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Abstract

The rapid evolution of artificial intelligence in
drug discovery encounters challenges with gen-
eralization and extensive training, yet Large
Language Models (LLMs) offer promise in re-
shaping interactions with complex molecular
data. Our novel contribution, InstructMol',
a multi-modal LLM, effectively aligns molec-
ular structures with natural language via an
instruction-tuning approach, utilizing a two-
stage training strategy that adeptly combines
limited domain-specific data with molecular
and textual information. InstructMol show-
cases substantial performance improvements
in drug discovery-related molecular tasks, sur-
passing leading LLMs and significantly reduc-
ing the gap with specialists, thereby establish-
ing a robust foundation for a versatile and de-
pendable drug discovery assistant.

1 Introduction

The drug discovery process, from target identifi-
cation to clinical trials, requires substantial invest-
ments in time and expertise for optimized explo-
ration of chemical spaces (Coley, 2020). Artificial
intelligence-driven drug discovery (AIDD) facili-
tates a data-driven modeling approach (Kim et al.,
2021; Rifaioglu et al., 2018; Askr et al., 2022; Feng
et al., 2024) and helps to understand the complex
molecular space, reducing iterative testing and min-
imizing failure rates. Previous approaches involved
employing task-specific models trained on labeled
data, which had restricted adaptability and required
laborious training for individual tasks. The advent
of Large Language Models (LLMs (Devlin et al.,
2019; Raftel et al., 2019; Brown et al., 2020)) like
“Work done during an internship at IDEA.
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ChatGPT (OpenAl, 2023a), trained through self-
supervised learning on a large amount of unlabeled
text data, has shown strong generalization capabili-
ties across various tasks. Additionally, these mod-
els can attain professional-level proficiency in spe-
cific domains through proper fine-tuning. Hence,
developing a ChatGPT-like molecular assistant Al
can revolutionize human interactions with complex
molecule structures. A unified model can address
various needs, such as understanding molecule
structures, answering drug-related queries, aiding
synthesis planning, facilitating drug repurposing,

etc., as shown in Figure 1.

Numerous studies have explored multimodal
LLMs for visual understanding (Liu et al., 2023b;
Ye et al., 2023; Zhu et al., 2023). However, when it
comes to the domain of molecular research, there
are several challenges that need to be addressed,
including:

» Crafting a molecule representation integrates
with LLMs alongside textual modalities;

* Requiring extensive datasets encompasses
molecule structures, inherent properties, re-
actions, and annotations related to biological
activities;

* Developing an effective training paradigm that
guides LLMs in utilizing molecular representa-
tions and adapting to various tasks.

Several prior studies (Liang et al., 2023; Luo et al.,

2023c; Fang et al., 2023) have fine-tuned generalist

LLMs to develop foundational models within the

molecular domain. Despite their enhancement to

the original generalist LLM, these preceding works
have unveiled several issues:

* Insufficient alignment between modalities.

* The consideration of an optimal molecular struc-
ture encoder remains unexplored.

354

Proceedings of the 31st International Conference on Computational Linguistics, pages 354-379
January 19-24, 2025. ©2025 Association for Computational Linguistics


liyu@idea.edu.cn
https://github.com/IDEA-XL/InstructMol

Molecule Property Prediction

" Show me the LUMO energy value of this molecule.”

" Please help me evaluate whether the given molecule can impede
the replication of the HIV virus."

"0.076" HN—NH

"Yes, it can effectively prevent HIV virus replication"

Reagent Prediction
" Can you provide potential reagents for the
following chemical reaction?"

. [ P
e 2
—/ Y pd

‘Q' Suggestion: /\OH

A’

Retrosynthesis Prediction
" Please suggest potential reactants used in
the synthesis of the provided product.”

oo "
Suggestion: O\/\:’\Q\/D Suggestion: M/Y

Molecule Description Generation

" Could you give me a brief introduction of
this compound?"

[ 1 NH,
N/

H

"The molecule is the potassium salt of formic acid. It has a role
as a buffer. It is a potassium salt and a one-carbon compound.
It derives from a formic acid."

Forward Reaction Prediction
" Using the provided reactants and reagents,
can you propose a likely product?"”

O+ Hpe 3 2

Figure 1: Empowering LLMs with molecular modalities to unlock the drug discovery domain and serve as assistants

in molecular research.

* A rudimentary design of the training pipeline
neglects the update of LLMs’ knowledge.

These issues lead to a significant disparity in the
performance of current Al assistants across various
practical tasks compared to traditional specialist
models.

To address these problems, we introduce In-
structMol (Figure 2), a multi-modality instruction-
tuning-based LLM. This model aligns molecular
graphs and chemical sequential modalities with hu-
mans’ natural language. Using a calibrated collec-
tion of molecule-related instruction datasets and a
two-stage training scheme, InstructMol effectively
leverages the pre-trained LLM and molecule graph
encoder for molecule-text alignment. In the first
alignment pretraining stage, we employ molecule-
description pairs to train a lightweight and adapt-
able interface, which is designed to project the
molecular node-level representation into the textual
space that the LLM can understand. Subsequently,
we finetune with multiple task-specific instructions.
During this process, we freeze the molecule graph
encoder and train low-rank adapters (LoRA (Hu
et al., 2021)) on the LLM to adapt our model to
various scenarios. This efficient approach enables
the seamless integration of molecular and textual
information, promoting the development of versa-
tile and robust cognitive abilities in the molecular
domain.

To illustrate the capabilities of our model, we
perform experiments that span three facets of drug
discovery-related tasks, including compound prop-
erty prediction, molecule description generation,
and analysis of chemical reactions involving com-
pounds. These tasks serve as robust benchmarks
to assess the model’s ability to deliver useful and

accurate knowledge feedback in practical drug dis-
covery scenarios. The results in all experiments
consistently indicate that our model significantly
improves the performance of LLMs in tasks re-
lated to the understanding and design of molecular
compounds. Consequently, this advance effectively
reduces the disparity with specialized models. Our
main contributions can be summarized as follows:

¢ We introduce InstructMol, a molecular-related
multi-modality LLM, representing a pioneering
effort in bridging the gap between molecular and
textual information.

* In the context of a scarcity of high-quality an-
notated data in the drug discovery domain, our
approach strives to efficiently extract molecular
representations (targets on Issue2). Employing a
two-stage instruction tuning paradigm enhances
the LLM’s understanding of molecular structural
and sequential knowledge (targets on Issuel and
Issue3).

* InstructMol enables swift fine-tuning, generat-
ing lightweight checkpoints (used as plugins) for
cross-modality tasks. It provides the flexibility
to load or combine functionalities through plu-
gins, retaining the open dialogue and reasoning
capabilities of a general LLM.

* We evaluate our model through multiple prac-
tical assessments, demonstrating its substantial
improvement compared to state-of-the-art LLMs.
Our work lays the foundation for creating a ver-
satile and reliable molecular research assistant in
the drug discovery domain.
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Architecture Overview ‘

9 @ The molecule is Terephthalaldehyde. It is one of three isomers of I
4- benzene dicarboxaldehyde, in which the aldehyde moieties are
positioned in the para conformation on the benzene ring... |
|
q |
Pretrained LLM (e.g., LLaMA, GPT)
|
t t ‘
Projector
"Can you tell me more T I
about this compound?” N |
t |
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Figure 2: Overview of InstructMol model architecture design and two-stage
training paradigm. The example molecule in the figure is Terephthalalde-

hyde (Sonmez et al., 2012) (CID 12173).

2 Related Work

2.1 Multimodal Instruction Tuning

There have been notable advancements in
LLMs (OpenAl, 2023a; Touvron et al., 2023a,b;
Chiang et al., 2023; Zeng et al., 2022a; Anil
et al., 2023) achieved through scaling up model
and data size. Consequently, LLMs have shown
remarkable performances in zero/few-shot NLP
tasks (OpenAl, 2023a; Wei et al., 2021; Ouyang
etal., 2022). A key technique in LLMs is instruc-
tion tuning, where pre-trained LLMs are fine-tuned
on instruction-formatted datasets (Wei et al., 2021),
allowing them to generalize to new tasks. Re-
cently, with the emergence of large foundation mod-
els in various domains, several efforts have been
made to transition from unimodal LLMs to multi-
modal LLMs (MLLMs) (OpenAl, 2023b; Liu et al.,
2023b; Zhu et al., 2023; Ye et al., 2023; Bai et al.,
2023). The primary research on multimodal in-
struction tuning (M-IT) includes the following (Yin
et al., 2023): Constructing effective M-IT datasets
(adapting existing benchmarks datasets (Zhu et al.,
2023; Liu et al., 2023b; Dai et al., 2023) or us-
ing self-instruction (Liu et al., 2023b; Wang et al.,
2023; Li et al., 2023a; Zhang et al., 2023)), Bridg-
ing diverse modalities (project-based (Liu et al.,
2023b; Li et al., 2023a; Pi et al., 2023) and query-
based (Wang et al., 2023; Zhu et al., 2023; Ye et al.,
2023)) and Employing reliable evaluation methods
(GPT-scoring (Liu et al., 2023b; Li et al., 2023a;
Chen et al., 2023; Luo et al., 2023a), manual scor-
ing (Ye et al., 2023; Yang et al., 2023), or closed-set
measurement (Liu et al., 2023b; Li et al., 2023a;
Zhu et al., 2023; Luo et al., 2023a; Zhu et al., 2023;

Two-stage .
training scheme [
T T Geger -\I é’,i; mPLUG-Owl!
Alignment Pretraining | = (400M)
1
Pretrained LLM 1 COgVLM
1 (1.5B)
&  Projector 1
1
Graph Encoder f, : InstructBLIP
------------ (129M)
Y
Stage2 ‘I
Task-specific \/ ..
Instruction Tuning : MiniGPT-4
i Qwen-VL (5M)
& Pretrained LLM : (1.4B) .
&  Projector : InstrutMol
X (330K)
Graph Encoder f, 1
I
Figure 3: Comparison  of
biomolecule-domain molecule-

text dataset scale with existing general
domain vision-language datasets.

Dai et al., 2023; Chen et al., 2023)). Most current
MLLM research focuses on integrating vision and
language while combining other modalities(e.g.,
graphs (Tang et al., 2023; Liu et al., 2023c¢)) with
natural language remains nascent.

2.2 Molecule Foundation Models

The foundation models, trained on vast unlabeled
data, serve as a paradigm for adaptable Al systems
across diverse applications. In the single modal-
ity domain, researchers are exploring the molecule
representations from diverse sources, such as 1D se-
quences (e.g., SMILES (Chithrananda et al., 2020;
Irwin et al., 2021; Wang et al., 2019)), 2D molecu-
lar graphs (Wang et al., 2021; Hu et al., 2019; You
et al., 2020), 3D geometric conformations (Stirk
et al., 2021; Liu et al., 2021; Stark et al., 2021), or
textual information from biomedical literature (Gu
et al., 2020; Lee et al., 2019; Beltagy et al., 2019).
In the realm of multimodal analysis, research ini-
tiatives employ diverse approaches. These include
encoder-decoder models to establish intermodal
bridges (Edwards et al., 2022; Christofidellis et al.,
2023; Lu and Zhang, 2022a), joint generative mod-
eling of SMILES and textual data (Zeng et al.,
2022b), and the adoption of contrastive learning
for integrating molecular knowledge across vary-
ing modalities (Su et al., 2022; Luo et al., 2023b;
Liu et al., 2022, 2023d).

2.3 Molecule-related LLMs

Given the rapid progress in LLMs, some re-
searchers are considering developing ChatGPT-like
Al systems for drug discovery. Their goal is to of-
fer guidance for optimizing lead compounds, accu-
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rately predicting drug interactions, and improving
the comprehension of structure-activity relation-
ships (Liang et al., 2023). Several initiatives have
already commenced to create instruction datasets
within the biomolecular domain (Fang et al., 2023;
Lu et al., 2024). They aim to utilize instruction tun-
ing techniques to enable LLMs, initially trained on
general domain data, to acquire knowledge about
biomolecular science (Wu et al., 2023; Luo et al.,
2023c). Additionally, other researchers are investi-
gating methods to align structural data with textual
information, bridging the gap between biological
data and natural language (Luo et al., 2023c; Liang
et al., 2023; Cao et al., 2024b).

Remark. Our work involves molecule foundation
models and multimodal language models (LLMs).
It uses an efficient molecule graph encoder to cap-
ture structural information and integrates it with
sequential data into a generalist LLM. InstructMol
enables the LLM to understand molecule represen-
tations and generalize to various molecular tasks.

3 Method

3.1 Multimodal Instruction Tuning

Instruction tuning refers to finetuning pretrained
LLMs on instruction datasets, enabling generaliza-
tion to specific tasks by adhering to new instruc-
tions. Multimodal instruction tuning integrates
modalities like images and graphs into an LLM,
expanding the model’s capability to accommodate
multiple modalities.

A multimodal instruction tuning sample com-
prises an instruction I (e.g., "Describe the com-
pound in detail”) and an input-output pair. In the
context of our study, the input is one or more modal-
ities derived from a molecule (e.g., molecule graph
and sequence), collectively denoted as M. The
output R represents the textual response to the in-
struction conditioned on the input. The model aims
to predict an answer given the instruction and mul-
timodal input: R = f(I, M;#), where 6 are the
parameters of MLLM. The training objective is
typically the same auto-regressive objective as the
LLM pre-training stage, which can be expressed as:
L) = — 25:1 log p(R;|I, M, R;;0), where
L is the target R’s token length.

3.2 Construction of Molecular Instruction

Data Collection. In the field of biomolecular re-
search, there is a noticeable scarcity of molecular
datasets with comprehensive text annotations when

compared to the vision-language domain, as de-
picted in Figure 3. While it is possible to construct
instruction datasets in general domains by adapting
benchmarks or using self-instruction, the applica-
tion of these methods in the biomolecular domain
presents challenges. This difficulty arises from two
main factors: 1) biomolecular domain annotation
demands expert knowledge and entails substantial
complexity; 2) the knowledge within this domain
spans a broad range of subjects, including struc-
tural biology, computational chemistry, and chemi-
cal synthesis processes.

In our efforts, we have gathered recent open-
access text-molecule pairs datasets and also inde-
pendently constructed a portion of instruction data
suitable for property prediction. Table 5 illustrates
the composition of the data utilized during the two-
stage training process.

Molecule Input. We utilize both the structure and
sequence information of a molecule. We encode
the structural information of a molecule as a graph,
denoted by G = (V, &, A, X), where V is the set
of atoms (nodes) and |V| = N is the total number
of atoms. The set of edges £ includes all chemical
bonds, and A € RV*N is the adjacency matrix.
Additionally, X € RV*¥ encompasses attributes
associated with each node, where F' is the feature
dimension. With a Graph Encoder f,, we extract a
graph representation Zg € R™V*4 at the node level,
effectively describing the inherent structure of the
molecule. Simultaneously, we consider encoding
the sequential information of the molecule, denoted
as S, as a supplementary source of structural infor-
mation. To enhance the robustness of sequential
molecular descriptors and mitigate syntactic and
semantic invalidity present in SMILES (Weininger,
1988), we employ SELFIES (Krenn et al., 2019) as
S, which is designed for mapping each token to a
distinct structure or reference.

Input Formulation. We formulate a molecule-text
pair (X s & X,) to the corresponding instruction-
following version like Human: X;<mol>Xj,
<STOP> Assistant: X 4<STOP>. The X, repre-
sents the molecule, including the molecule graph
X and optionally the SELFIES Xg . X de-
notes for the instruction and X 4 is the answer. For
a given answer sequence of length L, our optimiza-
tion objective is to maximize the probability of
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generating the target answers X 4 by maximizing:

L
p(Xa| X, Xy) = HP@(%‘I Xe || Xg . X7, Xa,<i)

i=1

ey
To diversity X, we craft clear task descriptions
and use GPT-3.5-turbo to generate varied ques-
tions, enhancing instructions’ robustness. Note that
we simply concatenate Xg and Xg along the
length-dimension. More complex fusion methods
require additional loss designs for supervision (Liu
et al., 2023d; Luo et al., 2023b), but here we priori-
tize simplicity.

3.3 Architecture

Molecular Encoder. The molecular graph encoder,
[ needs to efficiently extract node representations
while preserving the molecular graph’s connectiv-
ity information. Itis crucial that f, inherently estab-
lishes a pre-alignment in the representation space
with the text space to facilitate Z¢ in the following
alignment stage. Taking inspiration from common
practices in the Vision Large Language Models
(VLLM) domain (Bai et al., 2023; Liu et al., 2023b;
Ye et al., 2023), where models like ViT initialized
from CLIP (Radford et al., 2021) serve as vision en-
coders, we optimize for MoleculeSTM’s graph en-
coder as f, (Liu et al., 2022), instead of GraphMVP
used by prior methodologies (Liang et al., 2023;
Luo et al., 2023c). The MoleculeSTM graph en-
coder model is obtained through molecular-textual
contrastive training, mitigating the requirement for
an extensive amount of paired data during training
to align different modalities.

Light-weight Alignment Projector. To map graph
features into the word embedding space, we uti-
lize a trainable projection matrix W to transform
Zq into X, ensuring that it has the same di-
mension as the word embedding space. Since
the selected f, has undergone partial alignment
with the text through contrastive training, we be-
lieve a straightforward linear projection will meet
the subsequent alignment needs. For approaches
like gated cross-attention (Alayrac et al., 2022),
Q-former (et.al., 2023), or position-aware vision-
language adapters (Bai et al., 2023), they require
a large number of pairs for pretraining alignment,
which is typically unavailable in the biomolecular
domain. We therefore do not explore these more
complex alignment methods.

Large Language Model. InstructMol incorporates
a pre-trained LLM as its foundational component.

We optimize for Vicuna-7B (Chiang et al., 2023)
as the initialized weights, which is derived from
LLaMA (Touvron et al., 2023a) through supervised
instruction finetuning.

3.4 Two-Stage of Instruction Tuning

As illustrated in Figure 2, the training process of
InstructMol consists of two stages: alignment pre-
training and instruction fine-tuning training.
Alignment Pretraining. In the first stage, we aim
to align the modality of molecules with text, en-
suring that the LLMs can perceive both the struc-
tural and sequential information of molecules and
integrate molecular knowledge into their internal
capabilities.

We primarily employ a dataset consisting of
molecule-text pairs sourced from PubChem (Kim
et al., 2022). Each molecule structure is associated
with a textual description elucidating chemical and
physical properties or high-level bioactivity infor-
mation. The construction of the PubChemDataset
predominantly follows the MoleculeSTM (Liu
et al., 2022) pipeline. We meticulously remove
molecules with invalid descriptions and syntactic
errors in their molecular descriptors. To ensure
fairness, we also eliminate compounds that might
appear in the downstream molecule-caption test
set. This results in a dataset of 330K molecule-text
pairs. Subsequently, we adopt a self-instruction-
like approach to generate a diverse set of task de-
scriptions as instructions.

During training, to prevent overfitting and lever-
age pre-trained knowledge, we freeze both the
graph encoder and LLM, focusing solely on fine-
tuning the alignment projector. After a few epochs
of training, our aim is that the projector has suc-
cessfully learned to map graph representations to
graph tokens, aligning effectively with text tokens.

Task-specific Instruction Tuning. In the second
stage, we target three distinct downstream scenar-
i0s. We advocate for task-specific instruction tun-
ing to address the particular constraints inherent
in various drug-discovery-related tasks. For com-
pound property prediction, we utilize the quan-
tum mechanics properties instruction dataset from
Fang et al. (2023) for regression prediction and the
MoleculeNet dataset (Wu et al., 2017) for property
classification. For chemical reaction analysis, we
incorporate forward reaction prediction, retrosyn-
thesis analysis, and reagent prediction tasks, all
derived from Fang et al. (2023). To assess the
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model’s proficiency in translating between natural
language and molecular expression, we integrate
ChEBI-20 (Edwards et al., 2021) for the molecule
description generation task. For each task, corre-
sponding instruction templates are designed.

During training, we utilize the checkpoint of the
alignment projector that was trained in the first
stage as initialization. We only keep the molecu-
lar encoder f, frozen and continue to update the
pre-trained weights of the projector and the LLM.
To adapt the LLM effectively for diverse tasks, we
employ low-rank adaptation (i.e., LoRA (Hu et al.,
2021)), opting against full-tuning to mitigate poten-
tial forgetting issues. In practical applications, we
have the flexibility to substitute different adaptors
based on specific scenario requirements or combine
multiple adaptors to integrate knowledge, thereby
showcasing the model’s modularization capabili-
ties. Moreover, LoRA allows the LLM to retain the
inherent capacity for common-sense reasoning in
dialogue (as shown in Table 13).

4 Experiments

We use a graph neural network as the molecule
graph encoder (f,) which is initialized with the
MoleculeSTM graph encoder, pre-trained through
molecular graph-text contrastive learning. We em-
ploy Vicuna-v-1.3-7B (Chiang et al., 2023) as the
base LLM. More specifically, InstructMol+GS de-
notes we inject both molecular graph tokens and
sequence tokens into the input, while Instruct-
Mol+G means only incorporates graph tokens. For
Instruct-S, which utilizes only a 1D molecular se-
quence as input, it corresponds to the fine-tuning of
the base large language model, Vicuna-7B, directly
on downstream tasks. In the following sections, the
results of Vicuna-v1.3-7B will consistently be used
to represent the performance of Instruct-S. Imple-
mentation details about model settings and training
hyper-parameters can be referred to Appendix B.

4.1 Property Prediction Task

Experiment Setup. Property prediction intends to
forecast a molecule’s intrinsic physical and chemi-
cal properties from its structural or sequential char-
acteristics. In the context of the regression task, we
undertake experiments on the Property Prediction
dataset from Fang et al. (2023), where the objective
is to predict the quantum mechanic’s properties of
a given molecule, specifically including HOMO,
LUMO, and the HOMO-LUMO gap (Ramakrish-

nan et al., 2014b). For the classification task,
we incorporate three binary classification datasets
of molecular biological activity, namely BACE,
BBBP, and HIV. In classification, all dataset sam-
ples are converted into an instruction format and we
use the recommended splits from (Ramsundar et al.,
2019). Each item comprises an instruction explain-
ing the property for prediction and the represen-
tation of the molecule. Subsequently, models are
tasked with generating a single prediction (“yes”
or “no"). Scaffold splits are used for the classifica-
tion task, and the experiments are conducted with
three random seeds, yielding low variances in the
reported mean values.

METHOD HOMO | LUMO | Ae | AVG |
LLM Based Generalist Models

AlpacaT (Taori et al., 2023) 322.109
Baize (Xu et al., 2023) 261.343
Galactica® (Taylor et al., 2022) - - 0.568
LLama-2-7B (5-shot ICL) 0.7367 0.8641 0.5152 0.7510
Vicuna-13B (5-shot ICL) 0.7135 3.6807 1.5407 1.9783
Mol-Instruction 0.0210 0.0210 0.0203 0.0210
InstructMol-G 0.0060 0.0070 0.0082 0.0070
InstructMol-GS 0.0048 0.0050 0.0061 0.0050

Table 1: Results (MAE in hartree unit) for QM9 prop-
erty regression tasks. t denotes few-shot in-context
learning (ICL) results from Fang et al. (2023). Ae de-
notes HOMO-LUMO energy gap.

METHOD BACE 1 BBBP 1 HIV 1

# MOLECULES 1513 2039 41127
Specialist Models

ChemBERTa v2 (Walid et al., 2022) 73.5 69.8 79.3
DMP(TF+GNN) (Jinhua et al., 2023) 89.4 71.8 814
KV-PLM (Zeng et al., 2022b) 78.5 70.5 71.8
GraphCL (You et al., 2020) 75.3 69.7 78.5
GraphMVP-C (Liu et al., 2021) 81.2 72.4 77.0
MoMu (Su et al., 2022) 76.7 70.5 75.9
MolFM (Luo et al., 2023b) 83.9 729 78.8
Uni-Mol (Zhou et al., 2023) 85.7 729 80.8
LLM Based Generalist Models

Galactica-6.7B 58.4 535 722
Vicuna-v1.5-13b-16k (4-shot) 49.2 52.7 50.5
Vicuna-v1.3-7B* 68.3 60.1 58.1
LLama-2-7B-chat™ 74.8 65.6 62.3
MolCA(1D) (Liu et al., 2023f) 79.3 70.8 -
MOolCA(1D + 2D) (Liu et al., 2023f) 79.8 70.0 -
Instruct-G 84.3 (+0.6) 68.6(£0.3)  74.0 (£0.1)
Instruct-GS 82.1(£0.1) 724 (£0.3) 68.9(£0.3)

Table 2: ROC-AUC of molecular property prediction
tasks (classification) on MoleculeNet (Wu et al., 2017)
benchmarks. *: use LoRA tuning. We indicate the best
performance among domain specialist models by under-
lining the results, while the best performance among
LLM-based generalist models is highlighted in bold.

Results. Our models are compared against base-
lines on the test set for regression, measured by
Mean Absolute Error (MAE) in Table 1. Com-
pared to previous single-modal instruction-tuned
LLM-based methods (Fang et al., 2023), Instruct-
Mol demonstrates a further improvement in the
regression task. ROC-AUC scores for classifica-
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MODEL

BLEU-21 BLEU-41 ROUGE-1T ROUGE-21 ROUGE-Lt METEOR?T

Specialist Models

MolT5-base (Edwards et al., 2022) 0.540 0.457 0.634 0.485 0.568 0.569
MoMu (MolT5-base) (Su et al., 2022) 0.549 0.462 - - - 0.576
MolFM (MolT5-base) (Luo et al., 2023b) 0.585 0.498 0.653 0.508 0.594 0.607
MolXPT (Liu et al., 2023e) 0.594 0.505 0.660 0.511 0.597 0.626
GIT-Mol-graph (Liu et al., 2023d) 0.290 0.210 0.540 0.445 0.512 0.491
GIT-Mol-SMILES (Liu et al., 2023d) 0.264 0.176 0.477 0.374 0.451 0.430
GIT-Mol-(graph+SMILES) (Liu et al., 2023d) 0.352 0.263 0.575 0.485 0.560 0.430
MolCA, Galac, 35 (Liu et al., 2023f) 0.620 0.531 0.681 0.537 0.618 0.651
Text+Chem T5-augm-base (Christofidellis et al., 2023) 0.625 0.542 0.682 0.543 0.622 0.648
Retrieval Based LLMs

GPT-3.5-turbo (10-shot MolReGPT) (Li et al., 2023b) 0.565 0.482 0.623 0.450 0.543 0.585
GPT-4-0314 (10-shot MolReGPT) (Li et al., 2023b) 0.607 0.525 0.634 0.476 0.562 0.610
LLM Based Generalist Models

GPT-3.5-turbo (zero-shot) (Li et al., 2023b) 0.103 0.050 0.261 0.088 0.204 0.161
BioMedGPT-10B (Luo et al., 2023c) 0.234 0.141 0.386 0.206 0.332 0.308
Mol-Instruction (Fang et al., 2023) 0.249 0.171 0.331 0.203 0.289 0.271
InstructMol-G 0.466 0.365 0.547 0.365 0.479 0.491
InstructMol-GS 0.475 0.371 0.566 0.394 0.502 0.509

Table 3: Results of molecular description generation task on the test split of ChEBI-20.

tion outcomes are presented in Table 2. In com-
parison to LLM-based generalist models, both the
Galactica (Taylor et al., 2022) series models trained
on an extensive scientific literature dataset and the
single-modality LLM fine-tuned with task-specific
instructions (Fang et al., 2023), InstructMol demon-
strates consistent improvements in accuracy across
the three task datasets. However, our predictive re-
sults still exhibit some disparity compared to expert
models (Zhou et al., 2023; Liu et al., 2021) specifi-
cally trained on a vast molecule structure dataset.
Further, InstructMol performs worse than GIN on
the imbalanced HIV dataset with a long-tail distri-
bution. Previous research (Kandpal et al., 2023)
highlights LLMs’ challenges in learning long-tail
knowledge. To tackle this, strategies like resam-
pling or class reweighting can be employed.

4.2 Molecule Description Generation Task

Experiment Setup. Molecule description gener-
ation encapsulates a comprehensive molecule de-
piction, covering its structure, properties, biolog-
ical activity, and applications based on molecular
descriptors. This task is more complex than clas-
sification or regression, providing a robust mea-
sure of the model’s understanding of molecules.
We convert the training subset of the ChEBI-20
dataset (Edwards et al., 2021) into an instructional
format and subsequently perform fine-tuning based
on these instructions. Our assessment uses evalua-
tion metrics aligned with (Edwards et al., 2022).

Baselines. Three kinds of models are used as base-
lines, including: 1) MolT5-like expert models (Ed-
wards et al., 2022; Liu et al., 2023e) and the models
employing MolT5 as a decoder (Su et al., 2022;

Luo et al., 2023b; Liu et al., 2023d; Christofidellis
et al., 2023), 2) models based on retrieval methods
that utilize ChatGPT/GPT-4 as a foundational com-
ponent (Li et al., 2023b), 3) other models derived
through instruction-tuning with LLMs to achieve
generalist unimodal (Fang et al., 2023) and multi-
modalities (Luo et al., 2023c) capabilities.
Results. Table 3 presents the overall results for
molecule description generation. Our model out-
performs other generalist LLM-based models in
generating precise, contextually relevant molecule
descriptions. We observe that incorporating both
molecule structural information and sequential in-
formation in the input yields higher-quality results
(~2% improvement) than providing structural in-
formation alone. While expert models demon-
strate better efficacy in comparison, it is note-
worthy that they are constrained by their training
schemes and lack the versatile capabilities inherent
in our approach. Retrieval methods, supported by
ChatGPT/GPT-4, demonstrate strong capabilities.
Our future efforts will focus on integrating these
methods to improve the accuracy and credibility of
generated content.

4.3 Chemical Reaction-related task

Experiment Setup. Traditionally, identifying
chemical reactions relied on intuition and expertise.
Integrating deep learning for predicting reactions
can accelerate research and improve drug discov-
ery. The general format of a chemical reaction is
"reactant — reagent — product”. Here we
mainly focus on three tasks: 1) Forward Reaction
Prediction: predict the probable product(s) given
specific reactants and reagents; 2) Reagent Predic-
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tion: ascertain the suitable catalysts, solvents, or
ancillary substances required for a specific chem-
ical reaction given reactant(s) and product(s); 3)
Retrosynthesis: anticipate deducing potential pre-
cursor molecule(s) from given product(s).

We utilize the dataset sourced from Fang et al.

(2023), training it on the pre-defined training split
and evaluating its performance on the test set. The
performance is assessed by metrics like Fingerprint
Tanimoto Similarity (FTS), BLEU, Exact Match,
and Levenshtein distance to measure the similar-
ity between ground truth and prediction. We also
measure the validity of predicted molecules using
RDK:it.
Results. Table 4 reports the outcomes of tasks
related to chemical reactions. It is evident that In-
structMol outperforms the baselines significantly.
The results obtained by generalist LL.Ms are de-
rived from Fang et al. (2023), and they exhibit a pro-
nounced inability to comprehend any chemical re-
action prediction task, struggling to generate valid
molecule(s) as answers. Mol-Instruction (Fang
et al., 2023), employing Llama2 (Touvron et al.,
2023b) as the base LLM, is jointly trained on multi-
ple molecule-oriented instruction datasets. In addi-
tion, we supplement this by adopting the same train-
ing settings but exclusively training on chemical
reaction-related datasets. Through comparison, In-
structMol, as a multi-modality LLM, demonstrates
a superior understanding of the task compared to
single-modality models, confirming its effective-
ness as a chemical reaction assistant.

4.4 Ablation Studies

In this subsection, we conduct an ablation study
to investigate the architecture and training scheme
design of our proposed framework. We explore
variations from several perspectives and validate
them on the task of molecule description gener-
ation. The ablation results are presented in Ap-
pendix Table 10 as follows: 1) Employing an
MLP connector instead of a linear projector.
Drawing inspiration from the observations made
in (Liu et al., 2023a), we attempt to change the
alignment projector to a two-layer MLP, demon-
strating an enhancement in the model’s multimodal
capabilities. 2) Scaling up the LLLM to 13B. The
results indicate that scaling up the LLM only yields
minor improvements. Thus, it substantiates the as-
sertion that, for specific domains characterized by
dataset scarcity, employing a 7B size model is suf-
ficiently efficient for modeling. 3) Replacing the
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graph encoder f, with a single-modality module
(i.e., GraphMVP (Liu et al., 2021) with the same
parameter size and architecture as we used). The
results affirm our perspective: utilizing an encoder
pre-aligned with text enhances the effectiveness
of modality alignment. 4) Skipping alignment
stage-1. We included a comparison where stage-1
was skipped entirely. The results demonstrate that
separating projector training (stage-1) from down-
stream fine-tuning (stage-2) yields better perfor-
mance. 5) Freezing the LLM in the second stage.
Adopting a strategy akin to BioMedGPT10B (Luo
et al., 2023c) and DrugChat (Liang et al., 2023), we
choose not to update LLM weights in the second
stage. The training outcomes reveal challenges in
convergence and an inability to complete normal
inference, thus demonstrating the necessity for the
instruct-tuning stage to adapt LLLM knowledge to
the specific task.

5 Discussion and Conclusion

Conclusion. We propose InstructMol, a novel
multi-modality foundational model that connects
molecular modalities with human natural language.
By integrating structural and sequential informa-
tion of molecules into LLMs through a dual-
stage alignment pre-training and instruction tuning
paradigm, we enhance the general LLM’s capacity
to comprehend and interpret molecular information,
specifically in drug discovery tasks. Extensive ex-
perimental evaluation confirms the effectiveness
of our model architecture and training approach,
demonstrating its potential for practical applica-
tions in the field of drug discovery.

Future Work. Integrating multiple modalities with
LLMs significantly enhances molecular research
within this domain and is a valuable direction to
explore. However, several challenges exist. The
scale and quality of relevant datasets are as good
as those in the vision and language community.
The lack of well-defined task objectives poses a
challenge. A more scientifically robust evaluation
is needed to address issues such as hallucinations
in generation outputs.

6 Limitations

In our investigation, several limitations have
emerged. Firstly, the scale and quality of the
dataset pose significant constraints; the scarcity
of high-quality annotated domain data may hinder
the model’s ability to generalize across the diverse



MODEL

ExAactt BLEUtT LEVENSHTEIN], RDKFTST MACCSFTST MORGANFTST VALIDITY?]

Reagent Prediction

Alpaca'’ (Taori et al., 2023) 0.000 0.026 29.037 0.029 0.016 0.001 0.186
Baize' (Xu et al., 2023) 0.000 0.051 30.628 0.022 0.018 0.004 0.099
ChatGLM' (Zeng et al., 2022a) 0.000 0.019 29.169 0.017 0.006 0.002 0.074
LLama’ (Touvron et al., 2023a) 0.000 0.003 28.040 0.037 0.001 0.001 0.001
Vicuna' (Chiang et al., 2023) 0.000 0.010 27.948 0.038 0.002 0.001 0.007
Mol-Instruction (Fang et al., 2023) 0.044 0.224 23.167 0.237 0.364 0.213 1.000
LLama-7b* (Touvron et al., 2023a)(LoRA) 0.000 0.283 53.510 0.136 0.294 0.106 1.000
InstructMol-G 0.070 0.890 24.732 0.469 0.691 0.426 1.000
InstructMol-GS 0.129 0.610 19.664 0.444 0.539 0.400 1.000
Forward Reaction Prediction

Alpaca’ (Taori et al., 2023) 0.000 0.065 41.989 0.004 0.024 0.008 0.138
Baize' (Xu et al., 2023) 0.000 0.044 41.500 0.004 0.025 0.009 0.097
ChatGLM' (Zeng et al., 2022a) 0.000 0.183 40.008 0.050 0.100 0.044 0.108
LLama’ (Touvron et al., 2023a) 0.000 0.020 42.002 0.001 0.002 0.001 0.039
Vicuna® (Chiang et al., 2023) 0.000 0.057 41.690 0.007 0.016 0.006 0.059
Mol-Instruction (Fang et al., 2023) 0.045 0.654 27.262 0.313 0.509 0.262 1.000
LLama-7b* (Touvron et al., 2023a)(LoRA) 0.012 0.804 29.947 0.499 0.649 0.407 1.000
Text+ChemTS5 (Christofidellis et al., 2023) 0.454 0.602 26.545 0.729 0.773 0.700 0.851
MolelcularTransformer (Schwaller et al., 2018) 0.0 0.476 45.979 0.761 0.673 0.540 1.000
InstructMo-G 0.153 0.906 20.155 0.519 0.717 0.457 1.000
InstructMol-GS 0.536 0.967 10.851 0.776 0.878 0.741 1.000
Retrosynthesis

Alpaca’ (Taori et al., 2023) 0.000 0.063 46.915 0.005 0.023 0.007 0.160
Baize' (Xu et al., 2023) 0.000 0.095 44.714 0.025 0.050 0.023 0.112
ChatGLM' (Zeng et al., 2022a) 0.000 0.117 48.365 0.056 0.075 0.043 0.046
LLama' (Touvron et al., 2023a) 0.000 0.036 46.844 0.018 0.029 0.017 0.010
Vicuna' (Chiang et al., 2023) 0.000 0.057 46.877 0.025 0.030 0.021 0.017
Mol-Instruction (Fang et al., 2023) 0.009 0.705 31.227 0.283 0.487 0.230 1.000
LLama-7b* (Touvron et al., 2023a)(LoRA) 0.000 0.283 53.510 0.136 0.294 0.106 1.000
Text+ChemT5 (Christofidellis et al., 2023) 0.033 0314 88.672 0.457 0.469 0.350 0.632
Retroformer-untyped (Yao et al., 2022) 0.536 0.881 10.277 0.865 0.904 0.830 0.995
InstructMol-G 0.114 0.586 21.271 0.422 0.523 0.285 1.000
InstructMol-GS 0.407 0.941 13.967 0.753 0.852 0.714 1.000

Table 4: Results of chemical reaction tasks. {: few-shot ICL results from (Fang et al., 2023). *: use task-specific
instruction data to fine-tune. Model indicates a domain expert method.

and intricate molecular landscapes encountered in
real-world applications. Secondly, the integration
and evaluation of multiple modalities have also re-
vealed areas needing improvement. Further refine-
ment is necessary to ensure robust alignment and
utilization of different molecule modalities within
the model, enhancing its capacity to interpret and
generate responses accurately across the molecular
domain. Lastly, our base LLM originates from a
general-domain model. However, the absence of
specialized LLMs tailored specifically for chem-
istry and molecular science, like models such as
LLaMA, highlights the need for larger, more versa-
tile domain-specific LLMs to enhance performance
and expand applications. Addressing these chal-
lenges is pivotal for enhancing the model’s relia-
bility and extending its utility in advancing drug
discovery methodologies.

7 Potential Risks

The application of Al in drug discovery entails
several potential risks. A primary concern is the po-
tential misuse of Al to develop hazardous or illicit
substances, which presents significant safety and

ethical challenges. Moreover, inaccuracies in Al-
generated outputs could lead to hazardous chemical
reactions if not thoroughly verified, posing risks of
harm or damage to equipment. Dependence on Al-
generated content heightens the risk of accidents
and unsafe practices. Therefore, stringent oversight
and rigorous adherence to ethical guidelines are es-
sential to mitigate these risks and ensure the safe
and responsible application of Al in drug discov-
ery. Further insights into these issues and potential
safeguard approaches can be found in recent liter-
ature (Wong et al., 2024; Cao et al., 2024a; Wang
et al., 2024).
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A Tasks Definition and Dataset Details

Property Prediction. Molecular Property Predic-
tion involves the forecasting or estimation of the
biophysical and chemical properties of a molecule.
In this work, our emphasis lies on three binary
classification tasks sourced from the MoleculeNet
benchmark (BBBP, BACE, and HIV) (Wu et al.,
2017), and three regression tasks concentrating
on the quantum properties of molecules from the
QM9 (Ramakrishnan et al., 2014a) dataset.

Molecule Description Generation. Generating
molecular descriptions involves compiling a de-
tailed overview of a molecule’s structure, proper-
ties, activities, and functions. This process aids
chemists and biologists by swiftly providing cru-
cial molecular insights for their research. Our
data collection involves the extraction of molec-
ular text annotations from PubChem (Kim et al.,
2022). Leveraging PubChem’s Power User Gate-
way (Kim et al., 2019), we retrieve abstracts of
compound records in XML format. Subsequently,
we extracted valid molecular description texts iden-
tified by unique PubChem Chemical Identifiers
(CIDs), filtering out SMILES strings with syntac-
tic errors or deviations from established chemical
principles. Furthermore, we utilize the ChEBI-
20 dataset (Edwards et al., 2021) for downstream
tasks in molecule description generation, compris-
ing 33,010 molecule description pairs divided into
80% for training, 10% for validation and 10% for
testing. To prevent data leakage, compounds in the
PubChem text annotations that coincide with the
ChEBI-20 test split are excluded.

Forward Reaction Prediction. Predicting the
forward reaction involves anticipating the probable
product(s) of a chemical reaction based on given
reactants and reagents. For this task, we utilize
the forward-reaction-prediction dataset from (Fang
et al., 2023), comprising 138,768 samples sourced
from the USPTO dataset (Wei et al., 2010). Each
entry includes reactants and reagents separated by
> within the instruction, with the output product.

Reagent Prediction. Reagent prediction identi-
fies the substances necessary for a chemical reac-
tion, helping to discover new types of reaction and
optimal conditions. We use the reagent Prediction
data from (Fang et al., 2023), sourced from the
USPTO_500MT dataset (Lu and Zhang, 2022b).
Each entry features a chemical reaction indicated as

“reactants >> product,” with the output indicating
the reagents involved in the reaction.

Retrosynthesis Prediction. Retrosynthetic anal-
ysis in organic chemistry reverses engineering by
tracing potential synthesis routes from the target
compound backward. This strategy is vital for
the efficient synthesis of complex molecules and
to foster innovation in pharmaceuticals and ma-
terials. For this task, we also used the dataset
from (Fang et al., 2023), which is sourced from
USPTO_500MT. The data organize inputs as prod-
ucts and outputs as reactants separated by ’. for
each compound.

Discussion on License. As depicted in Table 6,
we elaborate on the origins and legal permissions
associated with each data component utilized in the
development of the InstructMol. This encompasses
both biomolecular data and textual descriptions.
Thorough scrutiny was conducted on all data ori-
gins to confirm compatibility with our research
objectives and subsequent utilization. Proper and
accurate citation of these data sources is consis-
tently maintained throughout the paper.

B Implementation Details

Model Settings. A graph neural network with five
graph isomorphism network (GIN) (Xu et al., 2018)
layers is used as the molecule graph encoder f,.
The hidden dimension is set to be 300. The GIN
model is initialized using the MoleculeSTM (Liu
et al., 2022) graph encoder, which is pre-trained
through molecular graph-text contrastive learning.
We employ Vicuna-v-1.3-7B (Chiang et al., 2023)
as the base LLM, which has been trained through
instruction-tuning. The total number of parameters
of InstructMol is around 6.9B.

Training Details. In the first stage, we employ the
training split comprising around 264K molecule-
caption pairs from PubMed. Using a batch size of
128, we conduct training for 5 epochs. We use the
AdamW optimizer, with 8=(0.9, 0.999) and a learn-
ing rate of 2e-3, without weight decay. Warm-up
is executed over 3% of the total training steps, fol-
lowed by a cosine schedule for learning rate decay.
For the second stage, we conduct training for three
specific scenarios. For fair comparisons with tradi-
tional methods, training spans 20 to 50 epochs for
the molecule description generation task using the
ChEBI-20 training split. Property prediction and
reaction tasks undergo 10 epochs using correspond-
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TASKS # SAMPLES DATA SOURCE

Alignment Pretrain 264K PubMed (Kim et al., 2022)

Property Prediction(Regression) 362K QM9 (Fang et al., 2023; Wu et al., 2017)
Property Prediction(Classification) 35,742 BACE, BBBP, HIV (Wu et al., 2017)

Molecule Description Generation 26,507 ChEBI-20 (Edwards et al., 2021)

Forward Prediction 125K USPTO (Fang et al., 2023; Wei et al., 2010)
Retrosynthesis 130K USPTO_500MT (Fang et al., 2023; Lu and Zhang, 2022b)
Reagent Prediction 125K USPTO_500K (Fang et al., 2023; Lu and Zhang, 2022b)

Table 5: Details of InstrutMol two-stage training data.

DATA SOURCES LIcENSE URL

LICENSE NOTE

PubChem https://www.nlm.nih.gov/web_policies.
html

ChEBI https://creativecommons.org/
licenses/by/4.0/

USPTO https://www.uspto.gov/
learning-and-resources/
open-data-and-mobility

MoleculeNet https://opensource.org/license/mit/

‘Works produced by the U.S. government are not subject to copyright
protection in the United States. Any such works found on National
Library of Medicine (NLM) Web sites may be freely used or reproduced
without permission in the U.S.

You are free to: Share — copy and redistribute the material in any
medium or format. Adapt — remix, transform, and build upon the
material for any purpose, even commercially.

It can be freely used, reused, and redistributed by anyone.

Permission is hereby granted, free of charge, to any person obtaining a
copy of this software and associated documentation files (the “Software”),
to deal in the Software without restriction, including without limitation
the rights to use, copy, modify, merge, publish, distribute, sublicense,
and/or sell copies of the Software, and to permit persons to whom the
Software is furnished to do so.

Table 6: Data resources and licenses utilized in data collection..

ing instruction datasets. In InstructMol training, we
maintain a consistent batch size of 128 and set the
learning rate to 8e-5. Linear layers within the LLM
utilize a LoRA rank of 64 and a scaling value « of
16. All experiments are run with 4xRTX A6000
(48GB) GPUs.

Configuration Value
Graph encoder f, init. GINMoleculeST™M
# params f 1.8M
LLM init. Vicuna-v-1.3-7B
# params LLM 6.9B
Stagel batch-size 128
Stage?2 batch-size 128
Optimizer AdamW
Warm-up ratios 0.03
Stagel peak Ir 2e-3
Stage2 peak Ir 8e-5
Learning rate schedule cosine decay
Weight decay 0.
Stagel train epochs 5
Stage?2 train epochs 20-50
Numerical precision bfloat16
Activation checkpointing True

Table 7: Training hyperparameters of InstructMol.

C Evaluate Metrics

Molecule Description Generation Metric. Fol-
lowing (Edwards et al., 2022), NLP metrics such as
BLEU (Papineni et al., 2001), ROUGE (Lin, 2004)
and METEOR (Banerjee and Lavie, 2005) are used

to assess the proximity of generated descriptions
to the truth of the ground. Specifically, these met-
rics are tested on the ChEBI-20 test dataset. In our
experiments, we observed that after 50 epochs of
finetuning on the training split, the metrics tend to
converge, differing from previous approaches that
often involved fine-tuning for over 100 epochs (Ed-
wards et al., 2022; Su et al., 2022; Luo et al.,
2023b).

Molecule Generation Metric. In chemical re-
action tasks, we view it as akin to a text-based
molecule generation task. Initially, we employ RD-
Kit to validate the chemical validity of the gen-
erated results, ensuring their “validity". Subse-
quently, we gauge the sequential proximity be-
tween the generated sequence and the ground truth
using NLP metrics such as BLEU, Exact Match
scores, and Levenshtein distance. Additionally, we
present performance based on molecule-specific
metrics that assess molecular similarity, encom-
passing RDKit, MACCS (Durant et al., 2002), and
Morgan (Schneider et al., 2015) fingerprints simi-
larity.
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TASK INSTRUCTION
Instruction: Provide a brief overview of this molecule.
Alignment Pretrain || [Optional: The compound SELFIES sequence is: SELFIES]
Output: The molecule is a non-proteinogenic alpha-amino acid that is ...
Instruction: Could you give me the LUMO energy value of this molecule?
|| [Optional: The compound SELFIES sequence is: SELFIES]
Output: 0.0576
Instruction: Evaluate whether the given molecule is able to enter the blood-brain barrier.
|| [Optional: The compound SELFIES sequence is: SELFIES]
Output: Yes
Instruction: Could you give me a brief overview of this molecule?
Molecule Description Generation || [Optional: The compound SELFIES sequence is: SELFIES]
Output:The molecule is a fatty acid ester obtained by ...
Instruction: Based on the given reactants and reagents, suggest a possible product.
Forward Prediction || <REACTANT A>.<REACTANT B>...<REAGENT A>.<REAGENT B>...
Output: SELFIES of product
Instruction: Please suggest potential reactants used in the synthesis of the provided product.
Retrosynthesis || SELFIES of product
Output: <REACTANT A>.<REACTANT B>...<REAGENT A>.<REAGENT B>...
Instruction: Can you provide potential reagents for the following chemical reaction?
Reagent Prediction || <REACTANT A>.<REACTANT B>...<REAGENT A>.<REAGENT B>... » <PRODUCTs>
Output: SELFIES of reagent

Property Prediction
(Regression)

Property Prediction
(Classification)

Table 8: Examples of instruction samples for each task. || means concatenate along the token dimension.

n.n

messages =[ {"role":"system”, "content”: f"""You’'re acting as a molecule property prediction assistant. You’ll
be given SMILES of molecules and you need to make binary classification with a return result only in “True" or
“False".

The background of the dataset and task is shown below:
The Blood-brain barrier penetration (BBBP) dataset comes from a recent study on the modeling and prediction of
barrier permeability. As a membrane separating circulating blood and brain extracellular fluid, the blood-brain barrier
blocks most drugs, hormones, and neurotransmitters. Thus penetration of the barrier forms a long-standing issue in the
development of drugs targeting the central nervous system.

We provide several examples for this binary classification task:

it

Instruction: Predict whether the given compound has barrier permeability. Return True or False.
SMILES: CCC(=0)C(CC(C)N(C)C)(clcceecl)c2cccec2

Output: True

it

H#H#

Instruction: Predict whether the provided compound exhibits barrier permeability. Return True or False.
SMILES: clcc2c(cc(CC3=CNC(=NC3=0)NCCSCc30c(cc3)CN(C)C)cc2)ccl

Output: False

H#H#

Given the following instructions and SMILES, return your prediction result:

Instruction: Predict whether the provided compound exhibits barrier permeability. Return True or False.
SMILES: TARGET SMILES

nnn }

1

\.

Table 9: An illustration of the few-shot in-context-learning prompt construction process for Llama (Touvron et al.,
2023a,b) / Vicuna (Chiang et al., 2023) models in property prediction tasks.
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D More Results
D.1 Ablation study results

METHODS BLEU-2¢ BLEU-4f  ROUGE-1{ ROUGE-2t+ ROUGE-Lt METEOR?
InstructMol-G 0.4620 0.3560 0.5439 0.3644 0.4765 0.4832
+MLP XL connector 0.4665(+0.97%) 0.3613(+1.49%) 0.5497(+1.07%) 0.3699(+1.51%) 0.4805(+0.84%) 0.4917(+1.76%)
+Scale up LLM 0.4615(-0.11%) 0.3566(+0.17%) 0.5449(+0.18%) 0.3660(+0.44%) 0.4776(+0.23%) 0.4868(+0.75%)

Replace f,; with GraphMVP

Skip Stage-1

Freeze LLM in the second stage

0.4452(-3.64%) 0.3377(-5.14%) 0.5318(-0.11%) 0.3484(-2.22%) 0.4638(-2.67%) 0.4691(-2.92%)
0.4631(+0.23%) 0.3569(+0.25%) 0.5419(-0.37%) 0.3610(-0.93%) 0.4720(-0.94%) 0.4391(-9.12%)
~0 ~0 ~0 ~0 ~0 ~0

Table 10: Ablation of the model architecture and training scheme design. We chose to conduct experiments on the Molecule

Description Generation task. f, represents the molecule graph encoder.

D.2 More Results of Molecule Description Generation

Mol-Instruction

InstructMol

Ground Truth

The molecule is the potassium salt of acetic
acid. It has a role as a buffer. Itis a

The molecule is a potassium salt that is the

The molecule is the potassium salt of formic

PN monokis salt of carbonic acid. It has a role as acid. It has a role as a buffer. Itis a
o © potassium salt and an acetate salt. It a buffer. Itis a carbonate salt and a potassium salt and a one-carbon compound.
K+ contains an acetate. potassium salt. It contains a carbonate. It derives from a formic acid.
CID: 2735122
The molecule is an organic molecular The molecule is a hydrochloride salt The molecule is a hydrochloride resulting
entity. resulting from the reaction of equimolar from the reaction of equimolar amounts of
amounts of 1-nitrobenzene and hydrogen phenylhydrazine and hydrogen chloride. It
e chloride. It has a role as a mutagen. It contains a phenylhydrazine.
H contains a 1-nitrobenzene(2+).
CID: 60962
V\/ / The molecule is a triterpenoid. The molecule is a tirucallane triterpenoid that is The molecule is a tirucallane triterpenoid that is
fJ (13alpha,14beta,17alpha,20S,23E)-lanosta-7,23- (13alpha,14beta,17alpha,20S,23E)-lanosta-7,23-
\,J diene substituted by an oxo group at position 3 diene substituted by a beta-hydroxy group at
| and a methoxy group at position 25. It has been position 3 and a methoxy group at position 25. It
isolated from the stem and stem barks of Cornus has been isolated from the stem and stem barks
walteri. It has a role as a plant metabolite. It is of Cornus walteri. It has a role as a plant
an ether, a tirucallane triterpenoid and a metabolite. It is a tirucallane triterpenoid, an
secondary alcohol. ether and a secondary alcohol.
CID: 50994221
The molecule is an organic thiophosphate. The molecule is an organic thiophosphate that is The molecule is an organic thiophosphate that is 0,0-
I 0,0-dimethyl hydrogen phosphorothioate in diethyl hydrogen phosphorothioate in which the
N7 ‘\O/\ which the hydrogen of the _h‘/dl'OX‘I group has hydrogen of the hydroxy group has been replaced by
o N been replaced by a 3,5,6-trichloropyridin-2-yl a 3,5,6-trichloropyridin-2-yl group. It has a role as an
- ‘ group. It has a "°|‘f asan agm?“ﬁ"ﬁ“'} an EC EC 3.1.1.7 (acetylcholinesterase) inhibitor, an
N 3-1-_1-7 (acetylchollnest.erase) '”_h'b'm" a“d_ an agrochemical, an EC 3.1.1.8 (cholinesterase) inhibitor,
environmental contaminant. It is an organic an environmental contaminant, a xenobiotic, an
thiophosphate, a chloropyridine and an acaricide and an insecticide. It is an organic
CID: 2730 organochlorine pesticide. thiophosphate and a chloropyridine.

The molecule is a natural product found in
Homo sapiens with data available.

The molecule is a 17beta-hydroxy steroid
that is testosterone in which the 17beta
hydrogen is replaced by a methyl group. It
has a role as an androgen. It is a 3-oxo-
Delta(4) steroid and a 17beta-hydroxy
steroid. It derives from a testosterone.

The molecule is a 17beta-hydroxy steroid
that is testosterone that contains an
additional double bond between positions
6and 7. Itis a 3-oxo-Delta(4) steroid, a
17beta-hydroxy steroid and an enone. It
derives from a testosterone.

The molecule is a metabolite found in or
produced by Escherichia coli (strain K12,
MG1655).

The molecule is a myo-inositol
monophosphate. It has a role as an algal
metabolite and a mouse metabolite. It
derives from a myo-inositol. It is a
conjugate acid of a 1D-myo-inositol 4-
phosphate(2-).

The molecule is an inositol having myo-
configuration substituted at position 1 by a
phosphate group. It has a role as a human
metabolite, an Escherichia coli metabolite
and a mouse metabolite. It derives from a
myo-inositol. It is a conjugate acid of a 1D-
myo-inositol 1-phosphate(2-).

The molecule is a monocarboxylic acid
o anion resulting from the removal of a
proton from the carboxy group of (R)-
imazamox. It is a conjugate base of a (R)-
imazamox. It is an enantiomer of a (S)-
imazamox(1-)

cIp: 107737

The molecule is a monocarboxylic acid
anion resulting from the removal of a
proton from the carboxy group of (S)-
methyl 2-(4-chloro-2-
methylphenoxy)acetate. It is a conjugate
base of a (S)-methyl 2-(4-chloro-2-
methylphenoxy)acetate. It is an
enantiomer of a (R)-methyl 2-(4-chloro-2-
methylphenoxy)acetate(1-).

The molecule is a monocarboxylic acid
anion that is the conjugate base of (S)-2-(4-
chloro-2-methylphenoxy)propanoic acid,
obtained by deprotonation of the carboxy
group. It is a conjugate base of a (S)-
mecoprop. It is an enantiomer of a (R)-2-
(4-chloro-2-methylphenoxy)propanoate.

Figure 4: More examples of molecule description generation task on ChEBI-20 (Edwards et al., 2021) test set.
We include Mol-Instruction (Fang et al., 2023) as the baseline. CID (CID): PubChem Compound Identification, a
non-zero integer PubChem accession identifier for a unique chemical structure.
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D.3 More Results of Forward Reaction Prediction
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Figure 5: More examples of forward reaction prediction task. We include Mol-Instruction (Fang et al., 2023) and
Multitask-Text-and-Chemistry-TS (Christofidellis et al., 2023) as baselines.
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D.4 More Results of Reagent Prediction
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Figure 6: More examples of the reagent prediction task. We include Mol-Instruction (Fang et al., 2023) as the
baseline.
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D.5 More Results of Retrosynthesis Prediction
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Figure 7: More examples of the retrosynthesis prediction task. We include Mol-Instruction (Fang et al., 2023) and
Multitask-Text-and-Chemistry-TS (Christofidellis et al., 2023) as baselines.
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D.6 Error Analysis

We showcase cases with misalignment to the
ground truth, along with RDKit fingerprint similar-
ity results in Fig. 8. The complexity of chemical
reaction compounds makes the task more challeng-
ing. In addressing this limitation, our future ap-
proach involves concatenating graph tokens from
multiple molecules involved in the same reaction
with text tokens to simplify the complexity of the
input sequence. Moreover, we are considering em-
ploying separate tokenization and embedding for
distinct modalities to ensure the semantic accuracy
of the tokenized results.

D.7 More Results of Molecule Property
Prediction

Based on the molecular property binary clas-
sification discussed in the main text, we have
extended our analysis by comparing Instruct-
G with other domain-specific models (Chem-
BERTa (Chithrananda et al., 2020), GROVER (Yu
et al., 2020), DMP (Jinhua et al., 2023)) and
MolCA variants on multi-class prediction tasks
from MoleculeNet, including Clintox, Tox21, Tox-
cast, and SIDER, as detailed in the Table 11.

METHOD Clintox Tox21 Toxcast SIDER
# MOLECULES 1491 8014 8615 1427
# TASKS 2 12 617 27
Specialist Models

ChemBERTa (Chithrananda et al., 2020) 73.3

ChemBERTa2 (Walid et al., 2022) 239 - - -
GROVER-large (Yu et al., 2020) 944 83.1 73.7 65.8
DMP(TF+GNN) (Jinhua et al., 2023) 95.6 79.1 - 69.8
MolCA(1D+2D) (Liu et al., 2023f) 89.5 77.2 64.5 -
Instruct-G 93.4 77.0 61.9 62.2

Table 11: ROC-AUC results of molecular property tasks
(multi-classes classification) on MoleculeNet (Wu et al., 2017)
benchmarks.

Based on the results of Table 2 and Table 11,
we found that integrating the 1D and 2D molecu-
lar modalities significantly enhances the model’s
understanding capabilities. It is important to note
that ChemBERTa, GROVER, and DMP were all
pre-trained on large molecule-only datasets: Chem-
BERTa on 77M unique SMILES, GROVER on
11M molecules, and DMP on 110M molecules.
In contrast, InstructMol utilized only about 300K
molecule-text description pairs for the initial align-
ment stage, with parameter size updates confined
to the projector layer (< 1 million), and without
extensive retraining. This limited the molecule
space it covered. To further improve performance
on MoleculeNet, additional pretraining stages and

the collection of large unlabeled datasets to cover a
broader range of molecules could be considered.

D.8 From LoRA to Full-Finetuning

InstructMol is instruction-tuned using LoRA, with
a trainable parameter size of less than 100M, which
is significantly lower than that of domain expert
models like the MolT5 (Edwards et al., 2022) series.
These domain expert models are pretrained on over
100 million SMILES and are limited to only a few
tasks, such as molecule captioning and de novo de-
sign. The main focus of our work is to demonstrate
that the aligning SFT training approach can effi-
ciently and rapidly adapt general language models
into domain-specific multimodal models capable of
addressing multiple downstream tasks. Increasing
the trainable parameters and adding additional pre-
training datasets will further boost InstructMol’s
performance, as shown in Table 12.

To assess whether InstructMol can retain the
original capabilities of LLMs, we conducted addi-
tional dialogues using InstructMol. Our findings
indicate that the model continues to exhibit commu-
nication skills, common sense inference, and log-
ical reasoning at a qualitative level. Additionally,
we provided quantitative results on several MMLU
tasks (Hendrycks et al., 2020) (zero-shot) in Ta-
ble 13, demonstrating that despite the inevitable
forgetting problem introduced by fine-tuning, In-
structMol retains most of the original LLM’s capa-
bilities.
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Figure 8: We present several cases with a certain degree of misalignment compared to the ground truth, accompanied
by RDKit fingerprint similarity results relative to the ground truth. Due to the heightened complexity of compounds
involved in chemical reactions, the difficulty of the task increases, leading to the poor performance of Mol-
Instructions (Fang et al., 2023).

METHODS BLEU-21 BLEU-41T ROUGE-11T ROUGE-21T ROUGE-LT METEOR?
MolT5-large (Edwards et al., 2022) 0.594 0.508 0.654 0.510 0.594 0.614
Text+Chem T35 (base) (Christofidellis et al., 2023)  0.625 0.542 0.682 0.543 0.622 0.648
MOolCA (Liu et al., 2023f) 0.620 0.531 0.681 0.537 0.618 0.651
Instruct-G (Full-tune) 0.653 0.566 0.608 0.445 0.541 0.562

Table 12: Comparison with state-of-the-art models on the Molecule Caption task when performing full fine-tuning.

Model High School College
Biology Physics Chemistry | Biology Physics Chemistry
Vicuna-7B-v1.3  0.529 0.291 0.345 0.465 0.186 0.270

InstructMol-GS ~ 0.481 0.258 0.246 0.438 0.196 0.230

Table 13: Performance comparison of LORA-tuned mod-
els with original models across MMLU high school and
college science subjects.
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E Comparison with Current Agents Framework

LLMs face a major limitation in performing basic mathematical and chemical operations, which makes
handling hallucinations challenging. However, their self-supervised pre-training on diverse knowledge
equips them with a strong understanding and reasoning abilities that can be directly applied to new
domains. Presenting LLLMs as automated assistants offers a programming-free interface for non-experts to
leverage their existing capabilities. Agent/assistant paradigms enable the optimal utilization of LLMs’
knowledge without the need for specialized model development. For instance, ChemCrow (Bran et al.,
2023) is an agent system based on GPT-4 that integrates various chemical tools for solving diverse tasks.
We conducted a comparison of three downstream tasks between InstructMol and ChemCrow, and the
results are presented in Table 14.

During testing, we observed that ChemCrow’s performance is heavily reliant on prompt construction,
resulting in unstable output results. For instance, in retrosynthesis planning experiments, we found that
agents often misidentify the user’s query product as controlled chemistry and refuse to provide an answer.
Similarly, in the property prediction task, GPT-4 itself lacks specific knowledge about compounds and
thus heavily relies on internet searches. The quality of the prompt constructed by the user significantly
influences the quality of the response.

Task Ground Truth ChemCrow InstructMol
Property Prediction
Determine whether (CID:219214) ke WebSearch—
Active i . v
can suppress HIV. No information

Forward Reaction Prediction

CCC(=0)Cl + OC1=CC=CC(F)=C1

+ CICCI +C2=CC=NC=C2 —? CCC(=0)0C1=CC=CC(F)=C1 v v
Retrosynthesis Prediction

"Similar to controlled
7 — C(CCNC(=0)CCCCBRCCO NCCCCCO.0=C(0)CCCCCBr . . " v
chemistry, reject to answer

Table 14: The performance of InstructMol and ChemCrow was evaluated through a comparison of three downstream tasks:
Property Prediction, Forward Reaction Prediction, and Retrosynthesis. The v* denotes that the predictions match with the ground
truths.

Therefore, we believe that domain-specific LLMs should be augmented with dedicated external tools.
This augmentation would enable LLMs to function as planners, comprehend and decompose tasks, invoke
downstream interfaces, and effectively process feedback. In our future work, we intend to create a new
dataset for instruction-following tool usage and enhance InstructMol with a variety of external tools. By
leveraging state-of-the-art models and maximizing LLM’s reasoning and planning capabilities, we aim to
further enhance its performance.
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