 -0.221 +0.002 +0.936
∆Global Disagreement ↓ -0.285 -0.254 -0.185 -0.258 +0.147 -0.471 -0.177 -0.003 +0.164
∆Neighbors Correlation ↑ +0.576 +0.418 +0.400 +0.447 +0.194 +0.670 +0.209 +0.029 +0.486

Table 2: Comparative analysis of polarization and echo chamber levels across various settings, including differences
in graph structures and simulation models. Upward or downward arrows represent the direction of change in the
indicators when the echo chamber effect strengthens.

and the SSF model plot for the scale-free network,
a decrease in global disagreement is observed. This
suggests that the opinion differences between nodes
and their neighbors have diminished, further indi-
cating the formation of echo chambers. Moreover,
we observe a rise in the polarization index in the
SSF model under both small-world and scale-free
networks. This confirms the accuracy of our sim-
ulation, as opinion polarization tends to intensify
alongside the emergence of echo chambers (Gillani
et al., 2018). In contrast, in numerical simulations,
polarization either decreases or only slightly in-
creases, revealing the limitations of numerical mod-
els. As mentioned earlier, numerical updates aver-
age neighbors’ scores, failing to accurately simu-
late opinion dynamics and the echo chamber effect.

In the random network structure, the three in-
dicators of the BCM model remain relatively un-
changed, suggesting that this structure does not
lead to the formation of clear echo chambers in
BCM-based simulations. Although the SSF model
shows increases in both the NCI and polarization
indices, global disagreement also rises, indicating
that large-scale echo chambers are still difficult to
form within this random network structure. This is
also consistent with the fact that social networks in
the real world are not random graphs, and to our

best knowledge, no work shows that random graph
shows echo chamber effect (Ugander et al., 2011).

Quantitative Analysis. Beyond the visual analysis,
we provide a quantitative evaluation of the evolv-
ing metrics in Table 2. Specifically, we analyze the
changes (∆) in the metrics for two numerical sim-
ulation models, Friedkin-Johnsen Dynamics (FJ)
and Bounded Confidence Model (BCM), as well as
our proposed SSF, across three different social net-
work structures. As each network structure varies
significantly, the changes in these indicators com-
pared to their initial values are more meaningful
for our analysis.

In the small-world network, both the FJ and
BCM show typical simulation limitations, with re-
duced polarization failing to capture opinion ex-
tremities in echo chambers. In contrast, the SSF
model and simulations show increased NCI and
reduced global disagreement, confirming that the
small-world structure fosters echo chambers. In
the scale-free network, the FJ model performs sim-
ilarly to its behavior in the small-world network,
failing to simulate polarization but still indicating
echo chamber emergence through NCI and global
disagreement metrics. The SSF model shows even
stronger echo chamber effects, with greater reduc-
tions in global disagreement and a larger rise in
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Active Nudge Passive nudge

Figure 5: We propose two nudge operations to mitigate echo chambers and polarization. Compared with the default
setting in Figure 3, it is evident that both phenomena are better alleviated.

NCI compared to the small-world network. In the
random graph network, both the FJ and BCM show
minimal fluctuation, suggesting echo chambers are
unlikely. In contrast, the SSF model, with its belief-
similarity mechanism, increases both NCI and po-
larization. However, due to the network’s structural
limitations, clear echo chambers do not form, as
shown by the rise in global disagreement, indicat-
ing that like-minded groups fail to unite.

In summary, small-world and scale-free net-
works foster echo chambers, while random net-
works resist them. Since real-world social networks
resemble the former, modern social media archi-
tectures and recommendation systems play a major
role in echo chamber formation. Traditional simu-
lation methods, like the FJ and BCM models, strug-
gle to replicate polarization, while the SSF model
more accurately simulates real-world information
spread and the emergence of echo chambers.
Personality Trait Alignment in Simulation. We
also carefully demonstrate that the trait setting of
the agent effectively reflects the real traits of people.
Specifically, the Big Five personality traits con-
ceptualize human personalities along five princi-
pal dimensions: Openness, Conscientiousness, Ex-
traversion, Agreeableness, and Neuroticism. Prior
research (Ibrahim et al., 2022; Mirzabeigi et al.,
2023) has established that individuals with higher
levels of Agreeableness and Neuroticism are more
prone to external influences on their opinions com-
pared to those with lower levels of these traits.
Based on these findings, agents were classified into
“Credulous” and “Skeptical” groups according to
their levels of Agreeableness and Neuroticism. Sub-
sequently, the mean and variance of belief changes
were computed for each group, revealing values
of 1.0909 and 0.8056 for Credulous agents, and
0.8333 and 0.8099 for Skeptical agents. Given the
belief range of [-2, 2], where a full opinion shift

necessitates a change exceeding 2, the moderate
mean changes indicate that agents’ opinions did
not significantly deviate from their initial states.
The higher mean observed for Credulous agents
indicates their heightened susceptibility to external
opinions, a phenomenon consistent with behavioral
patterns in (Ibrahim et al., 2022; Mirzabeigi et al.,
2023). Furthermore, the comparable variance val-
ues across both groups affirm the robustness and
stability of our SSF’s simulation.

4.4 Micro-level Observation

Figure 4 provides a micro-analysis of 12th Agent
evolving attitudes toward euthanasia. The indi-
vidual, characterized by an impulsive nature, as
evidenced by ‘spontaneity’, is highly responsive
to heightened ethical concerns. In the without-
mitigation scenario, his opinion begins objectively
but gradually intensifies, reaching moderate rejec-
tion by Day 3. This shift occurs as he expresses
concerns about the "ethical implications and po-
tential abuse" of euthanasia as an educated person.
By Day 8, his opinion escalates to strong rejection,
reinforced by his long memory of some contact
who emphasized the "inherent value of life".

In the with-mitigation scenario, a more measured
development of opinion is observed. While the
individual continues to express concerns about eu-
thanasia, his opinion does not escalate to outright
rejection. Despite a "strong opposing view cau-
tioning against the ethical implications" lingering
in his memory, his stance remains more balanced,
carefully weighing ethical concerns against com-
passionate reasoning. Notably, he also changes his
opinion later on Day 5, rather than Day 3 as seen
earlier. This demonstrates the effectiveness of our
mitigation mechanism.
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4.5 Mitigation Effect
We implemented Active Nudge and Passive Nudge
within a scale-free network, using the same initial
conditions as in the previous SSF experiments. As
shown in Figure 5, compared to the SSF model’s
graphical results of the scale-free network in Fig-
ure 3, it is evident that Active Nudge and Passive
Nudge result in fewer data points with extreme val-
ues, indicating that both methods effectively mit-
igate polarization. Furthermore, the line graph in
Figure 5 shows that, compared to the simulation
without mitigation, the NCI decreases after apply-
ing mitigation, indicating that the echo chamber
effect has been partially curbed. The polarization
metric also shows a significant decrease, suggest-
ing that the nodes’ opinions are no longer extreme.
Even within echo chambers, most opinions tend
to be moderate, and extreme viewpoints are rarely
observed. This demonstrates the effectiveness of
our mitigation strategies.

5 Conclusion

In this work, we propose the first language-based
opinion simulation framework for investigating
echo chambers and polarization. Our framework
incorporates diverse social network structures and
recommendation algorithms to mimic real-world
interactions. Our results align with the classic
BCM model on a macro level, capturing the over-
all opinion dynamics and effectively reproducing
phenomena like polarization and the echo cham-
ber effect. Furthermore, our framework provides
explanations for opinion updates and exchanges in
natural language format, offering a human-readable
representation of these processes. We also intro-
duce a polarization mitigation strategy based on
language sentiment analysis, which goes beyond
what traditional number-based models can achieve.
We hope that our work will inspire further research
at the intersection of natural language processing
and computational social science.

Limitation

In our work, we consider diverse graph structures
to mimic the real-world opinion propagation pro-
cess. We employ 50 agents in the network, which is
significantly larger than in several previous works
(Liu et al., 2024a; Chuang et al., 2024), and suffi-
cient to replicate a small-scale version of real-world
social networks. However, we acknowledge that
this number of agents is still far smaller than the

scale of popular social networks such as Facebook
and Twitter. We aim to increase this size in fu-
ture studies to better capture the dynamics of larger
networks.

Additionally, the use of LLMs introduces inher-
ent biases toward various topics. As discussed
in the topic selection section in the appendix, we
made a conscious effort to select a topic that pro-
vides room for each agent to express diverse opin-
ions and engage in meaningful discussions, min-
imizing the biases of the LLM. Nevertheless, we
recognize the limitations of this approach and plan
to develop more diverse, specifically trained LLMs
that can better emulate different characters and per-
spectives, reducing bias in future work.
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