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Abstract
Multi-modal sarcasm detection aims to iden-
tify whether a given image-text pair is sarcastic.
The pivotal factor of the task lies in accurately
capturing incongruities from different modali-
ties. Although existing studies have achieved
impressive success, they primarily committed
to fusing the textual and visual information to
establish cross-modal correlations, overlook-
ing the significance of original unimodal incon-
gruity information at the text-level and image-
level. Furthermore, the utilized fusion strate-
gies of cross-modal information neglected the
effect of inherent ambiguity within text and
image modalities on multimodal fusion. To
overcome these limitations, we propose a novel
Ambiguity-aware Multi-level Incongruity Fu-
sion Network (AMIF) for multi-modal sarcasm
detection. Our method involves a multi-level in-
congruity learning module to capture the incon-
gruity information simultaneously at the text-
level, image-level and cross-modal-level. Ad-
ditionally, an ambiguity-based fusion module
is developed to dynamically learn reasonable
weights and interpretably aggregate incongruity
features from different levels. Comprehensive
experiments conducted on a publicly available
dataset demonstrate the superiority of our pro-
posed model over state-of-the-art methods.

1 Introduction

Sarcasm represents a pervasive linguistic phe-
nomenon denoting a discrepancy between literal
meanings and implied intentions (Liu et al., 2022;
Wu et al., 2025). Consequently, sarcasm detec-
tion holds the potential to unveil a person’s real
emotions and attitudes, providing significant ad-
vantages for tasks like product review analysis and
political opinion mining (Wen et al., 2023; Chen
et al., 2024b,a). In this paper, sarcasm refers gen-
erally to all linguistic phenomena with irony or
satire.

*These authors contributed equally to this work.
†Corresponding author.

(a) shame my city is so ugly. (Sarcasm) (c) true. do you agree? (Sarcasm)(b) my passwords are hashes so they are a pain to 

type . thank you <user> for forcing me to type it 

manually , i really appreciate that. (Sarcasm)

Figure 1: Examples of Twitter data with sarcasm.

Early research on sarcasm detection predomi-
nantly focused on unimodal approaches. These
methods regarded the sarcastic contexts or the senti-
ments of sarcasm makers as valuable indicators for
modeling the textual incongruity, which captured
sarcastic features at the text-level (Tay et al., 2018;
Xiong et al., 2019). Alternatively, other works ex-
plored the incongruity of different visual regions
to mine sarcastic features at the image-level (Cai
et al., 2019; Kumar and Garg, 2019). However,
since most social media posts contain abundant
multimodal information (e.g., image and text), re-
lying solely on unimodal approaches is insufficient
for accurate sarcasm/non-sarcasm classification.

Recently, multi-modal sarcasm detection has at-
tracted significant attention. Previous methods
sought to explore diverse multimodal strategies
for fusing textual and visual features to improve
multi-modal sarcasm detection performance (Liang
et al., 2021, 2022; Song et al., 2023; Liu et al.,
2024; Zhong et al., 2024). However, they neglected
the importance of capturing unimodal text-level
and image-level sarcastic features. Furthermore,
it’s crucial to recognize that not all levels of sar-
castic features contribute equally to the decision-
making process. In Figure 1(a), the image portrays
a beautiful night scene while the text describes it as
"ugly". It is challenging to distinguish sarcasm/non-
sarcasm based solely on text-level or image-level
sarcastic features. Prediction performance can be
improved by capturing and enhancing cross-modal-
level incongruity representation. However, in cer-
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tain instances, unimodal incongruities play a more
crucial role, while cross-modal-level incongruity
may not be pivotal and could potentially introduce
noise to the classification task. As illustrated in
Figure 1(b), the interplay among the words “pain”,
“thanks” and “forcing” is rich in sarcasm, providing
a basis for considering it a sarcastic tweet. Like-
wise, in Figure 1(c), we can observe that the sen-
tence in the image contains a wealth of sarcastic
incongruity information, while the text makes a
limited contribution to sarcasm detection. Hence,
the primary questions revolve around: 1) how to
more effectively mine text-level, image-level and
cross-modal-level incongruity information simulta-
neously; 2) how different levels of incongruity af-
fect the decision-making process and how to weigh
their importance.

Taking the consideration above, we propose a
novel Ambiguity-aware Multi-level Incongruity
Fusion Network (AMIF) for multi-modal sarcasm
detection. Specifically, we design a Multi-level
Incongruity Learning module (MIL) to learn text-
level, image-level and cross-modal-level incon-
gruity information simultaneously. In this module,
we introduce Unimodal Gating Incongruity Extract-
ing module (UGIE) to leverage the contextual in-
formation of the text and image, effectively mining
text-level and image-level sarcastic features. Ad-
ditionally, we introduce Cross-modal Incongruity
Graph Reasoning module (CIGR), which captures
the vector-based incongruity relationship between
local and global alignments to identify more com-
plex cross-modal sarcastic features. Subsequently,
we feed the learned multi-level incongruity infor-
mation into Ambiguity-based Incongruity Fusion
module (AIF) for adaptive weighted fusion. In this
module, we initially utilize cross-modal ambiguity
(Chen et al., 2022) to quantify the relationship be-
tween incongruity information at different levels,
which guides the modality-wise attention mecha-
nism to adaptively assign reasonable weights to
different levels of incongruity information, facili-
tating the effective aggregation of sarcastic features
across diverse levels.

The main contributions of this work are summa-
rized as follows:

• We propose a novel MIL module to simulta-
neously mine incongruity information from
different levels of unimodal and cross-modal,
which utilizes UGIE to mine the text-level
and image-level sarcastic features and adopts

CIGR to extract the complex cross-modal sar-
castic features.

• We are the first to introduce cross-modal ambi-
guity to quantify the correlations among differ-
ent levels of incongruity information for multi-
modal sarcasm detection, based on which
we propose an AIF module that includes a
modality-wise attention mechanism and an
ambiguity guidance to adaptively assign rea-
sonable weights and interpretably aggregate
incongruity features from different levels.

• We conduct numerous experiments on a pub-
licly available benchmark dataset. Experimen-
tal results show the superiority of our method
over state-of-the-art methods.

2 Related Work

2.1 Multi-modal Sarcasm Detection
Unlike previous text-only sarcasm or irony detec-
tion tasks in other source languages that distinguish
between sarcasm and irony (Potamias et al., 2020;
Tomás et al., 2023; Cervone et al., 2017). In this
paper, "sarcasm" refers to a linguistic phenomenon
in general that is not fundamentally different from
irony or satire in English. The rise of multime-
dia platforms has led to an increase in posts pre-
sented as image-text pairs, attracting plentiful re-
search on multimodal sarcasm detection. Cai et al.
(2019) established a new dataset and demonstrated
that cross-modal information can provide comple-
mentary advantages to improve the performance of
multi-modal sarcasm detection. Liang et al. (2021);
Liu et al. (2022, 2024); Ma et al. (2024) revealed
that the key to achieving effective multi-modal sar-
casm detection lies in accurately extracting incon-
gruities from different modalities. Hence, Liang
et al. (2022) adopted object extraction technology
to integrate specific visual regions and local se-
mantic information to capture cross-modal sarcas-
tic features, but they ignored the global alignment
between the image and text. Another approach
(Zhong et al., 2024) modeled textual and visual
information at the multi-scale and multi-span token
level to address image–text incongruity. Fang et al.
(2024) investigated a cross-modal multi-granularity
alignment module to capture align context features.
The latest LLMs-based work (Jia et al., 2024) de-
fined the task of out-of-distribution to evaluate mod-
els’ generalizability when the word distribution is
different in training and testing settings. Although
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multimodal approaches had also achieved notable
performance, most of them tended to use multi-
modal strategies to fuse textual and visual features,
ignoring the significance of capturing text-level
and image-level sarcastic features. Different from
these works, we aim to improve this task by si-
multaneously mining incongruity information from
different levels of unimodal and cross-modal.

2.2 Multimodal Fusion

Multimodal fusion is the core content of multi-
modal deep learning technology, which aims to
fuse the information from distinct modalities to
derive abundant features (Mai et al., 2024; Zhang
et al., 2023, 2024a). Wang et al. (2019) constructed
a deep neural network to embed inputs from dif-
ferent modalities and computed the similarity of
different semantic vectors for late multimodal fu-
sion. Ben-Younes et al. (2019) proposed Block, a
new multimodal fusion model based on the block-
superdiagonal tensor decomposition. Nagrani et al.
(2021) modeled a architecture that used “fusion
bottlenecks” for modality fusion at multiple layers
to improve multimodal fusion performance. Other
studies started from the common feature and spe-
cific feature, aiming to explore the redundancy and
complementarity of diverse modalities for the final
fusion (Lu et al., 2020; Wu et al., 2021). And Chen
et al. (2022) considered the inherent ambiguity be-
tween different contents and proposed the cross-
modal ambiguity learning from the perspective of
information theory to measure the importance of
different modalities in multi-modal classification
tasks. Cross-modal ambiguity learning achieved
more efficient multimodal fusion. Nevertheless, ex-
isting works for multi-modal sarcasm detection uti-
lized attention mechanism, GCN and GAT to fuse
sarcastic features from different modalities (Liu
et al., 2022; Song et al., 2023; Fang et al., 2024;
Liu et al., 2024; Wu et al., 2025). They neglected
the effect of inherent ambiguity for multi-modal
sarcasm detection.

3 Methodology

3.1 Modal-specific Encoder

Given the input x = (xt, xv) ∈ D, where xt, xv

and D denote the text, image and dataset, respec-
tively. In this paper, xt = {wi}ni=1, n refers to the
length of the text, we utilize the pre-trained BERT
(Kenton and Toutanova, 2019) to embed each word
of the text. The final word embedding denotes

as eti ∈ Rd, i means the i-th word. For each im-
age, we first divide the image into K regions, and
then choose the pre-trained ViT (Dosovitskiy et al.,
2020) as our image encoder to embed each visual
region of the image. The final region embedding
denotes as evj ∈ Rd, j means the j-th region.

3.2 Multi-level Incongruity Learning
Unimodal Gating Incongruity Extracting. To
comprehensively exploit the hidden intra-modal
contextual sarcastic cues, we propose the UGIE,
which contains the multi-head self-attention and
gate mechanism.

The multi-head self-attention with h heads can
capture intra-modal contextual sarcastic cues from
different subspaces. This can be calculated as:

Hi = Attention(Qi,Ki, Vi) (1)

where Hi denotes the output of the i-th head, Qi =
XWQ

i , Ki = XWK
i , Vi = XW V

i denote the
query, key and value of the i-th head, respectively.
X ∈ Rn×d refers to the input, n and d separately
denote the length and hidden dimension of X . WQ

i ,
WK

i ∈ Rn×dk and W V
i ∈ Rn×dv are learnable

parameter matrices. dk = dv = d/h.
The multi-head self-attention mechanism at-

tempts to lead the model to concentrate on cor-
relations among various segments of the com-
plete unimodal input. Nevertheless, the projected
queries and keys may incorporate noise or sarcasm-
unrelated information. To effectively convey the
captured intra-modal useful sarcastic cues and sup-
press the irrelevant ones, we design a novel fusion
strategy that integrates the multi-head self-attention
mechanism with the gate mechanism. Specifically,
for the i-th head, we initially map Qi and Ki into a
common space and fuse them. Then, we adopt two
fully-connected layers to get the gating masks:

Gi = (QiW
G
Q )⊙ (KiW

G
K ) (2)

M i
Q = σ(GiW

M
Q );M i

K = σ(GiW
M
K ) (3)

where Gi ∈ Rn×dk is the fusion result. WG
Q , WG

K ,
WM

Q , WM
K ∈ Rdk×dk are the learnable projection

matrices. M i
Q, M i

K ∈ Rn×dk denote the gating
masks. σ refers to the sigmoid function.

Finally, we use these obtained gating masks to
filter sarcasm-unrelated contextual information of
original Qi and Ki, as follows:

H̃i = Attention(Qi ⊙M i
Q,Ki ⊙M i

K , Vi) (4)
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Figure 2: The architecture of the proposed AMIF.

where H̃i ∈ Rn×dv is the gating multi-head self-
attention result of the i-th head.

We concatenate all heads to obtain the hidden
intra-modal contextual sarcastic cues:

f(X) = Concat(H̃1, H̃2, · · · , H̃h) +X (5)

We take the residual connection operation on the
output of an additional MLP and the original f(X)
to obtain the final output of UGIE, as follows:

FUGIE(X) = f(X) +MLP (f(X)) (6)

Finally, we adapt UGIE for both the text and
image, denoted as: Zt

i = FUGIE(e
t
i) and Zv

j =
FUGIE(e

v
j ), where Zt

i and Zv
j separately represent

the output of UGIE for the text and image.
Cross-modal Incongruity Graph Reasoning.

To extract intricate cross-modal sarcastic cues, we
perform cross-modal incongruity graph reasoning
on graph constructed with aligned local and global
incongruity representations as graph nodes.

Existing multi-modal sarcasm detection models
have employed scalar-based methods to represent
the incongruity information between the feature
vectors of the text and image, which is unable to
capture comprehensive correspondences (Liu et al.,
2022; Song et al., 2023; Ma et al., 2024; Zhong
et al., 2024; Zhang et al., 2024b). Therefore, in
this section, we adopt a vector-based approach to
compute both local and global correspondences for
cross-modal sarcastic features alignment, which
can capture rich incongruity information between
feature representations from different modalities.

This can be computed as:

I(a, b;WI) =
WI |a− b|2

∥WI |a− b|2∥2

(7)

where a, b ∈ Rd are two different vectors, | · |2 and
∥ · ∥2 separately represent the element-wise square
and ℓ2-norm. WI ∈ Rm×d is a parameter matrix.

Local incongruity. To explore the correspon-
dence between local features of the image and text,
we apply cross attention mechanism to attend on
each region with respect to each word. Then, we
obtain the attended visual representation avi with
respect to i-th word, as follows:

ci,j =
eti(e

v
j )

⊤
√
dk

(8)

αj
i =

exp(βci,j)∑K
j=1 exp(βci,j)

; avi =

K∑
j=1

αj
i e

v
j (9)

where ci,j indicates the attention score for the inter-
mediate transition between i-th word feature and
j-th region feature, αj

i denotes the final attention
weight between i-th word feature and j-th region
feature. β is the inversed temperature factor.

We also design Inter-modal Fine-grained Con-
trastive Learning (IFCL) to refine the attention
mechanism for acquiring more precise text-guided
visual representation. Specifically, the attended
visual representation avi prioritizes the congruity
between the image and text, while the reversed
attention visual representation âvi emphasizes the
incongruity between the image and text:
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α̂j
i =

exp(β(1− ci,j))∑K
j=1 exp(β(1− ci,j))

; âv
i =

K∑
j=1

α̂j
ie

v
j (10)

The loss function of IFCL can be defined as:

LIFCL = [Sim(eti, â
v
i )− Sim(eti, a

v
i ) + γ]+ (11)

where γ controls the similarity difference margin.
Sim is the similarity function.

Then, we calculate the vector-based cross-modal
local incongruity between avi and eti with Equation
7:

ILocali = I(eti, a
v
i ;W

l
I) (12)

where W l
I ∈ Rm×d is a parameter matrix.

Global incongruity. To explore effective and in-
depth correspondence between the global features
of the entire text and image, we initially execute
self-attention over all the obtained word and re-
gion embeddings respectively to yield the global
text feature representation et̄ ∈ Rd and the global
image feature representation ev̄ ∈ Rd.

Likewise, we calculate the vector-based cross-
modal global incongruity between et̄ and ev̄ with
Equation 7:

IGlobal = I(et̄, ev̄;W g
I ) (13)

where W g
I ∈ Rm×d is a parameter matrix.

Next, to achieve comprehensive reasoning for
captured local and global incongruity informa-
tion, we construct an incongruity graph to trans-
mit the cross-modal incongruity. Specifically, we
denote the local incongruity representations and
global incongruity representation as nodes N =
{ILocal1 , · · · , ILocaln , IGlobal}, and the edge from
node Iv ∈ N to Iu ∈ N can be computed as:

E(Iu, Iv) =
exp((P in

I Iu)(P
out
I Iv))∑

v exp((P
in
I Iu)(P out

I Iv))
(14)

where P in
I ,P out

I ∈ Rd×d are the linear transfor-
mations for incoming and outgoing nodes, respec-
tively.

Subsequently, we perform cross-modal incon-
gruity graph reasoning by iteratively updating the
nodes and edges within the graph, as follows:

Îtu =
∑

v
E(Itu, I

t
v) · Itv; It+1

u = ReLU(P t
I Î

t
u) (15)

where I0u and I0v are taken from N at step t = 0,
P t
I is a learnable parameter in each step. We iterate

T steps of incongruity reasoning and converge the
information of the global node and all local nodes
at the last step as the final reasoned incongruity
representation Zc

ij .
Finally, we take average-pooling on the output

of UGIE and CIGR respectively to obtain the fi-
nal multi-level incongruity representations, namely,
text-level incongruity mt, cross-modal-level incon-
gruity mc and and image-level incongruity mv.

3.3 Ambiguity-based Incongruity Fusion
Modality-wise Attention Mechanism (MAM). In-
spired by the excellent performance of channel
attention in computer vision (Zhang et al., 2022;
Zhao et al., 2023), we design a modality-wise atten-
tion mechanism module, which help us to reweight
the different levels of incongruity information be-
fore fusing them. Concretely, we first concatenate
mt,mc and mv ∈ Rd×1 as: mf = mt ⊕mc ⊕mv.
Then, we take the squeeze operation Fsq(m

f ) =
GlobalAveragePooling(mf ) to aggregate global
modality-wise incongruity information into a R1×3

vector. Subsequently, we adopt a gating mechanism
Fex(m

f ) = σ(W2δ(W1Fsq(m
f ))) to obtain the

modality-wise attention weight ω = {ωt, ωc, ωv},
where σ refers to the sigmoid activation, δ is the
ReLU function, W1 ∈ R3×1 and W2 ∈ R1×3 are
learnable parameter matrices.

Ambiguity Guidance (AG). When the cross-
modal information gap is small, unimodal incon-
gruity features alone are adequate for accurate sar-
casm detection. Conversely, when there exists a
significant information gap between unimodalities,
relying solely on unimodal incongruity features be-
comes insufficient and additional attention should
be paid to the cross-modal incongruity features.
Therefore, inspired by Chen et al. (2022), we in-
troduce the cross-modal ambiguity to measure the
information gap between the text-level incongruity
and the image-level incongruity.

Specifically, we use the Variational Autoencoder
(VAE) (Khattar et al., 2019) to model the diver-
gence over feature space to approximate the ambi-
guity between mt and mv. The variational poste-
rior can be denoted as: q(zt/v | mt/v) = N (zt/v |
µ(mt/v), σ(mt/v)), where the mean µ and vari-
ance σ can be obtained from the modal-specific
encoder, t/v denotes text or image-modality. Con-
sidering the distribution over the mini-batch:

q(zt/v) =
1

A

A∑
i=1

q(z
t/v
i | mt/v

i ) (16)
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where A denotes the size of mini-batch, i refers
to the i-th sample xi in mini-batch. We quantify
the ambiguity between the image-level incongruity
distributions and the text-level incongruity distribu-
tions of sample xi by the averaged KL divergence:

θt→v
i = (

DKL(q(z
t
i ||mt

i)||q(zvi ||mv
i ))

DKL(q(zt)||q(zv)))
) (17)

where DKL(·||·) stands for the KL divergence.
Likewise, we can get the θv→t

i with Equation 17,
and compute the final ambiguity:

θi = sigmoid(
θt→v
i + θv→t

i

2
) (18)

Then, we obtain the cross-modal ambiguity
scores θ = {1− θi, θi, 1− θi}Ai=1.

We also exploit a loss function as: Lθω =
JS(θ||ω) to calculate the logarithmic difference
between the attention weight ω = {ωt, ωc, ωv}
and the cross-modal ambiguity scores θ = {1 −
θi, θi, 1− θi}Ai=1. JS stands for the JS divergence.

By minimizing Lθω, AIF can assign more rea-
sonable attention scores to different levels of incon-
gruity representations with ambiguity guidance.

Sarcasm Classifier. For each sample in mini-
batch, given the different levels of incongruity rep-
resentations mt, mc and mv, the attention weights
ω = {ωt, ωc, ωv}. We can compute the final multi-
level incongruity fusion representation as follows:

x̃f = (ωt ×mt)⊕ (ωc ×mc)⊕ (ωv ×mv) (19)

where ⊕ denoted the concatenation operation.
Then, we feed x̃f into a softmax layer with a

fully-connected network to perform the prediction:

ŷ = softmax(MLP (x̃f )) (20)

Thereafter, we take the cross-entropy loss func-
tion to calculate the loss:

LCE = −(y log(ŷ) + (1− y) log(1− ŷ)) (21)

where y refers the ground-truth label, ŷ is the pre-
diction label.

3.4 Training Objective

The overall loss function for AMIF is as follows:

LAll = LCE + λLθω + λIFCLLIFCL (22)

where λ and λIFCL control the ratio of Lθω and
LIFCL , respectively.

Model Acc(%) Pre(%) Rec(%) F1(%)
Image-Only

Image 64.76 54.41 70.80 61.53
VIT 67.83 57.93 70.07 63.43

Text-Only
SIARN 80.57 75.55 75.70 75.63
SMSD 80.90 76.46 75.18 75.82
BERT 83.85 78.72 82.27 80.22

Multi-Modal
HFM 83.44 76.57 84.15 80.18

D&R Net 84.02 77.97 83.42 80.60
InCrossMGs 86.10 81.38 84.36 82.84

HKE 87.36 81.84 86.48 84.09
CMGCN 87.55 83.63 84.69 84.16
GAAN 87.42 82.91 86.62 84.72
MCEF 87.80 84.10 85.50 84.80

SAHFN 87.22 82.71 87.33 84.95
SEF 88.45 85.35 86.58 85.96

DMSD-CL 88.95 84.89 87.90 86.37
DGP 87.21 87.10 86.48 86.75

AMIF(Ours) 90.10 86.55 89.68 88.09

Table 1: Comparison results for sarcasm detection.

4 Experiments

4.1 Experiment Settings

Dataset. We assess our model by conducting ex-
periments on a publicly available multi-modal sar-
casm detection benchmark dataset constructed by
Cai et al. (2019). The statistics of the dataset are
shown in Appendix A.1.

Baselines. We compare the proposed AMIF with
sixteen baselines shown in Table 1. More details
on baselines are provided in Appendix A.2.

Implementation. The details of parameter im-
plementations are listed in Appendix A.3.

4.2 Experimental Results and Analysis

We evaluate the effectiveness of our proposed
framework through comparative analyses with
baseline models, as presented in Table 1. Addi-
tionally, we derive the following observations: 1) It
is evident that both the text and image play crucial
roles in sarcasm detection. Therefore, it is impera-
tive to fully excavate the incongruity information at
the image-level and text-evel. Our AMIF success-
fully addresses this problem by designing the UGIE
module. Multi-modal models consistently outper-
form text-only and image-only models in terms
of the performance, which suggests that simulta-
neously exploiting the textual and visual contents
to capture complex cross-modal-level incongruity
information can improve the performance of multi-
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Model Acc(%) F1(%) Model Acc(%) F1(%)
AMIF 90.10 88.09 w/o IFCL 89.42 87.01
w/o UGIE 89.42 87.18 w/o AG 89.21 87.28
w/o CIGR 89.16 86.93 w/o AIF 88.53 86.29

Table 2: Experimental results of ablation study.

modal sarcasm detection. The AMIF model uti-
lizes the CIGR module to achieve this objective. 2)
Moreover, AMIF consistently outperforms image-
only, text-only and multi-modal models on all eval-
uation metrics, which indicates that AMIF signifi-
cantly boosts the performance of multi-modal sar-
casm detection compared to existing works. Specif-
ically, compared with the classical methods in re-
cent years that do not consider the distribution gap
between unimodal sarcastic information, AMIF is
4.00%, 3.93%, 3.37%, 3.29%, 2.13% and 1.34%
higher than HKE, CMGCN, GAAN, MCEF, SEF
and DGP on F1-score. This indicates that AMIF
achieves more advanced performance by capturing
multi-level incongruity information and introduc-
ing cross-modal ambiguity in AIF module to mea-
sure the incongruity information gap. Compared
with the recent LLMs-based model DMSD-CL,
AMIF achieves considerable improvements in all
metrics, outperforming Acc, Pre, Rec and F1-score
by 1.15%, 1.66%, 1.78% and 1.72%, respectively.
Furthermore, AMIF improves 2.89% on accuracy
and 1.34% on F1-score over the latest multi-modal
state-of-the-art model DGP. The above experimen-
tal results validate the effectiveness and superiority
of our proposed method.

4.3 Ablation Study

To further investigate the effectiveness of each com-
ponent in AMIF, we conduct a series of ablation
studies: 1) w/o UGIE: we remove the unimodal
gating incongruity extracting module at the text-
level and image-level; 2) w/o CIGR: we remove
the cross-modal incongruity graph reasoning mod-
ule at the cross-modal-level; 3) w/o IFCL: we
remove the inter-modal fine-grained contrastive
learning that assist cross-modal local incongruity
alignment; 4) w/o AG: we remove the ambigu-
ity guidance module; 5) w/o AIF: we remove the
entire ambiguity-based incongruity fusion module
and directly concatenate the three incongruity rep-
resentations for the final classification.

Table 2 shows the results of ablation study. It
is evident that the performance after removing any
components is worse than the original AMIF, which

(a) AMIF (b) w/o UGIE (c) w/o CIGR

(d) w/o IFCL (e) w/o AG (f) w/o AIF

Figure 3: T-SNE visualizations of the sarcastic feature
vectors before classification that are learned by AMIF
and its five variants.

demonstrates the effectiveness of each component.
And detailed analyses are as follows: 1) Both the
AMIF w/o UGIE and AMIF w/o CIGR exhibit sig-
nificantly lower performance, demonstrating that
simultaneously and efficiently mining the hidden in-
congruity information at the image-level, text-level
and cross-modal-level is necessary for multi-modal
sarcasm detection. 2) The performance of AMIF
w/o IFCL decreases obviously, which verifies that
IFCL is essential for mining complex and deep-
seated cross-modal sarcastic features by comparing
fine-grained inter-modal fragments. 3) AMIF w/o
AG exhibits a 0.81% decrease in F1-score and a
0.89% decrease in accuracy compared to the full
AMIF, suggesting that accounting for the inherent
cross-modal ambiguity for multi-modal sarcasm
detection task can be advantageous for improving
performance. 4) Notably, the performance of AMIF
w/o AIF experiences a further decline of nearly 1%
on F1 and 0.68% on Acc compared to AMIF w/o
AG, which validates the importance of adaptively
fusing the different levels of incongruity.

4.4 Visualization

We further analyze the proposed model using the
t-SNE (Van der Maaten and Hinton, 2008) algo-
rithm to map the features before classification into
a 2-dimensional Euclid space and visualize the
feature vectors in Figure 3. These feature vec-
tors are learned by AMIF and its five variants on
the test dataset of Twitter. It is evident that the
points corresponding to different labels in AMIF
have a more distinct boundary than its all variants,
demonstrating that the captured sarcastic features
in AMIF are more discriminative. As shown Fig-
ure 3(d), the learned sarcastic features in AMIF w/o
IFCL are easily misclassified, which reveals that
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(a) CIGR steps T (b) JS loss weight factor 𝝀 (c) constraint loss weight factor 𝝀𝑰𝑭𝑪𝑳

Figure 4: The influence of hyper-parameters.

IFCL can learn more accurate cross-modal correla-
tions and deeply distinguish sarcasm/non-sarcasm
posts. Comparing Figure 3(a), Figure 3(b) and Fig-
ure 3(c), we can see that simultaneously mining the
unimodal and cross-modal hidden incongruity in-
formation can obtain multi-level sarcastic features
from different modalities, thus effectively gener-
ating distinguished feature representations. Addi-
tionally, comparing Figure 3(a), Figure 3(e) and
Figure 3(f), we can observe that considering the
cross-modal ambiguity and adaptively fusing the
different levels of incongruity information can sig-
nificantly improve the representation ability of the
final features.

4.5 Parametric Analysis

To explore the influence of different hyper-
parameters on the final prediction, we conduct
extensive experimental studies for the number of
CIGR steps T, JS loss weight factor λ and con-
straint loss weight factor λIFCL. Figure 4 records
the metrics ACC and F1-score for different T, λ
and λIFCL. Specifically, as depicted in Figure 4(a),
performing 3 step of cross-modal incongruity graph
reasoning yields optimal performance, and the
model exhibits poor performance when the number
of steps exceeds 3. We speculate the reason may be
that an excess of reasoning steps leads to overfitting
of local and global cross-modal incongruity infor-
mation. Moreover, as illustrated in Figure 4(b), the
highest F1-socre and ACC are achieved when λ
is set to 0.8, AG and MAM can play a maximum
role. When λ exceeds 0.8, the model’s performance
steadily diminishes as λ increases. we speculate
that the reason is assigning excessive weight to Lθω

introduces unexpected noise to the fusion module,
disrupting the final prediction. Finally, as shown
in Figure 4(c), the model achieves optimal perfor-
mance when λIFCL is 0.5, whereas deviation from
this value results in performance degradation. The
reason behind this may be that excessively large or
small values don’t enhance the accuracy of local
incongruity computation, thereby affecting the sub-

Text-Level Image-Level Cross-modal-Level

Image

(a) (b) (c) 

Text (a) she must not realize she looks 

like the bigger idiot # funny

(b) this is reality ... lol # reality #   

poorpeoples # richpeople # society # 

blogsbar

(c) i think i may be the greatest 

fisherman who has ever lived . just 

look at the size of my largemouth 

bass .

𝝎𝒗 0.195 0.707 0.361

𝝎𝒄 0.323 0.264 0.752

𝝎𝒕 0.786 0.359 0.257

HKE Non-sarcasm(×) Non-sarcasm(×) Sarcasm(√)

SEF Sarcasm(√) Sarcasm(√) Non-sarcasm(×)

AMIF(ours) Sarcasm(√) Sarcasm(√) Sarcasm(√)

Figure 5: Different level sarcastic samples of case study
on HKE, SEF and AMIF.

sequent cross-modal incongruity graph reasoning.

4.6 Case Study

To qualitatively analyze the advantage of our model,
we visualize the attention weights in AIF module
and present the predictions of open-sourced meth-
ods HKE, SEF and AMIF on three representative
examples at different levels in Figure 5. Specifi-
cally, HKE achieves accurate detection for cross-
modal-level example by capturing cross-modal
atomic-level and composition-level incongruities,
but they ignore the unimodal sarcastic features,
leading to false predictions for the text-level and
image-level examples. Moreover, SEF uses mul-
tiple contrastive learning to enhance unimodal se-
mantic features, thus correct predictions are made
in the image-level and text-level example. For the
cross-modal-level example, SEF makes wrong pre-
diction because it only adapts multi-scale fusion
strategy to align the image and text, which neglects
both the cross-modal coarse- and fine-grained fea-
tures contribute to multi-modal sarcasm detection
and is insufficient to capture complex cross-modal
incongruity information. Conversely, our AMIF ex-
ploits the UGIE module to capture subtle unimodal
incongruity at the image-level and text-level, imple-
ments more comprehensive vector-based local and
global cross-modal incongruity graph reasoning by
designing the CIGR module simultaneously, and
then adaptively assigns reasonable weights using a
modality-wise attention mechanism with ambigu-
ity guidance to ensure accurate predictions for the
three examples.

5 Conclusion

In this paper, we propose a novel Ambiguity-aware
Multi-level Incongruity Fusion Network (AMIF)
for multi-modal sarcasm detection. Specifically,
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we first suggest a multi-level incongruity learning
module which can effectively and simultaneously
mine both the latent unimodal sarcastic cues and
complex cross-modal sarcastic cues. Moreover,
we also design an ambiguity-based fusion module
which can adaptively fuse the learned incongruity
information from diverse levels. In this module,
cross-modal ambiguity can guide the specific at-
tention mechanism to assign reasonable weights
for three different level incongruity information .
Evaluation results demonstrate our AMIF signifi-
cantly outperforms state-of-the-art methods on the
benchmark dataset.

Limitations

At this stage, we concentrate on two limitations
of this work, aiming to inspire future potential re-
search directions.

• For multi-modal sarcasm detection of so-
cial media posts, incorporating more external
knowledge to enrich sentiment semantic infor-
mation could improve the model’s predictive
performance. Our model ignores the impor-
tance of external knowledge for this task.

• Although our cross-modal incongruity graph
reasoning module improves the model’s per-
formance, it primarily focuses on mining
semantic-level information while neglecting
syntactic dependencies between text nodes.
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A Appendix

A.1 Dataset

We assess our model by conducting experiments on
a publicly available multi-modal sarcasm detection
benchmark dataset constructed by Cai et al. (2019).
This dataset comprises English tweets expressing
sarcasm as Positive examples and those expressing
non-sarcasm as Negative examples. Each example
in the dataset consists of a text and an associated
image. The statistical information of the dataset is
shown in Table 3.

A.2 Baseline Models

We compare the proposed AMIF with eleven base-
lines, categorized into three groups: 1) Image-
Only models: Image and ViT. 2) Text-Only mod-
els: SIARN, SMSD and BERT. 3) Multi-Modal
models: HFM, D&R Net, InCrossMGs, HKE,
CMGCN, GAAN, MCEF, SAHFN, SEF, DMSD-
CL and DGP.

A.2.1 Image-Only models

1. Image (Cai et al., 2019): a method that em-
ploys ResNet (He et al., 2016) to train a sar-
casm classifier.

2. ViT (Dosovitskiy et al., 2020): a baseline that
utilizes the [CLS] token representation of the
pre-trained ViT for sarcasm detection.

Label Training Development Testing
Positive 8642 959 959
Negative 11174 1451 1450

All 19816 2410 2409

Table 3: Statistics of the dataset.

A.2.2 Text-Only models
1. SIARN (Tay et al., 2018): a model that adopts

inner-attention for textual sarcasm detection.

2. SMSD (Xiong et al., 2019): a network that
explores a self-matching network to capture
textual incongruity information

3. BERT (Kenton and Toutanova, 2019): a base-
line that utilizes the vanilla pre-trained un-
cased BERT-base, taking [CLS] token as the
input.

A.2.3 Text and Image models
1. HFM (Cai et al., 2019): a hierarchical multi-

modal features fusion model for multi-modal
sarcasm detection.

2. D&R Net (Xu et al., 2020): a Decomposition
and Relation Network modeling both cross-
modality contrast and semantic association.

3. InCrossMGs (Liang et al., 2021): a graph-
based model for leveraging the sarcastic rela-
tions from intra and inter-modal perspectives.

4. HKE (Liu et al., 2022): a baseline that
combines external knowledge and considers
atomic and composition-level congruities.

5. CMGCN (Liang et al., 2022): a method that
constructs a cross-modal graph for each in-
stance to explicitly draw the sarcastic relations
between textual and visual modalities.

6. GAAN (Song et al., 2023): a attention-
based cross-modal multi-granularity align-
ment model.

7. MCEF (Fang et al., 2024): a multi-channel
enhanced fusion model to maximize the infor-
mation extraction between different modali-
ties.

8. SAHFN (Liu et al., 2024): a hierarchical fu-
sion model that uses attribute-object matching
method to integrate sentiment information.
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Hyper-parameters Value
learning rate 1e-5

warm up proportion 0.2
number of training epochs 20

training batch size 32
maximum text length 64

number of CIGR steps T 3
JS loss weight factor λ 0.8

constraint loss weight factor λIFCL 0.5
constraint similarity margin γ 0.1
inversed temperature factor β 100

Table 4: Hyper-parameter setting of our AMIF model.

9. SEF (Zhong et al., 2024): a method modeling
textual and visual information at the multi-
scale and multi-span token level using con-
trastive learning.

10. DMSD-CL (Jia et al., 2024): a baseline using
large language models to define the task of
out-of-distribution aiming to evaluate models’
generalizability. It proposes a novel debias-
ing multimodal sarcasm detection framework
with contrastive learning to mitigate the harm-
ful effect of biased textual factors for robust
out-of-distribution generalization.

11. DGP (Ma et al., 2024): a model based on dual
generative processes to deeply explore emo-
tional inconsistencies between modalities.

A.3 Implementation Details
For a fair comparison, following the processing
in Liang et al. (2021, 2022); Liu et al. (2022);
Zhong et al. (2024); Ma et al. (2024), we utilize
the pre-trained BERT-base-uncased model (Kenton
and Toutanova, 2019) and ViT model (Dosovitskiy
et al., 2020) as the text-encoder and image-encoder
to embed each word and region. Following Liu et al.
(2022); Fang et al. (2024); Zhong et al. (2024); Ma
et al. (2024); Liu et al. (2024), we perform Accu-
racy, Precision, Recall, and F1-score to evaluate the
model performance. The experimental results of
our model are averaged over 10 runs using different
random seeds to ensure statistical stability in the
final reported results. The specific hyper-parameter
settings are detailed in Table 4.
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