
Proceedings of the 31st International Conference on Computational Linguistics, pages 3794–3807
January 19–24, 2025. ©2025 Association for Computational Linguistics

3794

Gen-SQL: Efficient Text-to-SQL By Bridging Natural Language Question
And Database Schema With Pseudo-Schema

Jie Shi1, Bo Xu2*, Jiaqing Liang3*, Yanghua Xiao1, Jia Chen1, Chenhao Xie4,
Peng Wang1, Wei Wang1

1Shanghai Key Laboratory of Data Science, School of Computer Science, Fudan University
2School of Computer Science and Technology, Donghua University

3School of Data Science, Fudan University 4SenseDeal Intelligent Technology Co., Ltd.
jshi22@m.fudan.edu.cn, xubo@dhu.edu.cn, xiechenhao@sensedeal.ai,
{liangjiaqing,shawyh,jiachen,pengwang5,weiwang1}@fudan.edu.cn

Abstract

With the prevalence of Large Language Models
(LLMs), recent studies have shifted paradigms
and leveraged LLMs to tackle the challenging
task of Text-to-SQL. Because of the complex-
ity of real world databases, previous works
adopt the retrieve-then-generate framework to
retrieve relevant database schema and then to
generate the SQL query. However, efficient
embedding-based retriever suffers from lower
retrieval accuracy, and more accurate LLM-
based retriever is far more expensive to use,
which hinders their applicability for broader
applications. To overcome this issue, this
paper proposes Gen-SQL, a novel generate-
ground-regenerate framework, where we ex-
ploit prior knowledge from the LLM to enhance
embedding-based retriever and reduce cost. Ex-
periments on several datasets are conducted to
demonstrate the effectiveness and scalability
of our proposed method. We release our code
and data at https://github.com/jieshi10/
gensql.

1 Introduction

Text-to-SQL aims to generate a SQL query that
answers a natural language question given a rela-
tional database schema, which is an essential but
challenging task for automating management and
simplifying data access of databases (Qin et al.,
2022). Nowadays, Large Language Models (LLMs;
Brown et al., 2020; Chen et al., 2021a; Touvron
et al., 2023b) have shown strong reasoning and
generalization ability (Wei et al., 2022; Yao et al.,
2023) and have been proven successful on a variety
of tasks. As for Text-to-SQL, recent works (Wang
et al., 2024; Pourreza and Rafiei, 2023; Liu et al.,
2023; Rajkumar et al., 2022) have achieved promis-
ing results by designing sophisticated prompting
techniques for LLMs, and they leverage a retrieve-
then-generate framework, where database schema

*Corresponding authors.

Question

Schema:
Table 1

Table 2

Table 3

Table 4

Pseudo-schema:

Question

Pseudo-Table 1

Pseudo-Table 2

LLM

Schema:
Table 1

Table 2

Table 3

Table 4

Embedding-based Retriever

Our Hybrid Retriever

Figure 1: Bridging semantic gap with generated pseudo-
schema. The embedding vector of the natural language
question is different from those of the database tables.
So Gen-SQL leverages the LLM to generate pseudo-
tables, whose embedding vectors are more similar.

relevant to the question is retrieved first and the
LLM is then prompted to generate the SQL query
based on the retrieved schema.1

However, the retrieval step in previous works
has limited applicability. Open source platforms
such as DB-GPT2 utilize embedding-based re-
triever which can efficiently find top-K relevant
tables (where K is a predefined constant). But
embedding-based retriever suffers from lower re-
trieval accuracy. As shown in Figure 1, this is due
to the semantic gap between natural language ques-
tion and database schema (Baik et al., 2019). Cor-
rectly building the connection between the question
and the database schema is challenging, as illus-
trated in Figure 2. Failure to retrieve the schema
will result in suboptimal generation performance.
For better retrieval performance, the most advanced
Text-to-SQL method (Wang et al., 2024; Pourreza

1The retrieval step is traditionally known as schema linking
in the literature.

2https://github.com/eosphoros-ai/DB-GPT

https://github.com/jieshi10/gensql
https://github.com/jieshi10/gensql
https://github.com/eosphoros-ai/DB-GPT


3795

Relevant Database Schema:

course_arrange
Course_ID

Teacher_ID

course
Course_ID

Course

teacher
Teacher_ID

Name

SQL Query:

SELECT T3.Name
FROM course_arrange AS T1
JOIN course AS T2
ON T1.Course_ID = T2.Course_ID

JOIN teacher AS T3
ON T1.Teacher_ID = T3.Teacher_ID

WHERE T2.Course = 'Math'

Natural Language Question:

What are the names of the people who teach math courses?

Figure 2: An example showing the semantic gap
between natural language question and database
schema. The question mentions two entities
(i.e., people and courses) and their relation (i.e.,
teach). But it is still difficult to map them to cor-
rect tables (i.e., people→teacher, courses→course,
teach→course_arrange).

and Rafiei, 2023) relies on LLM-based retriever to
search for fine-grained database schema where ir-
relevant columns in each retrieved table are further
pruned. But scanning with LLMs will incur high
cost and high latency.

To overcome these limitations, this paper pro-
poses to make appropriate use of prior knowledge
from the LLM to bridge the gap between question
and schema for embedding-based retriever. The
proposed generate-ground-regenerate framework
for Text-to-SQL is named Gen-SQL. As shown in
Figure 3, we first instruct the LLM to come up
with a pseudo-schema depicting the table struc-
ture solely based on the question without provid-
ing the schema. This imaginary pseudo-schema
is generated according to the prior knowledge ob-
tained during the pre-training stage, and serves as
an intermediate modality to bridge the gap between
natural language and database schema. Based on
the pseudo-schema, we leverage an embedding-
based retriever to accurately retrieve an adaptive
number of tables and prune irrelevant columns so
that the pseudo-schema can be grounded in actual
database schema. Meanwhile, the LLM indirectly
augments the embedding-based retriever without
significantly impacting overall latency and cost.
Finally, we prompt the LLM with the grounded
schema to regenerate the SQL query. Furthermore,
we propose iterative refinement to automatically
refine the generated SQL queries.

The contributions of this paper are summarized

as follows:

• This paper studies the semantic gap be-
tween natural language question and database
schema during schema retrieval in Text-to-
SQL. We propose to leverage pseudo-schema
generated by the LLM to bridge the semantic
gap for more accurate retrieval.

• We propose Gen-SQL, a generate-ground-
regenerate framework for Text-to-SQL. Com-
pared with previous methods, Gen-SQL is
more efficient and less expensive due to its
hybrid retriever.

• In the experiments, we show that Gen-SQL
outperforms the existing baselines on public
benchmarks. We also validate Gen-SQL on
two curated datasets featuring databases with
a massive number of tables to demonstrate its
scalability.

2 Preliminaries for Text-to-SQL

2.1 Problem Formulation

The input of the Text-to-SQL task is a natural lan-
guage question q and a database schema S =
{s1, · · · , sN}, where si is the i-th table and N
indicates the number of tables in the database.
For table si, its column collection is denoted by
Ci = {ci,1, · · · , ci,Ni}, where ci,j is the j-th col-
umn and Ni is the number of columns. The output
of the Text-to-SQL task is a SQL query ŷ which
corresponds to the question q.

2.2 Retrieve-then-generate Framework

The retrieve-then-generate framework prevails in
many recent Text-to-SQL methods (Wang et al.,
2024; Pourreza and Rafiei, 2023, 2024). It aims
to help LLMs understand connections between the
question and the database schema. A retriever re-
trieves the schema Ŝ = {ŝ1, ..., ŝK} ⊆ S relevant
to the question q. Let Ĉi =

{
ĉi,1, · · · , ĉi,N̂i

}
be

the column collection for table ŝi, where N̂i is the
number of columns. The LLM is prompted with
the retrieved schema Ŝ to generate the SQL query
ŷ during the generation step:

ŷ = SQL-Writer
(
Ŝ, q

)
. (1)

The number of tables K varies for different types
of retrievers.



3796

SQL
Writer

Step 1:
Pseudo-generation

Step 2:
Schema Grounding

Step 3:
SQL Regeneration

Question

Pseudo-schema

Table SketchTable SketchPseudo-table

Question

Pseudo-schema

Table SketchTable SketchPseudo-table

Question

Schema

Table SketchTable SketchTable

Schema

Table SketchTable SketchTable

Schema 
Parser

Pseudo-SQL

Step 4:
Iterative Refinement

Retriever

SQL
Writer

SQLFixed SQL

Question QuestionPseudo-SQL:

SELECT T1.name
FROM people AS T1

JOIN teaches AS T2
ON T1.ID = T2.ID

WHERE T2.courseID IN (
SELECT course.ID FROM course

WHERE course.deptID = (
SELECT department.ID FROM department

WHERE department.name = 'Mathematics'
)

)

Natural Language Question:

What are the names of the people who teach math courses?

Pseudo-schema:

teaches

id

courseid

course

id

deptid

people

name

id

department

id

name

Relevant Schema:

teacher

Teacher_ID

Name

Age

Hometown

course_arrange

Teacher_ID

Course_ID

Grade

course

Course_ID

Course

Starting_Date

departments

ID

NAME

HEAD

SQL
Debugger

SQLSQL

Figure 3: Compared with the retrieve-then-generate framework which ignores table structures during retrieval,
Gen-SQL first leverages the LLM to generate a pseudo-schema, then performs schema grounding, and finally
regenerates the SQL query. The proposed approach can be extended to an iterative framework as indicated by the
purple arrow.

For embedding-based retriever, K is typically
a predefined constant. The retriever retrieves top-
K tables which are most relevant to the question
q by calculating cosine similarity score cos (q, si)
between the question q and each table si ∈ S , and
finding a subset of tables Ŝ = {ŝ1, ..., ŝK} ⊆ S
with top-K similarity scores.

For LLM-based retriever, K is determined adap-
tively. The LLM is prompted to scan the complete
schema and search for relevant tables and columns
based on its own knowledge. Although this kind of
retriever is more accurate and flexible, it will cause
extra cost. When the schema is large, the cost will
increase accordingly.

3 Proposed Approach: Gen-SQL

In standard retrieve-then-generate framework, the
embedding-based retriever does not take schema
into account during the retrieval step, and the LLM-
based retriever has higher cost. We propose to
tackle these issues by augmenting the embedding-
based retriever with schema information from the
LLM. Specifically, we exploit prior knowledge
from the LLM to first generate a pseudo-schema
(§3.1) which is later grounded in actual database
schema (§3.2). The LLM then regenerates the SQL
query based on the grounded schema (§3.3). The
proposed generate-ground-regenerate framework

for Text-to-SQL is named Gen-SQL, as shown in
Figure 3.

We further extend this framework into an iter-
ative one (§3.4), where the generated SQL query
can be automatically refined at each iteration.

3.1 Step 1: Pseudo-generation

This step aims to generate a pseudo-schema
S̄ = {s̄1, · · · , s̄n} related to the question q,
where n is the number of pseudo-tables. Let
C̄i = {c̄i,1, · · · , c̄i,n̄i} be the column collection for
pseudo-table s̄i, where n̄i is the number of columns
in pseudo-table s̄i.

Due to the complexity of the CREATE TABLE
statements, we do not prompt the LLM to directly
write them. Instead, we instruct the LLM to gener-
ate a pseudo-SQL ȳ without specifying the schema:

ȳ = SQL-Writer (∅, q) . (2)

Because we do not prompt the LLM with full
schema, the cost will not increase with respect to
the schema size. Afterwards, the schema parser
module analyzes the pseudo-SQL ȳ by converting
it to Abstract Syntax Tree (AST), based on which
the schema parser composes the pseudo-schema S̄.
Please refer to Appendix A for detailed explana-
tions for the schema parser module. Note that the
pseudo-schema S̄ containing information about the



3797

table names (s̄i), column names (c̄i,j), and the num-
bers (n, n̄i) can be inferred from the pseudo-SQL
ȳ.

3.2 Step 2: Schema Grounding

Schema grounding consists of two stages. It makes
use of both the question q and the pseudo-schema
S̄ = {s̄1, · · · , s̄n} to first retrieve top-n tables
(where n is the number of pseudo-tables), and then
eliminate irrelevant columns in each table.

Specifically, the question q is enriched with the
pseudo-schema S̄. We use the string concatenation
qs = [q; s̄1; · · · ; s̄n] to compute the cosine simi-
larity score cos (qs, si) (si ∈ S), and obtain a set
of n tables Ŝ = {ŝ1, · · · , ŝn} ⊆ S that are the
most relevant. Let Ĉi = {ĉi,1, · · · , ĉi,n̂i

} be the
column collection for table ŝi. The columns are
sorted based on their similarities with the enriched
question qs, i.e., cos (qs, ĉi,j) > cos

(
qs, ĉi,j′

)
for

j < j′. We only keep the first n̂′
i columns for table

ŝi:

n̂′
i =

{
n̄j , ∃j : s̄j = ŝi

maxj n̄j , otherwise
. (3)

If table ŝi is mentioned in the pseudo-schema, we
keep the same number of columns as that in the
pseudo-schema. Otherwise, we keep the largest
number of columns required in all pseudo-tables.
The retrieved schema Ŝ is the grounded schema.

It is worth mentioning that the pseudo-schema
S̄ enhances the grounding step from two perspec-
tives. First, it enriches the query context with table
structures, minimizing the gap between the natural
language question and the database schema. Sec-
ond, it enables fine-grained retrieval by providing
the number of tables to retrieve and the number of
columns needed in each table.

In practice, we will keep λ1n tables and λ2n̂
′
i

columns for table ŝi because the retriever is not
perfect.

3.3 Step 3: SQL Regeneration

This step regenerates the SQL query ŷ based on the
grounded schema Ŝ. This regeneration step is sim-
ilar to the generation step in standard retrieve-then-
generate framework. In addition to the SQL writer
module that generates the SQL query based on the
grounded schema and the question, we include a
SQL debugger module that fixes SQL queries fail-
ing to execute on the database.

SQL Writer. The SQL writer module takes the
grounded schema Ŝ and the question q as input and
generates a SQL query ŷ′ using the LLM:

ŷ′ = SQL-Writer
(
Ŝ, q

)
. (4)

In our implementation, we select 8 in-context
examples from the training set based on question
similarity (Li et al., 2024). The schema Ŝ is trans-
formed into CREATE TABLE statements. These
CREATE TABLE statements contain table names, col-
umn names, primary key constraints, and foreign
key constraints (Gao et al., 2024). We also ran-
domly sample one cell value for each column, so
that the LLM can know the value format of each
column. We leave implementing an efficient value
retriever as our future work.

The detailed prompt is given in Appendix C.1.

SQL Debugger. The SQL debugger module
takes the grounded schema Ŝ, the question q, and
the SQL query ŷ′ generated by the SQL writer mod-
ule as input and produces a fixed SQL query ŷ.

Specifically, the SQL debugger executes the SQL
query ŷ′ on the database. If it is successfully ex-
ecuted, then the SQL debugger takes no further
action. Otherwise, the SQL debugger instructs the
LLM to fix the SQL query ŷ′ based on the error
feedback E from the database:

ŷ = SQL-Debugger
(
Ŝ, q, ŷ′, E

)
. (5)

The detailed prompt is given in Appendix C.2.

3.4 Step 4: Iterative Refinement
By taking the initial SQL query ŷ1 = ŷ as input of
the schema parser, the proposed approach can be
made iterative.

Formally, let ŷt be the SQL query generated at
the t-th iteration, where t = 1, 2, · · · , (L− 1) and
L is the maximum number of iterations. At the
(t+ 1)-th iteration, the schema parser parses the
SQL query ŷt and produces a pseudo-schema S̄t,
based on which the retriever retrieves the relevant
schema Ŝt. Afterwards, the LLMs are prompted
with the schema Ŝt and generate a new SQL query
ŷt+1. The iteration stops when either the schema
at the next iteration remains the same as that at the
current iteration, i.e., Ŝt+1 = Ŝt, or the maximum
number of iterations is reached, i.e., t+ 1 = L. In
the experiments, we set L = 5.

Mathematically, the objective of our task is to
maximize the probability of generating the SQL



3798

Min Max Avg
Spider 2 11 4
Spider-M 51 73 59
BIRD 3 13 7
BIRD-M 78 95 89

Table 1: Dataset statistics showing minimum, maximum,
and average number of tables for each database.

query ŷ by finding an optimal subset of tables Ŝ ⊆
S given S and q:

argmax
ŷ,Ŝ

p
(
ŷ | Ŝ, q

)
. (6)

Directly optimizing this objective is intractable,
so we iteratively maximize this probability in two
steps. At the t-th iteration, suppose the generated
SQL query is ŷt. At the (t+ 1)-th iteration, we
first estimate Ŝt based on ŷt to retrieve the most
relevant schema. By keeping Ŝt fixed, we can then
maximize the probability and find ŷt+1 using the
decoding algorithms of LLMs:

argmax
ŷt+1

p
(
ŷt+1 | Ŝt, q

)
. (7)

The above procedure is analogous to the
expectation-maximization algorithm, where esti-
mating Ŝt is the expectation (E) step and decoding
ŷt+1 is the maximization (M) step. So we can
interpret iterative refinement as an optimization
technique.

4 Experiments

We conduct all the experiments on a server with
1TB RAM and 8 NVIDIA A40 GPUs.

4.1 Experiment Settings

4.1.1 Datasets
We conduct the experiments on two public Text-to-
SQL benchmarks and two curated datasets whose
databases consisting of much larger numbers of
tables.

To demonstrate the effectiveness of Gen-SQL,
we evaluate the proposed method on two widely
used benchmarks, i.e., Spider (Yu et al., 2018) and
BIRD (Li et al., 2023b). We report results on the
development set of each benchmark.

To illustrate the scalability of Gen-SQL, we
study Text-to-SQL on complex databases with mas-
sive numbers of tables. We construct two datasets
by merging databases from Spider (Yu et al., 2018)
and BIRD (Li et al., 2023b). The resulting datasets

Method Iterative Retrieval Debugging
DIN-SQL ✗ ✓ ✓
MAC-SQL ✗ ✓ ✓
DAIL-SQL ✗ ✗ ✗
Gen-SQL ✓ ✓ ✓

Table 2: Comparisons between different methods. A
method is “iterative” if the previously generated SQL
query will serve as hint in the next iteration. “Retrieval”
indicates that the method will retrieve relevant schema
before SQL generation. “Debugging” suggests that the
method will make self-corrections to the generated SQL.

are named Spider-M and BIRD-M. Note that only
databases are merged. The questions and gold SQL
queries in Spider-M and BIRD-M are exactly the
same as those in Spider and BIRD. Details of the
construction process can be found in Appendix B.
Table 1 shows the statistics of the original and the
resulting datasets.

4.1.2 Models
Retriever. The state-of-the-art text embedding
model bge-large-en-v1.5 (Xiao et al., 2023) is
used as the embedding-based retriever.

LLMs. For open source LLM, we use the Llama-
3-70B model.3 As indicated in previous work (Gao
et al., 2024), instruction fine-tuned variant of this
model is used due to its superior performance.
For proprietary LLM, we use the latest GPT-4
model gpt-4o-2024-08-06 (OpenAI, 2024). Both
Llama (Touvron et al., 2023b,a) and GPT-4 are gen-
eral domain LLMs.

4.1.3 Implementation Details
Our code is based on the PyTorch (Paszke et al.,
2019) version of the Transformers (Wolf et al.,
2020) library.

Generation Configuration. Greedy decoding is
used across all experiments, and the maximum
number of tokens to generate for each SQL query
is limited to 256.

Model Serving. Llama-3-70B is deployed on 4
GPUs using vLLM (Kwon et al., 2023) for optimal
inference speed.

4.2 Baselines

We compare Gen-SQL with three state-of-the-art
Text-to-SQL methods: DIN-SQL (Pourreza and

3https://huggingface.co/meta-llama/
Meta-Llama-3-70B-Instruct

https://huggingface.co/meta-llama/Meta-Llama-3-70B-Instruct
https://huggingface.co/meta-llama/Meta-Llama-3-70B-Instruct


3799

Method (%) Spider Spider-M BIRD BIRD-M
EX EM EX EM EX VES EX VES

GPT-4
DIN-SQL ♠ 74.2 60.1 - - 50.7 58.8 - -
MAC-SQL 81.3 45.4 - - 57.9 62.0 - -
DAIL-SQL ♠ 82.4 71.9 - - - - - -
Gen-SQL 85.6 64.3 - - 59.8 62.8 - -

GPT-3.5-Turbo
MAC-SQL ♠ 80.6 - - - 50.6 61.3 - -
DAIL-SQL ♠ 78.1 66.7 - - - - - -

Llama-3-70B
DIN-SQL 78.7 54.4 8.3 7.1 34.3 34.4 3.4 3.5
MAC-SQL 77.0 41.7 0.9 0.6 46.4 49.7 8.2 8.2
DAIL-SQL 76.5 58.9 67.0 52.7 46.4 46.4 31.9 32.3
Gen-SQL 82.8 66.0 81.1 66.2 53.2 54.0 48.6 49.1

Table 3: Performance of different methods. (♠: Results are from their original papers. Bold: the best within each
LLM. Underlined: the second best within each LLM.)

(%) Iterative Retrieval Debugging Spider Spider-M BIRD BIRD-M
Row EX EM EX EM EX VES EX VES

1 ✓ ✓ ✓ 82.8 66.0 81.1 66.2 53.2 54.0 48.6 49.1
2 ✓ ✓ ✗ 82.1 65.5 79.7 65.1 49.0 49.4 45.1 45.1
3 ✗ ✓ ✓ 82.4 64.9 80.1 63.0 52.4 53.1 46.6 46.6
4 ✗ ✓ ✗ 82.0 64.6 79.4 63.5 47.5 47.7 41.5 41.4
5 ✗ ✗ ✓ 80.9 63.5 71.6 54.5 51.6 51.9 31.6 32.3
6 ✗ ✗ ✗ 79.8 63.4 66.9 51.5 46.8 47.2 25.4 25.9
7 ✗ Top-5 ✓ 81.4 63.8 79.6 62.6 50.6 52.6 42.0 42.8
8 ✗ Top-10 ✓ 81.6 64.4 79.0 62.2 51.0 51.6 43.0 44.0

Table 4: Ablation study based on Llama-3-70B. (Bold: the best.)

Rafiei, 2023), MAC-SQL (Wang et al., 2024), and
DAIL-SQL (Gao et al., 2024).

DIN-SQL (Pourreza and Rafiei, 2023) and MAC-
SQL (Wang et al., 2024) fully rely on LLMs to per-
form schema retrieval, SQL generation, and SQL
debugging.

DAIL-SQL (Gao et al., 2024) mainly focuses on
prompt organization and few-shot demonstration
selection. It does not perform schema retrieval and
prompts LLMs with full database schema.

The differences between Gen-SQL and the base-
lines are summarized in Table 2. All baselines are
implemented based on their official code. Since the
original implementations do not take large database
schemas into account, we additionally perform
truncation to prompts exceeding the context limit
of LLM so as to avoid errors. Due to budget limita-
tion, we conduct experiments using GPT-4 only on
public benchmarks.

4.3 Metrics

For Spider and Spider-M, we report Execution Ac-
curacy (EX) and Exact Matching Accuracy (EM)
(Yu et al., 2018; Li et al., 2023a). For BIRD and
BIRD-M, we report Execution Accuracy (EX) and
Valid Efficiency Score (VES) (Li et al., 2023b). EX

is defined as the result matching accuracy of exe-
cuting the generated SQL query against executing
the gold SQL query on the given database. EM
measures whether the decomposed SQL compo-
nents of the generated query match those of the
gold query. VES measures the execution efficiency
of the generated query against the gold query.

4.4 Main Results

Table 3 shows the performance of different meth-
ods.

Effectiveness. On Llama-3-70B, Gen-SQL out-
performs the other baselines on public benchmarks
like Spider and BIRD, and achieves an EX of 82.8%
and 53.2%, which is comparable to the results
achieved on proprietary LLM like GPT-3.5-Turbo.
On GPT-4, the performance of Gen-SQL is also
compelling.

Scalability. It can be observed that the perfor-
mance of available methods significantly decreases
on Spider-M and BIRD-M. For example, from
BIRD to BIRD-M, the performance of DIN-SQL
and MAC-SQL drops to below 10% EX. This
is because these methods rely on the instruction-
following ability of LLMs. When the schema con-



3800

Method Spider Spider-M
EX (%) # Tokens Latency (s) EX (%) # Tokens Latency (s)

DIN-SQL 78.7 8,953 35.1 8.3 7,642 33.2
MAC-SQL 77.0 2,239 18.8 0.9 15,154 34.4
DAIL-SQL 76.5 767 4.5 67.0 4,155 7.1
Gen-SQL 82.8 1,473 6.1 81.1 2,348 8.4

Table 5: Efficiency of different methods based on Llama-3-70B. (Bold: the best. Underlined: the second best.)

text is long, the LLM fails to correctly follow the
given instructions. Surprisingly, the EX of DAIL-
SQL only drops by 14.5% on BIRD-M. This is be-
cause DAIL-SQL relies on the in-context learning
ability of LLMs, which appears to be more robust
than the instruction-following ability. In compar-
ison, the deterioration of Gen-SQL on BIRD-M
in terms of EX is marginal (less than 5%), which
proves that the proposed method scales well on
larger databases.

4.5 Ablation Study

This section examines the effectiveness of each
component in the proposed method. Table 4 shows
the results. We also include the variants of retriev-
ing top-K tables (rows 7 and 8) using embedding-
based retriever to justify our retrieving strategy.

Overall Framework. The results show that re-
moving any component leads to inferior perfor-
mance. Specifically, without self-debugging (row
2), the EX of Gen-SQL drops by 3.5% on BIRD-M.
Without the iterative framework (row 3), the EM
drops by 3.2% on Spider-M. When we further re-
move schema retrieval (row 5), the EX decreases
by 15.0% on BIRD-M compared with non-iterative
Gen-SQL (row 3). These prove the effectiveness
of the proposed framework.

Generation Prompt. The generation prompts
used in our implementation are comparable or even
superior to the baselines.

For instance, the results from row 6 are directly
comparable to those of DAIL-SQL, since both
methods are non-iterative and generate SQL with-
out schema retrieval or self-debugging. Their per-
formance is similar on Spider and BIRD. How-
ever, our method slightly underperforms DAIL-
SQL on Spider-M and BIRD-M. The major differ-
ence between our method and DAIL-SQL is that
our method takes database content into consider-
ation. It appears that database content has little
impact on smaller databases, but it has negative
influence on larger ones due to increased prompt
lengths.

(%) P R F1 EX
Embedding-based Retriever

Top-5 30.8 80.0 44.5 42.0
Top-10 17.3 89.8 29.0 43.0

Hybrid Retriever
Gen-SQL 23.1 93.6 37.1 48.6

Non-iterative 25.1 90.1 39.2 46.6

Table 6: Table retrieval and Text-to-SQL performance
on BIRD-M. Llama-3-70B is used as the backbone.
(Bold: the best within each retriever.)

Similarly, the results from row 3 are almost com-
parable to those of DIN-SQL and MAC-SQL, be-
cause all methods are non-iterative and perform
schema retrieval and self-debugging. Our method
outperforms the other baselines by a large margin
on all datasets, which validates the prompting strat-
egy of Gen-SQL.

Retrieving Strategy. The results also demon-
strate the superiority of the proposed retrieving
strategy. Comparing the results from row 3 with
those from rows 7 and 8, the retrieving strategy of
Gen-SQL leads to better performance. Specifically,
on larger and more complex dataset like BIRD-M,
the improvement is significant (↑3.6% EX).

4.6 Analysis

Efficiency. We measure the efficiency using aver-
age token consumption and latency for each sample.
The results are presented in Table 5. DAIL-SQL
has the lowest latency because it will only invoke
the LLM once for a single question. In comparison,
DIN-SQL and MAC-SQL will invoke the LLM
multiple times for each question. They will even
utilize the LLM to scan the full database schema.
Consequently, they consume large numbers of to-
kens and have higher delays. As for Gen-SQL, it
balances performance and efficiency. On Spider,
Gen-SQL improves DIN-SQL by 4.1% in terms of
EX, using only 16.5% of tokens and 17.4% of time.
On Spider-M, Gen-SQL improves DAIL-SQL by
14.1% in terms of EX, using only 56.5% of tokens,
despite an 18.3% relative increase in time. These
suggest that our method is efficient.



3801

(a) Top-5 (b) Top-10 (c) Gen-SQL (d) Non-iterative Gen-SQL

Figure 4: Distribution of correct samples on BIRD-M. Llama-3-70B is used as the backbone.

Table Retrieval & Text-to-SQL. The relation-
ship between table retrieval performance and down-
stream Text-to-SQL performance is still understud-
ied. Table 6 shows that EX is not related to F1.
Instead, EX is more related to recall. Indeed, our
intuition is that the LLM can only generate correct
SQL if all relevant tables are retrieved. This intu-
ition can be supported by Figure 4 which presents
the distribution of correct samples for each method.
The result implies that including a few irrelevant
tables is also acceptable for the LLM. So the prin-
ciple is to maintain higher recall for the retriever,
when the retrieved irrelevant tables do not compro-
mise the Text-to-SQL performance.

5 Related Work

5.1 Text-to-SQL

The field of Text-to-SQL has witnessed several
paradigm shifts (Kim et al., 2020; Liu et al.,
2023). Traditional deep learning based methods
utilize Recurrent Neural Networks (RNNs) or Long
Short-Term Memory (LSTM) networks (Hochre-
iter and Schmidhuber, 1997) for Text-to-SQL (Iyer
et al., 2017; Zhong et al., 2017; Dong and Lap-
ata, 2018; Sun et al., 2018; Huang et al., 2018;
Bogin et al., 2019; Guo et al., 2019). After the
Transformer architecture (Vaswani et al., 2017) has
revolutionized the field of natural language pro-
cessing (Devlin et al., 2019; Raffel et al., 2020),
RNN or LSTM modules can be replaced by pre-
trained Transformer-based models (Wang et al.,
2020; Chen et al., 2021b; Scholak et al., 2021; Qi
et al., 2022). More recently, the success of LLMs
has enabled training-free Text-to-SQL through
in-context learning (Brown et al., 2020) where
LLMs can learn from a few demonstrations pro-
vided in the context to generate SQL (Rajkumar
et al., 2022). Due to strong instruction-following
ability (Ouyang et al., 2022; Wang et al., 2023)
of LLMs, more intricate prompting techniques
have been developed to further improve the per-

formance (Wang et al., 2024; Pourreza and Rafiei,
2023; Jiang et al., 2023). However, previous works
have ignored the fact that sophisticated prompt or
extremely large context containing full database
schema will degrade performance. Considering
the capability and context limit of LLMs, accurate
schema retrieval is a necessity.

5.2 Retrieval-Augmented Generation

LLMs are known to hallucinate facts or fabricate
false information (Ji et al., 2023), and have diffi-
culty in timely updating latest or domain knowl-
edge (Jang et al., 2022; Zhou et al., 2023). To rem-
edy these limitations, Retrieval-Augmented Gener-
ation (RAG) has been extensively explored (Lewis
et al., 2020; Izacard et al., 2022; Shi et al., 2023).
RAG is closely related to our task because we both
concentrate on accurate retrieval and utilizing the
retrieved content. To improve retrieval accuracy,
straightforward solutions include re-ranking (Sun
et al., 2023) with LLMs, which will typically im-
pact efficiency; and query rewriting (Ma et al.,
2023), which requires supervised signals for the
retriever. To make use of the retrieved content,
Fusion-in-Decoder (FiD; Izacard and Grave, 2021;
Zhang et al., 2023) has been proposed to separately
encode each retrieved document by an encoder
and fuse the encoded documents in the decoder.
But this architecture is mainly applied to encoder-
decoder models such as BART (Lewis et al., 2019)
and T5 (Raffel et al., 2020), and requires additional
training. By contrast, the proposed method is appli-
cable to various LLMs without further fine-tuning.

6 Conclusions

This paper proposes Gen-SQL, where the
embedding-based retriever is guided by the LLM
for efficient and accurate schema retrieval. In the
experiments, Gen-SQL exhibits competitive per-
formance on public benchmarks, which shows its
effectiveness. On datasets with larger databases,
Gen-SQL significantly outperforms the existing



3802

baselines, which proves its scalability. The relation-
ship between table retrieval and Text-to-SQL per-
formance further reveals that the retriever should
prioritize recall over precision (to some extent) for
better Text-to-SQL performance.

Limitations

Despite the fact that Gen-SQL has achieved com-
petitive results on public benchmarks using Llama-
3-70B and GPT-4, its performance on more pro-
prietary LLMs remains to be explored. Since Gen-
SQL is a general framework, various LLMs and
many other existing Text-to-SQL methods may ben-
efit from Gen-SQL. We leave the investigation of
improvements by Gen-SQL on more capable LLMs
as our future work.

Acknowledgments

The work is partially supported by the Fundamen-
tal Research Funds for the Central Universities
2232023D-19.

References
Christopher Baik, H. V. Jagadish, and Yunyao Li. 2019.

Bridging the semantic gap with sql query logs in nat-
ural language interfaces to databases. In 2019 IEEE
35th International Conference on Data Engineering
(ICDE), pages 374–385.

Ben Bogin, Jonathan Berant, and Matt Gardner. 2019.
Representing schema structure with graph neural net-
works for text-to-SQL parsing. In Proceedings of the
57th Annual Meeting of the Association for Computa-
tional Linguistics, pages 4560–4565, Florence, Italy.
Association for Computational Linguistics.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss,
Gretchen Krueger, Tom Henighan, Rewon Child,
Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu,
Clemens Winter, Christopher Hesse, Mark Chen,
Eric Sigler, Mateusz Litwin, Scott Gray, Benjamin
Chess, Jack Clark, Christopher Berner, Sam Mc-
Candlish, Alec Radford, Ilya Sutskever, and Dario
Amodei. 2020. Language models are few-shot learn-
ers. Preprint, arXiv:2005.14165.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming
Yuan, Henrique Ponde de Oliveira Pinto, Jared Ka-
plan, Harri Edwards, Yuri Burda, Nicholas Joseph,
Greg Brockman, Alex Ray, Raul Puri, Gretchen
Krueger, Michael Petrov, Heidy Khlaaf, Girish Sas-
try, Pamela Mishkin, Brooke Chan, Scott Gray,
Nick Ryder, Mikhail Pavlov, Alethea Power, Lukasz
Kaiser, Mohammad Bavarian, Clemens Winter,

Philippe Tillet, Felipe Petroski Such, Dave Cum-
mings, Matthias Plappert, Fotios Chantzis, Eliza-
beth Barnes, Ariel Herbert-Voss, William Hebgen
Guss, Alex Nichol, Alex Paino, Nikolas Tezak, Jie
Tang, Igor Babuschkin, Suchir Balaji, Shantanu Jain,
William Saunders, Christopher Hesse, Andrew N.
Carr, Jan Leike, Josh Achiam, Vedant Misra, Evan
Morikawa, Alec Radford, Matthew Knight, Miles
Brundage, Mira Murati, Katie Mayer, Peter Welinder,
Bob McGrew, Dario Amodei, Sam McCandlish, Ilya
Sutskever, and Wojciech Zaremba. 2021a. Evaluat-
ing large language models trained on code. Preprint,
arXiv:2107.03374.

Zhi Chen, Lu Chen, Yanbin Zhao, Ruisheng Cao, Zi-
han Xu, Su Zhu, and Kai Yu. 2021b. ShadowGNN:
Graph projection neural network for text-to-SQL
parser. In Proceedings of the 2021 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, pages 5567–5577, Online. Association for
Computational Linguistics.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
4171–4186, Minneapolis, Minnesota. Association for
Computational Linguistics.

Li Dong and Mirella Lapata. 2018. Coarse-to-fine de-
coding for neural semantic parsing. In Proceedings
of the 56th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 731–742, Melbourne, Australia. Association
for Computational Linguistics.

Dawei Gao, Haibin Wang, Yaliang Li, Xiuyu Sun,
Yichen Qian, Bolin Ding, and Jingren Zhou. 2024.
Text-to-sql empowered by large language models:
A benchmark evaluation. Proc. VLDB Endow.,
17(5):1132–1145.

Jiaqi Guo, Zecheng Zhan, Yan Gao, Yan Xiao, Jian-
Guang Lou, Ting Liu, and Dongmei Zhang. 2019. To-
wards complex text-to-SQL in cross-domain database
with intermediate representation. In Proceedings of
the 57th Annual Meeting of the Association for Com-
putational Linguistics, pages 4524–4535, Florence,
Italy. Association for Computational Linguistics.

Sepp Hochreiter and Jürgen Schmidhuber. 1997.
Long short-term memory. Neural Comput.,
9(8):1735–1780.

Po-Sen Huang, Chenglong Wang, Rishabh Singh, Wen-
tau Yih, and Xiaodong He. 2018. Natural language
to structured query generation via meta-learning. In
Proceedings of the 2018 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,

https://doi.org/10.1109/ICDE.2019.00041
https://doi.org/10.1109/ICDE.2019.00041
https://doi.org/10.18653/v1/P19-1448
https://doi.org/10.18653/v1/P19-1448
https://arxiv.org/abs/2005.14165
https://arxiv.org/abs/2005.14165
https://arxiv.org/abs/2107.03374
https://arxiv.org/abs/2107.03374
https://doi.org/10.18653/v1/2021.naacl-main.441
https://doi.org/10.18653/v1/2021.naacl-main.441
https://doi.org/10.18653/v1/2021.naacl-main.441
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/P18-1068
https://doi.org/10.18653/v1/P18-1068
https://doi.org/10.14778/3641204.3641221
https://doi.org/10.14778/3641204.3641221
https://doi.org/10.18653/v1/P19-1444
https://doi.org/10.18653/v1/P19-1444
https://doi.org/10.18653/v1/P19-1444
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.18653/v1/N18-2115
https://doi.org/10.18653/v1/N18-2115


3803

Volume 2 (Short Papers), pages 732–738, New Or-
leans, Louisiana. Association for Computational Lin-
guistics.

Srinivasan Iyer, Ioannis Konstas, Alvin Cheung, Jayant
Krishnamurthy, and Luke Zettlemoyer. 2017. Learn-
ing a neural semantic parser from user feedback. In
Proceedings of the 55th Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1:
Long Papers), pages 963–973, Vancouver, Canada.
Association for Computational Linguistics.

Gautier Izacard and Edouard Grave. 2021. Leveraging
passage retrieval with generative models for open do-
main question answering. In Proceedings of the 16th
Conference of the European Chapter of the Associ-
ation for Computational Linguistics: Main Volume,
pages 874–880, Online. Association for Computa-
tional Linguistics.

Gautier Izacard, Patrick Lewis, Maria Lomeli, Lu-
cas Hosseini, Fabio Petroni, Timo Schick, Jane
Dwivedi-Yu, Armand Joulin, Sebastian Riedel, and
Edouard Grave. 2022. Atlas: Few-shot learning
with retrieval augmented language models. Preprint,
arXiv:2208.03299.

Joel Jang, Seonghyeon Ye, Changho Lee, Sohee Yang,
Joongbo Shin, Janghoon Han, Gyeonghun Kim, and
Minjoon Seo. 2022. TemporalWiki: A lifelong
benchmark for training and evaluating ever-evolving
language models. In Proceedings of the 2022 Con-
ference on Empirical Methods in Natural Language
Processing, pages 6237–6250, Abu Dhabi, United
Arab Emirates. Association for Computational Lin-
guistics.

Ziwei Ji, Nayeon Lee, Rita Frieske, Tiezheng Yu, Dan
Su, Yan Xu, Etsuko Ishii, Ye Jin Bang, Andrea
Madotto, and Pascale Fung. 2023. Survey of halluci-
nation in natural language generation. ACM Comput.
Surv., 55(12).

Jinhao Jiang, Kun Zhou, Zican Dong, Keming Ye, Xin
Zhao, and Ji-Rong Wen. 2023. StructGPT: A general
framework for large language model to reason over
structured data. In Proceedings of the 2023 Con-
ference on Empirical Methods in Natural Language
Processing, pages 9237–9251, Singapore. Associa-
tion for Computational Linguistics.

Hyeonji Kim, Byeong-Hoon So, Wook-Shin Han,
and Hongrae Lee. 2020. Natural language to
sql: where are we today? Proc. VLDB Endow.,
13(10):1737–1750.

Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying
Sheng, Lianmin Zheng, Cody Hao Yu, Joseph E.
Gonzalez, Hao Zhang, and Ion Stoica. 2023. Ef-
ficient memory management for large language
model serving with pagedattention. Preprint,
arXiv:2309.06180.

Mike Lewis, Yinhan Liu, Naman Goyal, Marjan
Ghazvininejad, Abdelrahman Mohamed, Omer Levy,

Ves Stoyanov, and Luke Zettlemoyer. 2019. Bart: De-
noising sequence-to-sequence pre-training for natural
language generation, translation, and comprehension.
Preprint, arXiv:1910.13461.

Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio
Petroni, Vladimir Karpukhin, Naman Goyal, Hein-
rich Küttler, Mike Lewis, Wen-tau Yih, Tim Rock-
täschel, Sebastian Riedel, and Douwe Kiela. 2020.
Retrieval-augmented generation for knowledge-
intensive nlp tasks. In Advances in Neural Infor-
mation Processing Systems, volume 33, pages 9459–
9474. Curran Associates, Inc.

Haoyang Li, Jing Zhang, Hanbing Liu, Ju Fan, Xi-
aokang Zhang, Jun Zhu, Renjie Wei, Hongyan Pan,
Cuiping Li, and Hong Chen. 2024. Codes: Towards
building open-source language models for text-to-sql.
Proc. ACM Manag. Data, 2(3).

Jinyang Li, Binyuan Hui, Reynold Cheng, Bowen Qin,
Chenhao Ma, Nan Huo, Fei Huang, Wenyu Du, Luo
Si, and Yongbin Li. 2023a. Graphix-t5: mixing
pre-trained transformers with graph-aware layers for
text-to-sql parsing. In Proceedings of the Thirty-
Seventh AAAI Conference on Artificial Intelligence
and Thirty-Fifth Conference on Innovative Applica-
tions of Artificial Intelligence and Thirteenth Sympo-
sium on Educational Advances in Artificial Intelli-
gence, AAAI’23/IAAI’23/EAAI’23. AAAI Press.

Jinyang Li, Binyuan Hui, GE QU, Jiaxi Yang, Binhua
Li, Bowen Li, Bailin Wang, Bowen Qin, Ruiying
Geng, Nan Huo, Xuanhe Zhou, Chenhao Ma, Guo-
liang Li, Kevin Chang, Fei Huang, Reynold Cheng,
and Yongbin Li. 2023b. Can LLM already serve as
a database interface? a BIg bench for large-scale
database grounded text-to-SQLs. In Thirty-seventh
Conference on Neural Information Processing Sys-
tems Datasets and Benchmarks Track.

Aiwei Liu, Xuming Hu, Lijie Wen, and Philip S.
Yu. 2023. A comprehensive evaluation of chat-
gpt’s zero-shot text-to-sql capability. Preprint,
arXiv:2303.13547.

Xinbei Ma, Yeyun Gong, Pengcheng He, Hai Zhao,
and Nan Duan. 2023. Query rewriting in retrieval-
augmented large language models. In Proceedings of
the 2023 Conference on Empirical Methods in Natu-
ral Language Processing, pages 5303–5315, Singa-
pore. Association for Computational Linguistics.

OpenAI. 2024. Gpt-4 technical report. Preprint,
arXiv:2303.08774.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida,
Carroll Wainwright, Pamela Mishkin, Chong Zhang,
Sandhini Agarwal, Katarina Slama, Alex Ray, John
Schulman, Jacob Hilton, Fraser Kelton, Luke Miller,
Maddie Simens, Amanda Askell, Peter Welinder,
Paul F Christiano, Jan Leike, and Ryan Lowe. 2022.
Training language models to follow instructions with
human feedback. In Advances in Neural Information
Processing Systems, volume 35, pages 27730–27744.
Curran Associates, Inc.

https://doi.org/10.18653/v1/P17-1089
https://doi.org/10.18653/v1/P17-1089
https://doi.org/10.18653/v1/2021.eacl-main.74
https://doi.org/10.18653/v1/2021.eacl-main.74
https://doi.org/10.18653/v1/2021.eacl-main.74
https://arxiv.org/abs/2208.03299
https://arxiv.org/abs/2208.03299
https://doi.org/10.18653/v1/2022.emnlp-main.418
https://doi.org/10.18653/v1/2022.emnlp-main.418
https://doi.org/10.18653/v1/2022.emnlp-main.418
https://doi.org/10.1145/3571730
https://doi.org/10.1145/3571730
https://doi.org/10.18653/v1/2023.emnlp-main.574
https://doi.org/10.18653/v1/2023.emnlp-main.574
https://doi.org/10.18653/v1/2023.emnlp-main.574
https://doi.org/10.14778/3401960.3401970
https://doi.org/10.14778/3401960.3401970
https://arxiv.org/abs/2309.06180
https://arxiv.org/abs/2309.06180
https://arxiv.org/abs/2309.06180
https://arxiv.org/abs/1910.13461
https://arxiv.org/abs/1910.13461
https://arxiv.org/abs/1910.13461
https://proceedings.neurips.cc/paper_files/paper/2020/file/6b493230205f780e1bc26945df7481e5-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/6b493230205f780e1bc26945df7481e5-Paper.pdf
https://doi.org/10.1145/3654930
https://doi.org/10.1145/3654930
https://doi.org/10.1609/aaai.v37i11.26536
https://doi.org/10.1609/aaai.v37i11.26536
https://doi.org/10.1609/aaai.v37i11.26536
https://openreview.net/forum?id=dI4wzAE6uV
https://openreview.net/forum?id=dI4wzAE6uV
https://openreview.net/forum?id=dI4wzAE6uV
https://arxiv.org/abs/2303.13547
https://arxiv.org/abs/2303.13547
https://doi.org/10.18653/v1/2023.emnlp-main.322
https://doi.org/10.18653/v1/2023.emnlp-main.322
https://arxiv.org/abs/2303.08774
https://proceedings.neurips.cc/paper_files/paper/2022/file/b1efde53be364a73914f58805a001731-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/b1efde53be364a73914f58805a001731-Paper-Conference.pdf


3804

Adam Paszke, Sam Gross, Francisco Massa, Adam
Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca
Antiga, Alban Desmaison, Andreas Köpf, Edward
Yang, Zach DeVito, Martin Raison, Alykhan Tejani,
Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Jun-
jie Bai, and Soumith Chintala. 2019. Pytorch: An
imperative style, high-performance deep learning li-
brary. Preprint, arXiv:1912.01703.

Mohammadreza Pourreza and Davood Rafiei. 2023.
DIN-SQL: Decomposed in-context learning of text-
to-SQL with self-correction. In Thirty-seventh Con-
ference on Neural Information Processing Systems.

Mohammadreza Pourreza and Davood Rafiei. 2024.
Dts-sql: Decomposed text-to-sql with small large
language models. Preprint, arXiv:2402.01117.

Jiexing Qi, Jingyao Tang, Ziwei He, Xiangpeng Wan,
Yu Cheng, Chenghu Zhou, Xinbing Wang, Quanshi
Zhang, and Zhouhan Lin. 2022. RASAT: Integrating
relational structures into pretrained Seq2Seq model
for text-to-SQL. In Proceedings of the 2022 Con-
ference on Empirical Methods in Natural Language
Processing, pages 3215–3229, Abu Dhabi, United
Arab Emirates. Association for Computational Lin-
guistics.

Bowen Qin, Lihan Wang, Binyuan Hui, Bowen Li, Xi-
angpeng Wei, Binhua Li, Fei Huang, Luo Si, Min
Yang, and Yongbin Li. 2022. SUN: Exploring intrin-
sic uncertainties in text-to-SQL parsers. In Proceed-
ings of the 29th International Conference on Com-
putational Linguistics, pages 5298–5308, Gyeongju,
Republic of Korea. International Committee on Com-
putational Linguistics.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, and Peter J. Liu. 2020. Exploring the limits
of transfer learning with a unified text-to-text trans-
former. J. Mach. Learn. Res., 21(1).

Nitarshan Rajkumar, Raymond Li, and Dzmitry
Bahdanau. 2022. Evaluating the text-to-sql ca-
pabilities of large language models. Preprint,
arXiv:2204.00498.

Torsten Scholak, Nathan Schucher, and Dzmitry Bah-
danau. 2021. PICARD: Parsing incrementally for
constrained auto-regressive decoding from language
models. In Proceedings of the 2021 Conference on
Empirical Methods in Natural Language Processing,
pages 9895–9901, Online and Punta Cana, Domini-
can Republic. Association for Computational Lin-
guistics.

Weijia Shi, Sewon Min, Michihiro Yasunaga, Min-
joon Seo, Rich James, Mike Lewis, Luke Zettle-
moyer, and Wen tau Yih. 2023. Replug: Retrieval-
augmented black-box language models. Preprint,
arXiv:2301.12652.

Weiwei Sun, Lingyong Yan, Xinyu Ma, Shuaiqiang
Wang, Pengjie Ren, Zhumin Chen, Dawei Yin, and

Zhaochun Ren. 2023. Is ChatGPT good at search?
investigating large language models as re-ranking
agents. In Proceedings of the 2023 Conference on
Empirical Methods in Natural Language Process-
ing, pages 14918–14937, Singapore. Association for
Computational Linguistics.

Yibo Sun, Duyu Tang, Nan Duan, Jianshu Ji, Guihong
Cao, Xiaocheng Feng, Bing Qin, Ting Liu, and Ming
Zhou. 2018. Semantic parsing with syntax- and table-
aware SQL generation. In Proceedings of the 56th
Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 361–372,
Melbourne, Australia. Association for Computational
Linguistics.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier
Martinet, Marie-Anne Lachaux, Timothée Lacroix,
Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal
Azhar, Aurelien Rodriguez, Armand Joulin, Edouard
Grave, and Guillaume Lample. 2023a. Llama: Open
and efficient foundation language models. Preprint,
arXiv:2302.13971.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al-
bert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti
Bhosale, Dan Bikel, Lukas Blecher, Cristian Canton
Ferrer, Moya Chen, Guillem Cucurull, David Esiobu,
Jude Fernandes, Jeremy Fu, Wenyin Fu, Brian Fuller,
Cynthia Gao, Vedanuj Goswami, Naman Goyal, An-
thony Hartshorn, Saghar Hosseini, Rui Hou, Hakan
Inan, Marcin Kardas, Viktor Kerkez, Madian Khabsa,
Isabel Kloumann, Artem Korenev, Punit Singh Koura,
Marie-Anne Lachaux, Thibaut Lavril, Jenya Lee, Di-
ana Liskovich, Yinghai Lu, Yuning Mao, Xavier Mar-
tinet, Todor Mihaylov, Pushkar Mishra, Igor Moly-
bog, Yixin Nie, Andrew Poulton, Jeremy Reizen-
stein, Rashi Rungta, Kalyan Saladi, Alan Schelten,
Ruan Silva, Eric Michael Smith, Ranjan Subrama-
nian, Xiaoqing Ellen Tan, Binh Tang, Ross Tay-
lor, Adina Williams, Jian Xiang Kuan, Puxin Xu,
Zheng Yan, Iliyan Zarov, Yuchen Zhang, Angela Fan,
Melanie Kambadur, Sharan Narang, Aurelien Ro-
driguez, Robert Stojnic, Sergey Edunov, and Thomas
Scialom. 2023b. Llama 2: Open foundation and
fine-tuned chat models. Preprint, arXiv:2307.09288.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N. Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Proceedings of the 31st International
Conference on Neural Information Processing Sys-
tems, NIPS’17, page 6000–6010, Red Hook, NY,
USA. Curran Associates Inc.

Bailin Wang, Richard Shin, Xiaodong Liu, Oleksandr
Polozov, and Matthew Richardson. 2020. RAT-SQL:
Relation-aware schema encoding and linking for text-
to-SQL parsers. In Proceedings of the 58th Annual
Meeting of the Association for Computational Lin-
guistics, pages 7567–7578, Online. Association for
Computational Linguistics.

Bing Wang, Changyu Ren, Jian Yang, Xinnian Liang, Ji-
aqi Bai, Linzheng Chai, Zhao Yan, Qian-Wen Zhang,

https://arxiv.org/abs/1912.01703
https://arxiv.org/abs/1912.01703
https://arxiv.org/abs/1912.01703
https://openreview.net/forum?id=p53QDxSIc5
https://openreview.net/forum?id=p53QDxSIc5
https://arxiv.org/abs/2402.01117
https://arxiv.org/abs/2402.01117
https://doi.org/10.18653/v1/2022.emnlp-main.211
https://doi.org/10.18653/v1/2022.emnlp-main.211
https://doi.org/10.18653/v1/2022.emnlp-main.211
https://aclanthology.org/2022.coling-1.471
https://aclanthology.org/2022.coling-1.471
https://arxiv.org/abs/2204.00498
https://arxiv.org/abs/2204.00498
https://doi.org/10.18653/v1/2021.emnlp-main.779
https://doi.org/10.18653/v1/2021.emnlp-main.779
https://doi.org/10.18653/v1/2021.emnlp-main.779
https://arxiv.org/abs/2301.12652
https://arxiv.org/abs/2301.12652
https://doi.org/10.18653/v1/2023.emnlp-main.923
https://doi.org/10.18653/v1/2023.emnlp-main.923
https://doi.org/10.18653/v1/2023.emnlp-main.923
https://doi.org/10.18653/v1/P18-1034
https://doi.org/10.18653/v1/P18-1034
https://arxiv.org/abs/2302.13971
https://arxiv.org/abs/2302.13971
https://arxiv.org/abs/2307.09288
https://arxiv.org/abs/2307.09288
https://doi.org/10.18653/v1/2020.acl-main.677
https://doi.org/10.18653/v1/2020.acl-main.677
https://doi.org/10.18653/v1/2020.acl-main.677


3805

Di Yin, Xing Sun, and Zhoujun Li. 2024. Mac-sql: A
multi-agent collaborative framework for text-to-sql.
Preprint, arXiv:2312.11242.

Yizhong Wang, Yeganeh Kordi, Swaroop Mishra, Alisa
Liu, Noah A. Smith, Daniel Khashabi, and Hannaneh
Hajishirzi. 2023. Self-instruct: Aligning language
models with self-generated instructions. In Proceed-
ings of the 61st Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 13484–13508, Toronto, Canada. Association
for Computational Linguistics.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, Brian Ichter, Fei Xia, Ed Chi, Quoc V Le,
and Denny Zhou. 2022. Chain-of-thought prompt-
ing elicits reasoning in large language models. In
Advances in Neural Information Processing Systems,
volume 35, pages 24824–24837. Curran Associates,
Inc.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Rémi Louf, Morgan Funtow-
icz, Joe Davison, Sam Shleifer, Patrick von Platen,
Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu,
Teven Le Scao, Sylvain Gugger, Mariama Drame,
Quentin Lhoest, and Alexander M. Rush. 2020. Hug-
gingface’s transformers: State-of-the-art natural lan-
guage processing. Preprint, arXiv:1910.03771.

Shitao Xiao, Zheng Liu, Peitian Zhang, and Niklas
Muennighoff. 2023. C-pack: Packaged resources
to advance general chinese embedding. Preprint,
arXiv:2309.07597.

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak
Shafran, Karthik R Narasimhan, and Yuan Cao. 2023.
React: Synergizing reasoning and acting in language
models. In The Eleventh International Conference
on Learning Representations.

Tao Yu, Rui Zhang, Kai Yang, Michihiro Yasunaga,
Dongxu Wang, Zifan Li, James Ma, Irene Li, Qingn-
ing Yao, Shanelle Roman, Zilin Zhang, and Dragomir
Radev. 2018. Spider: A large-scale human-labeled
dataset for complex and cross-domain semantic pars-
ing and text-to-SQL task. In Proceedings of the 2018
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 3911–3921, Brussels, Bel-
gium. Association for Computational Linguistics.

Yunxiang Zhang, Muhammad Khalifa, Lajanugen Lo-
geswaran, Moontae Lee, Honglak Lee, and Lu Wang.
2023. Merging generated and retrieved knowledge
for open-domain QA. In Proceedings of the 2023
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 4710–4728, Singapore. As-
sociation for Computational Linguistics.

Victor Zhong, Caiming Xiong, and Richard Socher.
2017. Seq2sql: Generating structured queries
from natural language using reinforcement learning.
Preprint, arXiv:1709.00103.

Shuyan Zhou, Uri Alon, Frank F. Xu, Zhengbao Jiang,
and Graham Neubig. 2023. Docprompting: Gener-
ating code by retrieving the docs. In The Eleventh
International Conference on Learning Representa-
tions.

A Schema Parser

We begin introducing our schema parser module
with two illustrative examples.

Consider the following SQL query:

SELECT X.A, Y.B, C FROM X, Y

Columns X.A and Y.B are prefixed with their re-
spective table names X and Y, and they are called
qualified columns. Column C does not explicitly
specify its table name, and it is thus unqualified.
Because there is no way of knowing which table(s)
unqualified columns belong to, we append column
C to both tables and the pseudo-schema is:

• X (A, C)
• Y (B, C)

A more complex example would be a query con-
taining subqueries:

SELECT E FROM Z -- Scope 3
WHERE F NOT IN (
SELECT A FROM X -- Scope 1
WHERE B = C

) AND G > (
SELECT max(D) FROM Y -- Scope 2

)

In this example, all the columns are unqualified. To
facilitate a fine-grained table-column assignment,
we leverage the concept of scope which denotes
the context of a SELECT statement, and process the
scopes one by one. However, for some columns, we
still have difficulty in locating the exact tables. For
instance, we cannot distinguish whether column B
or C comes from table X or Z. So the pseudo-schema
for the above query is:

• X (A, B, C)
• Y (D)
• Z (E, F, G, A, B, C, D)

Based on these observations, we present the
schema parsing algorithm in Algorithm 1. Firstly,
the input SQL ȳ is parsed into AST (line 1). Sec-
ondly, we initialize result set for each table (lines
2-4). Thirdly, we visit and process each scope
based on the AST (lines 5-17). Specifically, for

https://arxiv.org/abs/2312.11242
https://arxiv.org/abs/2312.11242
https://doi.org/10.18653/v1/2023.acl-long.754
https://doi.org/10.18653/v1/2023.acl-long.754
https://proceedings.neurips.cc/paper_files/paper/2022/file/9d5609613524ecf4f15af0f7b31abca4-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/9d5609613524ecf4f15af0f7b31abca4-Paper-Conference.pdf
https://arxiv.org/abs/1910.03771
https://arxiv.org/abs/1910.03771
https://arxiv.org/abs/1910.03771
https://arxiv.org/abs/2309.07597
https://arxiv.org/abs/2309.07597
https://openreview.net/forum?id=WE_vluYUL-X
https://openreview.net/forum?id=WE_vluYUL-X
https://doi.org/10.18653/v1/D18-1425
https://doi.org/10.18653/v1/D18-1425
https://doi.org/10.18653/v1/D18-1425
https://doi.org/10.18653/v1/2023.emnlp-main.286
https://doi.org/10.18653/v1/2023.emnlp-main.286
https://arxiv.org/abs/1709.00103
https://arxiv.org/abs/1709.00103
https://openreview.net/forum?id=ZTCxT2t2Ru
https://openreview.net/forum?id=ZTCxT2t2Ru


3806

Algorithm 1: Schema parsing algorithm.
Input: (Pseudo-) SQL ȳ.
Output: Pseudo-schema S̄.

1 Parse the SQL ȳ into AST;
/* Initialize the result sets. */

2 foreach table ∈ AST.tables do
3 R [table]← ∅;
4 end
5 foreach scope ∈ traverse_scope(AST) do
6 Q← ∅ ; // Unqualified columns in this

scope.

7 foreach column ∈ scope.columns do
8 if column is unqualified then
9 Q← Q ∪ {column};

10 else
11 R [column.table]←

R [column.table] ∪ {column};
12 end
13 end

/* Append unqualified columns to each

table in this scope. */

14 foreach table ∈ scope.tables do
15 R [table]← R [table] ∪Q;
16 end
17 end
18 Format pseudo-schema S̄ based on R;
19 return S̄;

qualified columns, their tables can be directly deter-
mined (line 11), and for unqualified columns, they
are appended to all the tables in the current scope
(lines 14-16). Finally, the results are formatted
accordingly and returned (lines 18-19).

B Dataset Construction

It can be noticed that some databases are semanti-
cally similar and merging them may cause ambigu-
ity. For example, if we merge two databases both
storing information about college students into a
single database, there will be two tables about stu-
dents, resulting in two possible answers to the ques-
tion asking about the total number of students. To
avoid ambiguity, we merge databases based on their
similarities. Specifically, for each database, we try
to merge it with other databases. Two databases
are merged only if the maximum pairwise simi-
larity between their table schemas is less than a
predefined threshold so as to prevent merging se-
mantically similar databases. We set the threshold
to be 0.75 for both benchmarks.

C Prompts

We retrieve 8 in-context demonstrations based
on the cosine similarities between the {final
question} and the questions from the training
set. The stop words are set to {“Question”,
“Instruction”, “\n\n”}.

C.1 SQL Writer

The prompt for SQL generation with database
schema:

Instruction: Write a sqlite3 SQL
query to answer the question.

Question: {question 1}
SQL: {SELECT statement 1}

Question: {question 2}
SQL: {SELECT statement 2}

...

Question: {question 8}
SQL: {SELECT statement 8}

Database Schema:
{CREATE TABLE statement 1}
{CREATE TABLE statement 2}
...

Question: {final question}
SQL: SELECT

The prompt for SQL generation without database
schema:

Instruction: Write a sqlite3 SQL
query to answer the question.

Question: {question 1}
SQL: {SELECT statement 1}

Question: {question 2}
SQL: {SELECT statement 2}

...

Question: {question 8}
SQL: {SELECT statement 8}

Question: {final question}
SQL: SELECT



3807

C.2 SQL Debugger
The prompt for fixing SQL queries that fail to exe-
cute:

Instruction: Write a sqlite3 SQL
query to answer the question.

Question: {question 1}
SQL: {SELECT statement 1}

Question: {question 2}
SQL: {SELECT statement 2}

...

Question: {question 8}
SQL: {SELECT statement 8}

Database Schema:
{CREATE TABLE statement 1}
{CREATE TABLE statement 2}
...

You may answer the question by
fixing the SQL that failed to
execute: {failed SELECT statement}

Error Message: {error message}

Question: {final question}
SQL: SELECT


	Introduction
	Preliminaries for Text-to-SQL
	Problem Formulation
	Retrieve-then-generate Framework

	Proposed Approach: Gen-SQL
	Step 1: Pseudo-generation
	Step 2: Schema Grounding
	Step 3: SQL Regeneration
	Step 4: Iterative Refinement

	Experiments
	Experiment Settings
	Datasets
	Models
	Implementation Details

	Baselines
	Metrics
	Main Results
	Ablation Study
	Analysis

	Related Work
	Text-to-SQL
	Retrieval-Augmented Generation

	Conclusions
	Schema Parser
	Dataset Construction
	Prompts
	SQL Writer
	SQL Debugger


