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Abstract

With the prevalence of Large Language Models
(LLMs), recent studies have shifted paradigms
and leveraged LLMs to tackle the challenging
task of Text-to-SQL. Because of the complex-
ity of real world databases, previous works
adopt the retrieve-then-generate framework to
retrieve relevant database schema and then to
generate the SQL query. However, efficient
embedding-based retriever suffers from lower
retrieval accuracy, and more accurate LLM-
based retriever is far more expensive to use,
which hinders their applicability for broader
applications. To overcome this issue, this
paper proposes Gen-SQL, a novel generate-
ground-regenerate framework, where we ex-
ploit prior knowledge from the LLM to enhance
embedding-based retriever and reduce cost. Ex-
periments on several datasets are conducted to
demonstrate the effectiveness and scalability
of our proposed method. We release our code
and data at https://github.com/jieshi10/
gensql.

1 Introduction

Text-to-SQL aims to generate a SQL query that
answers a natural language question given a rela-
tional database schema, which is an essential but
challenging task for automating management and
simplifying data access of databases (Qin et al.,
2022). Nowadays, Large Language Models (LLMs;
Brown et al., 2020; Chen et al., 2021a; Touvron
et al., 2023b) have shown strong reasoning and
generalization ability (Wei et al., 2022; Yao et al.,
2023) and have been proven successful on a variety
of tasks. As for Text-to-SQL, recent works (Wang
et al., 2024; Pourreza and Rafiei, 2023; Liu et al.,
2023; Rajkumar et al., 2022) have achieved promis-
ing results by designing sophisticated prompting
techniques for LLMs, and they leverage a retrieve-
then-generate framework, where database schema
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Figure 1: Bridging semantic gap with generated pseudo-
schema. The embedding vector of the natural language
question is different from those of the database tables.
So Gen-SQL leverages the LLM to generate pseudo-
tables, whose embedding vectors are more similar.

relevant to the question is retrieved first and the
LLM is then prompted to generate the SQL query
based on the retrieved schema.1

However, the retrieval step in previous works
has limited applicability. Open source platforms
such as DB-GPT2 utilize embedding-based re-
triever which can efficiently find top-K relevant
tables (where K is a predefined constant). But
embedding-based retriever suffers from lower re-
trieval accuracy. As shown in Figure 1, this is due
to the semantic gap between natural language ques-
tion and database schema (Baik et al., 2019). Cor-
rectly building the connection between the question
and the database schema is challenging, as illus-
trated in Figure 2. Failure to retrieve the schema
will result in suboptimal generation performance.
For better retrieval performance, the most advanced
Text-to-SQL method (Wang et al., 2024; Pourreza

1The retrieval step is traditionally known as schema linking
in the literature.

2https://github.com/eosphoros-ai/DB-GPT

https://github.com/jieshi10/gensql
https://github.com/jieshi10/gensql
https://github.com/eosphoros-ai/DB-GPT
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Relevant Database Schema:

course_arrange
Course_ID

Teacher_ID

course
Course_ID

Course

teacher
Teacher_ID

Name

SQL Query:

SELECT T3.Name
FROM course_arrange AS T1
JOIN course AS T2
ON T1.Course_ID = T2.Course_ID

JOIN teacher AS T3
ON T1.Teacher_ID = T3.Teacher_ID

WHERE T2.Course = 'Math'

Natural Language Question:

What are the names of the people who teach math courses?

Figure 2: An example showing the semantic gap
between natural language question and database
schema. The question mentions two entities
(i.e., people and courses) and their relation (i.e.,
teach). But it is still difficult to map them to cor-
rect tables (i.e., people→teacher, courses→course,
teach→course_arrange).

and Rafiei, 2023) relies on LLM-based retriever to
search for fine-grained database schema where ir-
relevant columns in each retrieved table are further
pruned. But scanning with LLMs will incur high
cost and high latency.

To overcome these limitations, this paper pro-
poses to make appropriate use of prior knowledge
from the LLM to bridge the gap between question
and schema for embedding-based retriever. The
proposed generate-ground-regenerate framework
for Text-to-SQL is named Gen-SQL. As shown in
Figure 3, we first instruct the LLM to come up
with a pseudo-schema depicting the table struc-
ture solely based on the question without provid-
ing the schema. This imaginary pseudo-schema
is generated according to the prior knowledge ob-
tained during the pre-training stage, and serves as
an intermediate modality to bridge the gap between
natural language and database schema. Based on
the pseudo-schema, we leverage an embedding-
based retriever to accurately retrieve an adaptive
number of tables and prune irrelevant columns so
that the pseudo-schema can be grounded in actual
database schema. Meanwhile, the LLM indirectly
augments the embedding-based retriever without
significantly impacting overall latency and cost.
Finally, we prompt the LLM with the grounded
schema to regenerate the SQL query. Furthermore,
we propose iterative refinement to automatically
refine the generated SQL queries.

The contributions of this paper are summarized

as follows:

• This paper studies the semantic gap be-
tween natural language question and database
schema during schema retrieval in Text-to-
SQL. We propose to leverage pseudo-schema
generated by the LLM to bridge the semantic
gap for more accurate retrieval.

• We propose Gen-SQL, a generate-ground-
regenerate framework for Text-to-SQL. Com-
pared with previous methods, Gen-SQL is
more efficient and less expensive due to its
hybrid retriever.

• In the experiments, we show that Gen-SQL
outperforms the existing baselines on public
benchmarks. We also validate Gen-SQL on
two curated datasets featuring databases with
a massive number of tables to demonstrate its
scalability.

2 Preliminaries for Text-to-SQL

2.1 Problem Formulation

The input of the Text-to-SQL task is a natural lan-
guage question q and a database schema S =
{s1, · · · , sN}, where si is the i-th table and N
indicates the number of tables in the database.
For table si, its column collection is denoted by
Ci = {ci,1, · · · , ci,Ni}, where ci,j is the j-th col-
umn and Ni is the number of columns. The output
of the Text-to-SQL task is a SQL query ŷ which
corresponds to the question q.

2.2 Retrieve-then-generate Framework

The retrieve-then-generate framework prevails in
many recent Text-to-SQL methods (Wang et al.,
2024; Pourreza and Rafiei, 2023, 2024). It aims
to help LLMs understand connections between the
question and the database schema. A retriever re-
trieves the schema Ŝ = {ŝ1, ..., ŝK} ⊆ S relevant
to the question q. Let Ĉi =

{
ĉi,1, · · · , ĉi,N̂i

}
be

the column collection for table ŝi, where N̂i is the
number of columns. The LLM is prompted with
the retrieved schema Ŝ to generate the SQL query
ŷ during the generation step:

ŷ = SQL-Writer
(
Ŝ, q

)
. (1)

The number of tables K varies for different types
of retrievers.
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Figure 3: Compared with the retrieve-then-generate framework which ignores table structures during retrieval,
Gen-SQL first leverages the LLM to generate a pseudo-schema, then performs schema grounding, and finally
regenerates the SQL query. The proposed approach can be extended to an iterative framework as indicated by the
purple arrow.

For embedding-based retriever, K is typically
a predefined constant. The retriever retrieves top-
K tables which are most relevant to the question
q by calculating cosine similarity score cos (q, si)
between the question q and each table si ∈ S , and
finding a subset of tables Ŝ = {ŝ1, ..., ŝK} ⊆ S
with top-K similarity scores.

For LLM-based retriever, K is determined adap-
tively. The LLM is prompted to scan the complete
schema and search for relevant tables and columns
based on its own knowledge. Although this kind of
retriever is more accurate and flexible, it will cause
extra cost. When the schema is large, the cost will
increase accordingly.

3 Proposed Approach: Gen-SQL

In standard retrieve-then-generate framework, the
embedding-based retriever does not take schema
into account during the retrieval step, and the LLM-
based retriever has higher cost. We propose to
tackle these issues by augmenting the embedding-
based retriever with schema information from the
LLM. Specifically, we exploit prior knowledge
from the LLM to first generate a pseudo-schema
(§3.1) which is later grounded in actual database
schema (§3.2). The LLM then regenerates the SQL
query based on the grounded schema (§3.3). The
proposed generate-ground-regenerate framework

for Text-to-SQL is named Gen-SQL, as shown in
Figure 3.

We further extend this framework into an iter-
ative one (§3.4), where the generated SQL query
can be automatically refined at each iteration.

3.1 Step 1: Pseudo-generation

This step aims to generate a pseudo-schema
S̄ = {s̄1, · · · , s̄n} related to the question q,
where n is the number of pseudo-tables. Let
C̄i = {c̄i,1, · · · , c̄i,n̄i} be the column collection for
pseudo-table s̄i, where n̄i is the number of columns
in pseudo-table s̄i.

Due to the complexity of the CREATE TABLE
statements, we do not prompt the LLM to directly
write them. Instead, we instruct the LLM to gener-
ate a pseudo-SQL ȳ without specifying the schema:

ȳ = SQL-Writer (∅, q) . (2)

Because we do not prompt the LLM with full
schema, the cost will not increase with respect to
the schema size. Afterwards, the schema parser
module analyzes the pseudo-SQL ȳ by converting
it to Abstract Syntax Tree (AST), based on which
the schema parser composes the pseudo-schema S̄.
Please refer to Appendix A for detailed explana-
tions for the schema parser module. Note that the
pseudo-schema S̄ containing information about the
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table names (s̄i), column names (c̄i,j), and the num-
bers (n, n̄i) can be inferred from the pseudo-SQL
ȳ.

3.2 Step 2: Schema Grounding

Schema grounding consists of two stages. It makes
use of both the question q and the pseudo-schema
S̄ = {s̄1, · · · , s̄n} to first retrieve top-n tables
(where n is the number of pseudo-tables), and then
eliminate irrelevant columns in each table.

Specifically, the question q is enriched with the
pseudo-schema S̄. We use the string concatenation
qs = [q; s̄1; · · · ; s̄n] to compute the cosine simi-
larity score cos (qs, si) (si ∈ S), and obtain a set
of n tables Ŝ = {ŝ1, · · · , ŝn} ⊆ S that are the
most relevant. Let Ĉi = {ĉi,1, · · · , ĉi,n̂i

} be the
column collection for table ŝi. The columns are
sorted based on their similarities with the enriched
question qs, i.e., cos (qs, ĉi,j) > cos

(
qs, ĉi,j′

)
for

j < j′. We only keep the first n̂′
i columns for table

ŝi:

n̂′
i =

{
n̄j , ∃j : s̄j = ŝi

maxj n̄j , otherwise
. (3)

If table ŝi is mentioned in the pseudo-schema, we
keep the same number of columns as that in the
pseudo-schema. Otherwise, we keep the largest
number of columns required in all pseudo-tables.
The retrieved schema Ŝ is the grounded schema.

It is worth mentioning that the pseudo-schema
S̄ enhances the grounding step from two perspec-
tives. First, it enriches the query context with table
structures, minimizing the gap between the natural
language question and the database schema. Sec-
ond, it enables fine-grained retrieval by providing
the number of tables to retrieve and the number of
columns needed in each table.

In practice, we will keep λ1n tables and λ2n̂
′
i

columns for table ŝi because the retriever is not
perfect.

3.3 Step 3: SQL Regeneration

This step regenerates the SQL query ŷ based on the
grounded schema Ŝ. This regeneration step is sim-
ilar to the generation step in standard retrieve-then-
generate framework. In addition to the SQL writer
module that generates the SQL query based on the
grounded schema and the question, we include a
SQL debugger module that fixes SQL queries fail-
ing to execute on the database.

SQL Writer. The SQL writer module takes the
grounded schema Ŝ and the question q as input and
generates a SQL query ŷ′ using the LLM:

ŷ′ = SQL-Writer
(
Ŝ, q

)
. (4)

In our implementation, we select 8 in-context
examples from the training set based on question
similarity (Li et al., 2024). The schema Ŝ is trans-
formed into CREATE TABLE statements. These
CREATE TABLE statements contain table names, col-
umn names, primary key constraints, and foreign
key constraints (Gao et al., 2024). We also ran-
domly sample one cell value for each column, so
that the LLM can know the value format of each
column. We leave implementing an efficient value
retriever as our future work.

The detailed prompt is given in Appendix C.1.

SQL Debugger. The SQL debugger module
takes the grounded schema Ŝ, the question q, and
the SQL query ŷ′ generated by the SQL writer mod-
ule as input and produces a fixed SQL query ŷ.

Specifically, the SQL debugger executes the SQL
query ŷ′ on the database. If it is successfully ex-
ecuted, then the SQL debugger takes no further
action. Otherwise, the SQL debugger instructs the
LLM to fix the SQL query ŷ′ based on the error
feedback E from the database:

ŷ = SQL-Debugger
(
Ŝ, q, ŷ′, E

)
. (5)

The detailed prompt is given in Appendix C.2.

3.4 Step 4: Iterative Refinement
By taking the initial SQL query ŷ1 = ŷ as input of
the schema parser, the proposed approach can be
made iterative.

Formally, let ŷt be the SQL query generated at
the t-th iteration, where t = 1, 2, · · · , (L− 1) and
L is the maximum number of iterations. At the
(t+ 1)-th iteration, the schema parser parses the
SQL query ŷt and produces a pseudo-schema S̄t,
based on which the retriever retrieves the relevant
schema Ŝt. Afterwards, the LLMs are prompted
with the schema Ŝt and generate a new SQL query
ŷt+1. The iteration stops when either the schema
at the next iteration remains the same as that at the
current iteration, i.e., Ŝt+1 = Ŝt, or the maximum
number of iterations is reached, i.e., t+ 1 = L. In
the experiments, we set L = 5.

Mathematically, the objective of our task is to
maximize the probability of generating the SQL
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Min Max Avg
Spider 2 11 4
Spider-M 51 73 59
BIRD 3 13 7
BIRD-M 78 95 89

Table 1: Dataset statistics showing minimum, maximum,
and average number of tables for each database.

query ŷ by finding an optimal subset of tables Ŝ ⊆
S given S and q:

argmax
ŷ,Ŝ

p
(
ŷ | Ŝ, q

)
. (6)

Directly optimizing this objective is intractable,
so we iteratively maximize this probability in two
steps. At the t-th iteration, suppose the generated
SQL query is ŷt. At the (t+ 1)-th iteration, we
first estimate Ŝt based on ŷt to retrieve the most
relevant schema. By keeping Ŝt fixed, we can then
maximize the probability and find ŷt+1 using the
decoding algorithms of LLMs:

argmax
ŷt+1

p
(
ŷt+1 | Ŝt, q

)
. (7)

The above procedure is analogous to the
expectation-maximization algorithm, where esti-
mating Ŝt is the expectation (E) step and decoding
ŷt+1 is the maximization (M) step. So we can
interpret iterative refinement as an optimization
technique.

4 Experiments

We conduct all the experiments on a server with
1TB RAM and 8 NVIDIA A40 GPUs.

4.1 Experiment Settings

4.1.1 Datasets
We conduct the experiments on two public Text-to-
SQL benchmarks and two curated datasets whose
databases consisting of much larger numbers of
tables.

To demonstrate the effectiveness of Gen-SQL,
we evaluate the proposed method on two widely
used benchmarks, i.e., Spider (Yu et al., 2018) and
BIRD (Li et al., 2023b). We report results on the
development set of each benchmark.

To illustrate the scalability of Gen-SQL, we
study Text-to-SQL on complex databases with mas-
sive numbers of tables. We construct two datasets
by merging databases from Spider (Yu et al., 2018)
and BIRD (Li et al., 2023b). The resulting datasets

Method Iterative Retrieval Debugging
DIN-SQL ✗ ✓ ✓
MAC-SQL ✗ ✓ ✓
DAIL-SQL ✗ ✗ ✗
Gen-SQL ✓ ✓ ✓

Table 2: Comparisons between different methods. A
method is “iterative” if the previously generated SQL
query will serve as hint in the next iteration. “Retrieval”
indicates that the method will retrieve relevant schema
before SQL generation. “Debugging” suggests that the
method will make self-corrections to the generated SQL.

are named Spider-M and BIRD-M. Note that only
databases are merged. The questions and gold SQL
queries in Spider-M and BIRD-M are exactly the
same as those in Spider and BIRD. Details of the
construction process can be found in Appendix B.
Table 1 shows the statistics of the original and the
resulting datasets.

4.1.2 Models
Retriever. The state-of-the-art text embedding
model bge-large-en-v1.5 (Xiao et al., 2023) is
used as the embedding-based retriever.

LLMs. For open source LLM, we use the Llama-
3-70B model.3 As indicated in previous work (Gao
et al., 2024), instruction fine-tuned variant of this
model is used due to its superior performance.
For proprietary LLM, we use the latest GPT-4
model gpt-4o-2024-08-06 (OpenAI, 2024). Both
Llama (Touvron et al., 2023b,a) and GPT-4 are gen-
eral domain LLMs.

4.1.3 Implementation Details
Our code is based on the PyTorch (Paszke et al.,
2019) version of the Transformers (Wolf et al.,
2020) library.

Generation Configuration. Greedy decoding is
used across all experiments, and the maximum
number of tokens to generate for each SQL query
is limited to 256.

Model Serving. Llama-3-70B is deployed on 4
GPUs using vLLM (Kwon et al., 2023) for optimal
inference speed.

4.2 Baselines

We compare Gen-SQL with three state-of-the-art
Text-to-SQL methods: DIN-SQL (Pourreza and

3https://huggingface.co/meta-llama/
Meta-Llama-3-70B-Instruct

https://huggingface.co/meta-llama/Meta-Llama-3-70B-Instruct
https://huggingface.co/meta-llama/Meta-Llama-3-70B-Instruct
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Method (%) Spider Spider-M BIRD BIRD-M
EX EM EX EM EX VES EX VES

GPT-4
DIN-SQL ♠ 74.2 60.1 - - 50.7 58.8 - -
MAC-SQL 81.3 45.4 - - 57.9 62.0 - -
DAIL-SQL ♠ 82.4 71.9 - - - - - -
Gen-SQL 85.6 64.3 - - 59.8 62.8 - -

GPT-3.5-Turbo
MAC-SQL ♠ 80.6 - - - 50.6 61.3 - -
DAIL-SQL ♠ 78.1 66.7 - - - - - -

Llama-3-70B
DIN-SQL 78.7 54.4 8.3 7.1 34.3 34.4 3.4 3.5
MAC-SQL 77.0 41.7 0.9 0.6 46.4 49.7 8.2 8.2
DAIL-SQL 76.5 58.9 67.0 52.7 46.4 46.4 31.9 32.3
Gen-SQL 82.8 66.0 81.1 66.2 53.2 54.0 48.6 49.1

Table 3: Performance of different methods. (♠: Results are from their original papers. Bold: the best within each
LLM. Underlined: the second best within each LLM.)

(%) Iterative Retrieval Debugging Spider Spider-M BIRD BIRD-M
Row EX EM EX EM EX VES EX VES

1 ✓ ✓ ✓ 82.8 66.0 81.1 66.2 53.2 54.0 48.6 49.1
2 ✓ ✓ ✗ 82.1 65.5 79.7 65.1 49.0 49.4 45.1 45.1
3 ✗ ✓ ✓ 82.4 64.9 80.1 63.0 52.4 53.1 46.6 46.6
4 ✗ ✓ ✗ 82.0 64.6 79.4 63.5 47.5 47.7 41.5 41.4
5 ✗ ✗ ✓ 80.9 63.5 71.6 54.5 51.6 51.9 31.6 32.3
6 ✗ ✗ ✗ 79.8 63.4 66.9 51.5 46.8 47.2 25.4 25.9
7 ✗ Top-5 ✓ 81.4 63.8 79.6 62.6 50.6 52.6 42.0 42.8
8 ✗ Top-10 ✓ 81.6 64.4 79.0 62.2 51.0 51.6 43.0 44.0

Table 4: Ablation study based on Llama-3-70B. (Bold: the best.)

Rafiei, 2023), MAC-SQL (Wang et al., 2024), and
DAIL-SQL (Gao et al., 2024).

DIN-SQL (Pourreza and Rafiei, 2023) and MAC-
SQL (Wang et al., 2024) fully rely on LLMs to per-
form schema retrieval, SQL generation, and SQL
debugging.

DAIL-SQL (Gao et al., 2024) mainly focuses on
prompt organization and few-shot demonstration
selection. It does not perform schema retrieval and
prompts LLMs with full database schema.

The differences between Gen-SQL and the base-
lines are summarized in Table 2. All baselines are
implemented based on their official code. Since the
original implementations do not take large database
schemas into account, we additionally perform
truncation to prompts exceeding the context limit
of LLM so as to avoid errors. Due to budget limita-
tion, we conduct experiments using GPT-4 only on
public benchmarks.

4.3 Metrics

For Spider and Spider-M, we report Execution Ac-
curacy (EX) and Exact Matching Accuracy (EM)
(Yu et al., 2018; Li et al., 2023a). For BIRD and
BIRD-M, we report Execution Accuracy (EX) and
Valid Efficiency Score (VES) (Li et al., 2023b). EX

is defined as the result matching accuracy of exe-
cuting the generated SQL query against executing
the gold SQL query on the given database. EM
measures whether the decomposed SQL compo-
nents of the generated query match those of the
gold query. VES measures the execution efficiency
of the generated query against the gold query.

4.4 Main Results

Table 3 shows the performance of different meth-
ods.

Effectiveness. On Llama-3-70B, Gen-SQL out-
performs the other baselines on public benchmarks
like Spider and BIRD, and achieves an EX of 82.8%
and 53.2%, which is comparable to the results
achieved on proprietary LLM like GPT-3.5-Turbo.
On GPT-4, the performance of Gen-SQL is also
compelling.

Scalability. It can be observed that the perfor-
mance of available methods significantly decreases
on Spider-M and BIRD-M. For example, from
BIRD to BIRD-M, the performance of DIN-SQL
and MAC-SQL drops to below 10% EX. This
is because these methods rely on the instruction-
following ability of LLMs. When the schema con-
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Method Spider Spider-M
EX (%) # Tokens Latency (s) EX (%) # Tokens Latency (s)

DIN-SQL 78.7 8,953 35.1 8.3 7,642 33.2
MAC-SQL 77.0 2,239 18.8 0.9 15,154 34.4
DAIL-SQL 76.5 767 4.5 67.0 4,155 7.1
Gen-SQL 82.8 1,473 6.1 81.1 2,348 8.4

Table 5: Efficiency of different methods based on Llama-3-70B. (Bold: the best. Underlined: the second best.)

text is long, the LLM fails to correctly follow the
given instructions. Surprisingly, the EX of DAIL-
SQL only drops by 14.5% on BIRD-M. This is be-
cause DAIL-SQL relies on the in-context learning
ability of LLMs, which appears to be more robust
than the instruction-following ability. In compar-
ison, the deterioration of Gen-SQL on BIRD-M
in terms of EX is marginal (less than 5%), which
proves that the proposed method scales well on
larger databases.

4.5 Ablation Study

This section examines the effectiveness of each
component in the proposed method. Table 4 shows
the results. We also include the variants of retriev-
ing top-K tables (rows 7 and 8) using embedding-
based retriever to justify our retrieving strategy.

Overall Framework. The results show that re-
moving any component leads to inferior perfor-
mance. Specifically, without self-debugging (row
2), the EX of Gen-SQL drops by 3.5% on BIRD-M.
Without the iterative framework (row 3), the EM
drops by 3.2% on Spider-M. When we further re-
move schema retrieval (row 5), the EX decreases
by 15.0% on BIRD-M compared with non-iterative
Gen-SQL (row 3). These prove the effectiveness
of the proposed framework.

Generation Prompt. The generation prompts
used in our implementation are comparable or even
superior to the baselines.

For instance, the results from row 6 are directly
comparable to those of DAIL-SQL, since both
methods are non-iterative and generate SQL with-
out schema retrieval or self-debugging. Their per-
formance is similar on Spider and BIRD. How-
ever, our method slightly underperforms DAIL-
SQL on Spider-M and BIRD-M. The major differ-
ence between our method and DAIL-SQL is that
our method takes database content into consider-
ation. It appears that database content has little
impact on smaller databases, but it has negative
influence on larger ones due to increased prompt
lengths.

(%) P R F1 EX
Embedding-based Retriever

Top-5 30.8 80.0 44.5 42.0
Top-10 17.3 89.8 29.0 43.0

Hybrid Retriever
Gen-SQL 23.1 93.6 37.1 48.6

Non-iterative 25.1 90.1 39.2 46.6

Table 6: Table retrieval and Text-to-SQL performance
on BIRD-M. Llama-3-70B is used as the backbone.
(Bold: the best within each retriever.)

Similarly, the results from row 3 are almost com-
parable to those of DIN-SQL and MAC-SQL, be-
cause all methods are non-iterative and perform
schema retrieval and self-debugging. Our method
outperforms the other baselines by a large margin
on all datasets, which validates the prompting strat-
egy of Gen-SQL.

Retrieving Strategy. The results also demon-
strate the superiority of the proposed retrieving
strategy. Comparing the results from row 3 with
those from rows 7 and 8, the retrieving strategy of
Gen-SQL leads to better performance. Specifically,
on larger and more complex dataset like BIRD-M,
the improvement is significant (↑3.6% EX).

4.6 Analysis

Efficiency. We measure the efficiency using aver-
age token consumption and latency for each sample.
The results are presented in Table 5. DAIL-SQL
has the lowest latency because it will only invoke
the LLM once for a single question. In comparison,
DIN-SQL and MAC-SQL will invoke the LLM
multiple times for each question. They will even
utilize the LLM to scan the full database schema.
Consequently, they consume large numbers of to-
kens and have higher delays. As for Gen-SQL, it
balances performance and efficiency. On Spider,
Gen-SQL improves DIN-SQL by 4.1% in terms of
EX, using only 16.5% of tokens and 17.4% of time.
On Spider-M, Gen-SQL improves DAIL-SQL by
14.1% in terms of EX, using only 56.5% of tokens,
despite an 18.3% relative increase in time. These
suggest that our method is efficient.
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(a) Top-5 (b) Top-10 (c) Gen-SQL (d) Non-iterative Gen-SQL

Figure 4: Distribution of correct samples on BIRD-M. Llama-3-70B is used as the backbone.

Table Retrieval & Text-to-SQL. The relation-
ship between table retrieval performance and down-
stream Text-to-SQL performance is still understud-
ied. Table 6 shows that EX is not related to F1.
Instead, EX is more related to recall. Indeed, our
intuition is that the LLM can only generate correct
SQL if all relevant tables are retrieved. This intu-
ition can be supported by Figure 4 which presents
the distribution of correct samples for each method.
The result implies that including a few irrelevant
tables is also acceptable for the LLM. So the prin-
ciple is to maintain higher recall for the retriever,
when the retrieved irrelevant tables do not compro-
mise the Text-to-SQL performance.

5 Related Work

5.1 Text-to-SQL

The field of Text-to-SQL has witnessed several
paradigm shifts (Kim et al., 2020; Liu et al.,
2023). Traditional deep learning based methods
utilize Recurrent Neural Networks (RNNs) or Long
Short-Term Memory (LSTM) networks (Hochre-
iter and Schmidhuber, 1997) for Text-to-SQL (Iyer
et al., 2017; Zhong et al., 2017; Dong and Lap-
ata, 2018; Sun et al., 2018; Huang et al., 2018;
Bogin et al., 2019; Guo et al., 2019). After the
Transformer architecture (Vaswani et al., 2017) has
revolutionized the field of natural language pro-
cessing (Devlin et al., 2019; Raffel et al., 2020),
RNN or LSTM modules can be replaced by pre-
trained Transformer-based models (Wang et al.,
2020; Chen et al., 2021b; Scholak et al., 2021; Qi
et al., 2022). More recently, the success of LLMs
has enabled training-free Text-to-SQL through
in-context learning (Brown et al., 2020) where
LLMs can learn from a few demonstrations pro-
vided in the context to generate SQL (Rajkumar
et al., 2022). Due to strong instruction-following
ability (Ouyang et al., 2022; Wang et al., 2023)
of LLMs, more intricate prompting techniques
have been developed to further improve the per-

formance (Wang et al., 2024; Pourreza and Rafiei,
2023; Jiang et al., 2023). However, previous works
have ignored the fact that sophisticated prompt or
extremely large context containing full database
schema will degrade performance. Considering
the capability and context limit of LLMs, accurate
schema retrieval is a necessity.

5.2 Retrieval-Augmented Generation

LLMs are known to hallucinate facts or fabricate
false information (Ji et al., 2023), and have diffi-
culty in timely updating latest or domain knowl-
edge (Jang et al., 2022; Zhou et al., 2023). To rem-
edy these limitations, Retrieval-Augmented Gener-
ation (RAG) has been extensively explored (Lewis
et al., 2020; Izacard et al., 2022; Shi et al., 2023).
RAG is closely related to our task because we both
concentrate on accurate retrieval and utilizing the
retrieved content. To improve retrieval accuracy,
straightforward solutions include re-ranking (Sun
et al., 2023) with LLMs, which will typically im-
pact efficiency; and query rewriting (Ma et al.,
2023), which requires supervised signals for the
retriever. To make use of the retrieved content,
Fusion-in-Decoder (FiD; Izacard and Grave, 2021;
Zhang et al., 2023) has been proposed to separately
encode each retrieved document by an encoder
and fuse the encoded documents in the decoder.
But this architecture is mainly applied to encoder-
decoder models such as BART (Lewis et al., 2019)
and T5 (Raffel et al., 2020), and requires additional
training. By contrast, the proposed method is appli-
cable to various LLMs without further fine-tuning.

6 Conclusions

This paper proposes Gen-SQL, where the
embedding-based retriever is guided by the LLM
for efficient and accurate schema retrieval. In the
experiments, Gen-SQL exhibits competitive per-
formance on public benchmarks, which shows its
effectiveness. On datasets with larger databases,
Gen-SQL significantly outperforms the existing



3802

baselines, which proves its scalability. The relation-
ship between table retrieval and Text-to-SQL per-
formance further reveals that the retriever should
prioritize recall over precision (to some extent) for
better Text-to-SQL performance.

Limitations

Despite the fact that Gen-SQL has achieved com-
petitive results on public benchmarks using Llama-
3-70B and GPT-4, its performance on more pro-
prietary LLMs remains to be explored. Since Gen-
SQL is a general framework, various LLMs and
many other existing Text-to-SQL methods may ben-
efit from Gen-SQL. We leave the investigation of
improvements by Gen-SQL on more capable LLMs
as our future work.
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A Schema Parser

We begin introducing our schema parser module
with two illustrative examples.

Consider the following SQL query:

SELECT X.A, Y.B, C FROM X, Y

Columns X.A and Y.B are prefixed with their re-
spective table names X and Y, and they are called
qualified columns. Column C does not explicitly
specify its table name, and it is thus unqualified.
Because there is no way of knowing which table(s)
unqualified columns belong to, we append column
C to both tables and the pseudo-schema is:

• X (A, C)
• Y (B, C)

A more complex example would be a query con-
taining subqueries:

SELECT E FROM Z -- Scope 3
WHERE F NOT IN (
SELECT A FROM X -- Scope 1
WHERE B = C

) AND G > (
SELECT max(D) FROM Y -- Scope 2

)

In this example, all the columns are unqualified. To
facilitate a fine-grained table-column assignment,
we leverage the concept of scope which denotes
the context of a SELECT statement, and process the
scopes one by one. However, for some columns, we
still have difficulty in locating the exact tables. For
instance, we cannot distinguish whether column B
or C comes from table X or Z. So the pseudo-schema
for the above query is:

• X (A, B, C)
• Y (D)
• Z (E, F, G, A, B, C, D)

Based on these observations, we present the
schema parsing algorithm in Algorithm 1. Firstly,
the input SQL ȳ is parsed into AST (line 1). Sec-
ondly, we initialize result set for each table (lines
2-4). Thirdly, we visit and process each scope
based on the AST (lines 5-17). Specifically, for
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Algorithm 1: Schema parsing algorithm.
Input: (Pseudo-) SQL ȳ.
Output: Pseudo-schema S̄.

1 Parse the SQL ȳ into AST;
/* Initialize the result sets. */

2 foreach table ∈ AST.tables do
3 R [table]← ∅;
4 end
5 foreach scope ∈ traverse_scope(AST) do
6 Q← ∅ ; // Unqualified columns in this

scope.

7 foreach column ∈ scope.columns do
8 if column is unqualified then
9 Q← Q ∪ {column};

10 else
11 R [column.table]←

R [column.table] ∪ {column};
12 end
13 end

/* Append unqualified columns to each

table in this scope. */

14 foreach table ∈ scope.tables do
15 R [table]← R [table] ∪Q;
16 end
17 end
18 Format pseudo-schema S̄ based on R;
19 return S̄;

qualified columns, their tables can be directly deter-
mined (line 11), and for unqualified columns, they
are appended to all the tables in the current scope
(lines 14-16). Finally, the results are formatted
accordingly and returned (lines 18-19).

B Dataset Construction

It can be noticed that some databases are semanti-
cally similar and merging them may cause ambigu-
ity. For example, if we merge two databases both
storing information about college students into a
single database, there will be two tables about stu-
dents, resulting in two possible answers to the ques-
tion asking about the total number of students. To
avoid ambiguity, we merge databases based on their
similarities. Specifically, for each database, we try
to merge it with other databases. Two databases
are merged only if the maximum pairwise simi-
larity between their table schemas is less than a
predefined threshold so as to prevent merging se-
mantically similar databases. We set the threshold
to be 0.75 for both benchmarks.

C Prompts

We retrieve 8 in-context demonstrations based
on the cosine similarities between the {final
question} and the questions from the training
set. The stop words are set to {“Question”,
“Instruction”, “\n\n”}.

C.1 SQL Writer

The prompt for SQL generation with database
schema:

Instruction: Write a sqlite3 SQL
query to answer the question.

Question: {question 1}
SQL: {SELECT statement 1}

Question: {question 2}
SQL: {SELECT statement 2}

...

Question: {question 8}
SQL: {SELECT statement 8}

Database Schema:
{CREATE TABLE statement 1}
{CREATE TABLE statement 2}
...

Question: {final question}
SQL: SELECT

The prompt for SQL generation without database
schema:

Instruction: Write a sqlite3 SQL
query to answer the question.

Question: {question 1}
SQL: {SELECT statement 1}

Question: {question 2}
SQL: {SELECT statement 2}

...

Question: {question 8}
SQL: {SELECT statement 8}

Question: {final question}
SQL: SELECT
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C.2 SQL Debugger
The prompt for fixing SQL queries that fail to exe-
cute:

Instruction: Write a sqlite3 SQL
query to answer the question.

Question: {question 1}
SQL: {SELECT statement 1}

Question: {question 2}
SQL: {SELECT statement 2}

...

Question: {question 8}
SQL: {SELECT statement 8}

Database Schema:
{CREATE TABLE statement 1}
{CREATE TABLE statement 2}
...

You may answer the question by
fixing the SQL that failed to
execute: {failed SELECT statement}

Error Message: {error message}

Question: {final question}
SQL: SELECT
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