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Abstract

The naturalness of responses in spoken dia-
logue systems has been significantly improved
by the introduction of large language models
(LLMs), although many challenges remain un-
til human-like turn-taking can be achieved. A
turn-taking model called Voice Activity Pro-
jection (VAP) is gaining attention because it
can be trained in an unsupervised manner us-
ing the spoken dialogue data between two
speakers. For such a turn-taking model to
be fully effective, systems must initiate re-
sponse generation as soon as a turn-shift is
detected. This can be achieved by incremen-
tal response generation, which reduces the de-
lay before the system responds. Incremen-
tal response generation is done using partial
speech recognition results while user speech
is incrementally processed. Combining incre-
mental response generation with VAP-based
turn-taking will enable spoken dialogue sys-
tems to achieve faster and more natural turn-
taking. However, their effectiveness remains
unclear because they have not yet been eval-
uated in real-world systems. In this study,
we developed spoken dialogue systems that in-
corporate incremental response generation and
VAP-based turn-taking and evaluated their im-
pact on task success and dialogue satisfaction
through user assessments.

1 Introduction

The advent of large language models (LLMs) has
fueled their active incorporation into the response
generation of dialogue systems (Shuster et al.,
2022; Bubeck et al., 2023; Hudeček and Dušek,
2023). In contrast, many spoken dialogue systems
still rely on a timeout method for dialogue con-
trol, where user utterances are processed as dis-
crete units. As a result, a significant gap remains in
response timing and turn-taking between interac-
tions with dialogue systems and human-to-human
conversations.

To develop a spoken dialogue system capable of
conversing at a human-like tempo, techniques for
modeling turn-taking in human conversation have
been actively studied (Skantze, 2021). One such
technique, Voice Activity Projection (VAP) (Ekst-
edt and Skantze, 2022a,b), has gained attention be-
cause it can be trained in an unsupervised manner
using spoken dialogue data between two speakers.
The VAP model takes both speakers’ speech as in-
put and predicts future voice activity (VA) rather
than a specific turn-taking event itself. This ap-
proach enables a single model to handle various
turn-taking events. Since the model is trained on
human conversations, it is expected to contribute
to the development of spoken dialogue systems
with more natural turn-taking abilities. However,
previous studies have only evaluated models using
fixed corpora, and the effect on the overall quality
of interactive dialogues remains unclear.

In addition, even if systems are equipped with
a natural turn-taking model, such a model will
be ineffective if response generation cannot begin
immediately once a turn-shift is detected. Incre-
mental response generation is an approach that ad-
dresses this issue. In this approach, a user’s speech
is recognized through streaming speech recogni-
tion, and candidate responses are generated as par-
tial speech recognition results are obtained. When
a turn-shift is identified, the most suitable candi-
date response is selected as the system’s final ut-
terance. Several dialogue systems have been devel-
oped that incorporate incremental response gener-
ation (Nakano et al., 2000; Michael, 2020; Chiba
et al., 2024). Although the effects of incremen-
tal processing in dialogue systems have been eval-
uated for various tasks (Skantze and Schlangen,
2009), the impact of recent LLM-based response
generation remains unclear.

In this study, we evaluated the impact of VAP-
based turn-taking combined with incremental re-
sponse generation on task success and dialogue
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satisfaction. To the best of our knowledge, this
is the first study to investigate the effectiveness
of a turn-taking algorithm in interactive settings
using state-of-the-art dialogue processing tech-
niques. We developed both task-oriented and non-
task-oriented dialogue systems and conducted user
evaluations through module ablation. This paper
analyzes our experimental results and provides de-
sign guidelines for future spoken dialogue systems
employing VAP-based turn-taking.

2 Related Work

2.1 Turn-taking models

Many studies have modeled human-to-human
turn-taking for integration into dialogue systems
(Skantze, 2021). Researchers have explored ap-
proaches that incrementally observe user speech
to determine when the system should respond.
Among deep learning models, Long Short-Term
Memory (LSTM), a type of sequential model,
has been widely used in various studies (Maier
et al., 2017; Hough and Schlangen, 2017; Skantze,
2017). An extended LSTM model that effectively
integrates acoustic and linguistic information has
also been proposed (Roddy et al., 2018; Roddy
and Harte, 2020).

In recent years, such Transformer-based ap-
proaches as TurnGPT (Ekstedt and Skantze, 2020)
and Voice Activity Projection (VAP) (Ekstedt and
Skantze, 2022a,b) have been introduced in this
area. The VAP model, in particular, has gained
attention because it can be trained in an unsuper-
vised manner using only the spoken dialogue data
between two speakers. Various extensions are be-
ing explored for VAP, including the integration of
multimodal information (Onishi et al., 2023) and
linguistic data (Liermann et al., 2023). Addition-
ally, Inoue et al. (2024) adapted the VAP model to
Japanese conversations. By employing the VAP
model, dialogue systems are expected to enable
more natural turn-taking. However, since previous
studies have only demonstrated its effectiveness
using fixed corpora, it remains unclear whether it
can effectively improve task success and dialogue
satisfaction in interactive settings.

2.2 Implementation of dialogue systems
based on incremental processing

Various systems have been implemented to per-
form incremental dialogue processing. Miyazaki
et al. (2005) developed an early dialogue sys-

Figure 1: Module structure of a spoken dialogue sys-
tem on Remdis: Pink rectangles represent incremental
modules (IMs). Blue ovals indicate input and output.

tem that generates responses using partial speech
recognition and language understanding results
with the WIT toolkit (Nakano et al., 2000). This
system facilitated the development of incremen-
tal spoken dialogue systems, but cannot be ex-
tended with modern components such as LLMs.
Schlangen and Skantze (2011) proposed, for di-
alogue systems based on incremental processing,
an architecture that handles messages exchanged
between modules as small pieces of information
called incremental units (IUs). The modules are
developed as incremental modules (IMs) that pro-
cess information each time IUs are received. Vari-
ous systems have been built using this architecture
(Schlangen et al., 2010; Skantze and Schlangen,
2009). RETICO (Michael, 2020), a toolkit for spo-
ken dialogue systems based on this architecture,
has also been recently developed.

Remdis (Realtime Multimodal Dialogue Sys-
tem Toolkit1) (Chiba et al., 2024) is another
toolkit for building modular spoken dialogue sys-
tems based on incremental processing. Similar
to RETICO, Remdis employs an architecture pro-
posed by Schlangen et al. (2010), but it man-
ages turn-taking using a VAP model and utilizes
an LLM for response generation. We chose
Remdis for constructing experimental systems be-
cause it supports advanced response generation
with LLMs, and its modules for incremental pro-
cessing and VAP can be toggled on and off, mak-
ing it ideal for our purposes. We provide a more
detailed description of Remdis in the next section.

3 Remdis: Realtime Multimodal
Dialogue System Toolkit

3.1 Overview
This paper constructs systems for comparison us-
ing Remdis (Chiba et al., 2024). Figure 1 illus-
trates a modular structure of the spoken dialogue

1https://github.com/remdis/remdis

https://github.com/remdis/remdis
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Figure 2: Incremental response generation using Voice Activity Projection (VAP): In Remdis, as partial speech
recognition results are received, streaming response generation is performed in parallel by LLM. When VAP de-
cision shifts from user’s turn to the system’s turn, the LLM that began generation with the most recent speech
recognition result is selected to generate system’s utterance for this turn. In the figure, VAP predicts a turn-shift at
tTS , and candidate r4 is selected as system’s utterance.

system built on Remdis. Each module is designed
as an incremental module (IM) that processes and
transmits results whenever it receives an IU.

3.2 Incremental processing

Remdis performs pseudo-incremental response
generation through parallel LLM execution and
streaming response generation. The system ini-
tiates streaming response generation with a new
LLM instance each time it receives partial speech
recognition results. Streaming speech recognition
is implemented using the Google Cloud Speech-to-
Text API2. When a turn-shift is detected, the sys-
tem finalizes its utterance using the LLM instance
that generated a response based on the most recent
speech recognition results.

Figure 2 shows an example of Remdis’s re-
sponse generation. Each time word-level speech
recognition results are received, a new LLM in-
stance is initiated to generate a response based on
the user’s utterance at that moment. In this ex-
ample, partial speech recognition results were re-
ceived five times, resulting in five LLM instances
that generated responses. The turn-shift timing
from the user to the system is denoted as tTS . At
this point, among the LLM instances generating
responses, the one using the most recent speech
recognition result is selected for the final system
response. In the figure, candidate r4 is chosen as
the system’s response.

The generated response is converted into a
waveform through speech synthesis. We used

2https://cloud.google.com/speech-to-text

ttslearn3 for the speech synthesis. Since current
speech synthesis systems assume that the entire ut-
terance text is provided at once, the quality of syn-
thesized speech significantly degrades when exe-
cuted in short units, such as tokens. To mitigate
this issue, Remdis buffers the text generated by the
response and performs speech synthesis incremen-
tally at each punctuation unit.

3.3 Turn-shift prediction

Remdis uses the VAP model’s output to determine
the turn-shift (tTS). A VAP module in Remdis uti-
lizes a model trained with a package distributed
at https://github.com/ErikEkstedt/VAP. The
VAP model provides two estimates: pnow and
pfuture. They represent the aggregated values of
estimated future VA, where pnow covers the inter-
val from 0.0 to 0.6 seconds, and pfuture covers
the interval from 0.6 to 2.0 seconds, indicating the
probability that one speaker will take a turn. In this
study, when both pnow and pfuture exceed a cer-
tain threshold, it becomes the system’s turn; when
they are below the threshold, it becomes the user’s
turn. When the user is speaking, if pnow exceeds
the threshold and pfuture is below it, the system
provides backchannel responses. If the VAP mod-
ule is disabled, the timing of the confirmed speech
recognition is used for tTS .

4 Experiments

We developed both task-oriented and non-task-
oriented dialogue systems with varying turn-
taking conditions. In this study, all the interac-

3https://github.com/r9y9/ttslearn

https://cloud.google.com/speech-to-text
https://github.com/ErikEkstedt/VAP
https://github.com/r9y9/ttslearn
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Figure 3: Difference of response timing among comparison systems: In this example, Incr-VAP, Incr-ASR, and
Sync generate responses at tVAP, tASR, and tSync.

tions with the dialogue system were conducted in
Japanese. The experiments were approved by the
ethical review committee for the graduate school
of informatics, Nagoya University.

4.1 Methods for comparison
This study compares spoken dialogue systems be-
tween incremental and conventional synchronous
processing, as well as systems with and without
VAP-based turn-taking. With Remdis, these sys-
tems can be easily implemented by enabling or
disabling specific modules. Participants interacted
with multiple spoken dialogue systems that dif-
fered only in their response generation and turn-
taking methods and evaluated the interactive dia-
logue quality of each system.

The methods for comparison are summarized
below.

Incr-VAP: performs incremental response gener-
ation, and the turn-shifts are based on the
VAP prediction results. It uses all the mod-
ules shown in Fig. 1.

Incr-ASR: performs incremental response gener-
ation, but the turn-shifts are based on the
confirmation of the speech recognition rather
than VAP. It uses modules other than VAP.

Sync: simulates a conventional synchronous di-
alogue system. It starts the response gen-
eration using the entire user utterance after
confirming the speech recognition’s end. Al-
though this decision allows the system to use
the entire user utterance for response genera-
tion, the response timing is delayed.

Figure 3 shows the differences in response
timings among the comparison methods. tVAP,
tASR, and tSync represent the response genera-
tion timings for each one. In many cases, the
VAP model predicts the turn-shifts faster than the
speech recognition’s confirmation, meaning that

Incr-VAP has quicker response timing than Incr-
ASR. Unfortunately, in Incr-VAP, the number of
ignored tokens increases, which may reduce the
accuracy of the response content.

4.2 Task-oriented dialogue system

We used JMultiWOZ (Ohashi et al., 2024)
to implement a task-oriented dialogue sys-
tem. JMultiWOZ, which is a Japanese multi-
domain task-oriented corpus inspired by Mul-
tiWOZ (Budzianowski et al., 2018), provides
conversations spanning six travel-related do-
mains: “tourist attractions,” “accommodations,”
“restaurants,” “shopping facilities,” “taxis,” and
“weather.”

The response generation process in MultiWOZ
is broadly divided into two steps: Dialogue State
Tracking (DST) and Response Generation (RG).
In the former step, the dialogue history is input
into the LLM to estimate the dialogue state, which
includes the user’s intent and search conditions.
The dialogue state is then used as a query to search
the database. In the RG step, the search results
and dialogue state from the DST step are inte-
grated with the dialogue history to generate re-
sponses. An LLM is employed in both the DST
and RG steps. In the incremental systems, DST
is conducted in parallel each time partial speech
recognition results are received. The most re-
cent LLM instance that is ready to generate re-
sponses is selected, and response generation is
performed in a streaming manner. Ohashi et al.
(2024) compared an LLM-Pipeline using Chat-
GPT (gpt-3.5-turbo and gpt4) (Hudeček and
Dušek, 2023) and a T5-based Pipeline4 from a
previous study (Bang et al., 2023). Since they
reported superior performance with the T5-based
Pipeline, we employed it for our experiments.

Since DST’s inference speed is particularly crit-

4https://github.com/nu-dialogue/jmultiwoz

https://github.com/nu-dialogue/jmultiwoz
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You are a chat assistant engaging in a ca-
sual conversation. For the following user ut-
terance, create and output a clever reaction
or question that is separated by punctuation
marks. Summarize the output in about one
sentence; a lengthy explanation is not neces-
sary.

Table 1: Prompt for non-task-oriented dialogue sys-
tems (translated from Japanese)

ical for real-time interaction, we used the t5-base
model. We also quantized the DST model to 8-bit
integers using ctranslate25 to further improve
its inference speed. For the RG step, we used the
t5-large model to generate as natural responses
as possible. The beam width was set to 1, and the
maximum number of output tokens was set to 256.
The temperature was set to 1.0. As the input length
increases, the response generation speed signifi-
cantly decreases, and so the dialogue history was
limited to five utterances. To reduce the compu-
tational load, response generation was carried out
every five input words.

4.3 Non-task-oriented dialogue system

In non-task-oriented dialogue systems, we used
ChatGPT for response generation. For this study,
we used gpt-3.5-turbo because at the time of
our experiments, it has the fastest response times
and best performances. The prompts for the non-
task-oriented dialogue systems are shown in Ta-
ble 1. The prompts request that utterances be
split at punctuation to increase the segmentation
points and keep them as brief as possible to en-
sure a smooth conversation flow. Note that we did
not specify a conversational topic in the prompts.
The experiment’s participants introduced the topic
themselves, followed by the system’s utterance;
conversations were primarily user-driven.

For the input, the user’s current utterance was
used with the three preceding utterances as a dia-
logue history. Response generation was performed
each time partial speech recognition results were
received. The maximum token length was set to
128, and the temperature was set to 1.0.

4.4 VAP conditions

The duration of the user and system utterances in-
put into the model was set to 20 seconds, following

5https://github.com/OpenNMT/CTranslate2

Figure 4: Experimental setup

previous studies (Ekstedt and Skantze, 2022a,b).
The threshold for turn-taking determination was
set at 0.5 based on our preliminary experiments.
Since VAP implementation does not support se-
quential processing, the speech data incrementally
stored in the buffer were input into the model at
every timestep to predict future VA.

We used the Japanese VAP model for our exper-
iments (Sato et al., 2024). This model was pre-
trained on the Switchboard Corpus and fine-tuned
using various Japanese dialogue corpora, such
as the CALLHOME Japanese Speech (Wheatley
et al., 1996) and the Travel Agency Dialogue
Corpus (Inaba et al., 2024). Evaluation of this
model on the Japanese dataset yielded an F-score
of 74.0% for Shift/Hold and 71.4% for S-pred6.
These results are comparable to the model’s per-
formance on English datasets in previous studies
(Ekstedt and Skantze, 2022a,b).

4.5 Experimental conditions
Twenty-three people (12 males and 11 females)
were engaged through a recruiting agency to join
our experiments. Their ages ranged from their 20s
to their 60s. Each participant engaged in dialogues
with six systems (i.e., task-oriented and non-task-
oriented systems using three different turn-taking
methods). They visited a booth (Fig. 4) and con-
versed with the systems. We randomized whether
the task- or non-task-oriented dialogue systems
were presented first. The presentation order of the
methods was also randomized. The goals of the
task-oriented dialogues were randomly generated
for the “weather,” “shopping,” and “restaurant” do-
mains. The topics for the non-task-oriented dia-
logues were selected from typical everyday con-

6Shift/Hold and S-pred both represent the accuracy of the
turn-shift predictions. For a more precise definition, refer to
(Ekstedt and Skantze, 2022a).

https://github.com/OpenNMT/CTranslate2
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System Method Gap↓
Task Sync 1.120 (± 0.077)
Task Incr-ASR 1.063 (± 0.061)
Task Incr-VAP 0.748 (± 0.056)
Chat Sync 0.959 (± 0.054)
Chat Incr-ASR 0.763 (± 0.038)
Chat Incr-VAP 0.610 (± 0.036)

Table 2: Average and standard error of gaps for each
system (sec): Task and Chat represent task- and non-
task-oriented dialogue systems. Bold fonts indicate
shortest gap in each system.

versation subjects (e.g., “work and study,” “fam-
ily,” and “movies”). There were 16 conversation
topics in total.

Before each dialogue, an experimenter ex-
plained the goals of the task-oriented dialogues
and provided conversation topics for the non-task-
oriented dialogues. For the task-oriented dia-
logues, the experiment ended when the partici-
pants believed they had achieved their goal or
when they determined that the task could not be
completed. The dialogues were automatically ter-
minated after three minutes. After each interac-
tion with a system, participants completed a sur-
vey for subjective evaluation. A post-experiment
survey was also conducted after all the dialogues
were completed.

4.6 Objective and subjective evaluations

For the objective evaluations, we calculated the
gap between the end of the user’s utterance and
the beginning of the system’s utterance. This gap
was measured based on the Voice Activity De-
tection (VAD) results. The systems continuously
monitored the user and system utterances and per-
formed VAD. We used the WebRTC VAD sys-
tem7 with an interval of 0.001 seconds and a frame
length of 0.010 seconds. The aggressiveness mode
was set to its default setting.

For subjective evaluations, we employed four
commonly used scales for dialogue system as-
sessments: satisfaction, naturalness, engagement,
and consistency. Additionally, we used six scales
from the SASSI questionnaire (Hone and Graham,
2000): system response accuracy, likeability, cog-
nitive demand, annoyance, habitability, and speed.
Participants rated these scales on a seven-point
scale (1: lowest, 7: highest).

7https://github.com/wiseman/py-webrtcvad
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Figure 5: Distribution of gaps for system response ac-
curacy in both systems: Gaps are averaged for each
dialogue.

5 Experimental Results

5.1 Comparison of gaps between systems

First, we compared the gaps between the systems.
Table 2 shows the mean and standard error of
the gaps for each one. The first system utter-
ance was excluded, as response generation tends to
be slower immediately after model-loading. The
introduction of incremental processing and turn-
taking with VAP reduced the gap for both systems.
Factoring in turn-taking conditions, we conducted
a one-way ANOVA, and found a significant dif-
ference (p < 0.001). Additionally, a multiple
comparisons t-test with Bonferroni correction re-
vealed significant differences among all the con-
ditions for the task-oriented systems and between
Sync and Incr-VAP for the non-task-oriented sys-
tems (p < 0.001). This suggests that incremen-
tal processing and VAP reduced the gap duration.
However, the average gap in the human-human di-
alogues is typically around 0.2 seconds (Skantze,
2021), indicating room for further improvement.

5.2 Comparison of user evaluations

Next we present the subjective evaluation results
in Table 3, which shows the average scores for
ten items for each system. The scores for Sync,
which simulates conventional dialogue systems,
are above average for items such as satisfaction
and system response accuracy. Most user ratings
decreased as the response generation process pro-
gressed in Sync, Incr-ASR, and Incr-VAP. One
possible reason for this decline is that faster turn-
taking decisions resulted in selecting LLMs that
used more incomplete user utterances. Fig. 5
shows the distribution of the gaps for the ratings
for the system response accuracy across all the
systems. The gaps were averaged for each dia-
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System Method Sat↑ Nat↑ Eng↑ Con↑ SRA↑ Like↑ CD↓ Annoy↓ Habit↑ Sp↑
Task Sync 3.652 3.913 3.739 4.478 4.261 3.957 4.435 3.522 3.652 5.174
Task Incr-ASR 3.261 3.696 3.261 3.957 4.000 3.609 5.217 3.913 3.391 5.217
Task Incr-VAP 2.478 3.043 2.957 4.304 3.043 3.130 4.826 4.217 2.783 5.217
Chat Sync 4.217 4.043 4.043 4.609 4.435 3.957 4.739 3.261 3.478 5.304
Chat Incr-ASR 3.478 3.652 3.565 4.087 3.696 3.522 4.696 3.478 3.043 5.130
Chat Incr-VAP 3.000 3.304 2.913 3.565 3.261 3.391 5.261 4.000 3.000 5.217

Table 3: Average subjective evaluation score for each system: Task and Chat represent task- and non-task-oriented
dialogue systems. Sat: satisfaction, Nat: naturalness, Eng: engagement, Con: consistency, SRA: system response
accuracy, Like: likeability, CD: cognitive demand, Annoy: annoyance, Habit: habitability, Sp: speed. Bold fonts
indicate best scores in each system.

Method Success Fail Out of time
Sync 23.8 4.8 71.4
Incr-ASR 22.7 4.5 72.7
Incr-VAP 9.1 13.6 77.0

Table 4: Task success and fail rate for task-oriented di-
alogue systems [%]

logue. Dialogues with high scores were more fre-
quently distributed among those with larger aver-
age gaps. The correlation coefficient between gaps
and ratings was r = 0.265, p < 0.01, suggesting
that dialogues with shorter response times tended
to generate more inaccurate responses to user in-
put. In terms of speed, all the systems were rated
highly. However, contrary to expectations, the
ratings were nearly equal across all the systems.
Participants did not perceive the gap differences
achieved through the incremental response gener-
ation and the VAP models. We conducted a one-
way ANOVA factoring the systems for speed and
found no significant differences.

Table 4 displays the task success and failure
rates for the task-oriented dialogue systems. The
task success rate for Sync was 23.8%. In a previ-
ous study, Ohashi et al. (2024) reported task suc-
cess rates exceeding 65% using the same model.
One possible reason for this discrepancy is that
the response generation models used in their ex-
periments were trained on text data, which may
not align well with user utterances in spoken di-
alogues. For example, while users tend to pro-
vide longer inputs with more slot information to
achieve their goals in text dialogues, they gener-
ally provide shorter, more segmented inputs in spo-
ken dialogues. These findings correspond with
experiments using SpokenWOZ (Si et al., 2023),
which collected spoken dialogues based on the
MultiWOZ framework. Si et al. (2023) reported a

larger decrease in task success in spoken dialogues
compared to text-based ones.

From these results, we conclude that the simple
introduction of incremental response generation
with VAP did not improve the user evaluations, de-
spite reducing the gap durations. In the current
framework, as response timing quickened, the user
utterances for the response generation were more
incomplete, perhaps leading to an increase in re-
sponses that did not align with the user input.

5.3 Error analysis

A portion of a dialogue with Incr-VAP is shown
in Fig. 6. This example contains several turn-
shift prediction errors. Around 1.0 second, the
VAP output leans toward the system’s turn, even
though the user is trying to continue speaking. The
VAP model used in the experiment tended to in-
correctly determine turn-taking at the inter-pausal
unit (IPU) termination. This result suggests that
the model is ineffectively capturing prosodic infor-
mation near the end of an IPU. Additionally, since
the two system utterances from 1.0 to 5.5 seconds
were originally part of one utterance, the system
misappraised the turn-shift during the pause be-
tween these segments. Furthermore, the system
utterance (“What kind of food do you like?”) was
generated due to this misjudgment and uttered in
succession. This likely occurred because the VAP
model was trained on human conversations and
thus mismatches with synthesized speech. The
pauses in the synthesized speech are longer than
those in human speech, leading the model to incor-
rectly judge turn-shifts.

6 Discussions

We next identify issues with current systems and
discuss future challenges for achieving real-time
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料理について話しましょうか
Why don’t we talk about  food?

家庭料理って何をよく作りますか？
What do you often cook at home?

どんな料理がお好きですか？
What kind of food do you like?

料理を
Cooking...

いや、料理をする工程が
No, a process of cooking...

.

Figure 6: Typical examples of turn-shift prediction error: Texts are transcriptions of utterances translated from
Japanese. First and second panels display waveforms of system and user speech. Third panel shows the transition
of pnow. In this figure, segments where pnow is greater than the center represent system turns, and segments where
pnow is smaller than the center represent user turns.

spoken dialogue systems with high user evalua-
tions.

Incremental response generation: Experi-
ments showed that the response accuracy de-
creased as the response time shortened, resulting
in Sync achieving the highest subjective evalua-
tion scores. This suggests that, to improve the user
evaluations, we must not only reduce the response
times but also simultaneously ensure response ac-
curacy. Current studies on dialogue systems as-
sume that an entire user utterance is always pro-
vided, which does not align with the fast-paced na-
ture of spoken dialogues. Therefore, a framework
is needed for incremental response generation that
can deliver appropriate responses aligned with the
context and the tempo of spoken dialogues, even
when only partial user utterances are available.
The key to achieving this lies in interpreting frag-
mented user utterances and constructing a shared
understanding with users based on such interpreta-
tions. For response generation using LLMs, con-
sidering past utterances would be effective while
also predicting user utterances that have not yet
been observed (e.g., (Ohagi et al., 2024)). Fine-
tuning the model using the transcriptions of spo-
ken dialogues could also prove useful.

Another issue involves handling user disfluen-
cies. Since the speech recognition system and the
LLM used in this study seemingly failed to fully
account for such disfluencies, instances of incor-
rect responses could have been generated in re-
action to user disfluencies or intermediate results
from the speech recognition process. Accurately
recognizing disfluencies and enhancing LLMs to

better manage them is essential, as discussed in
Baumann et al. (2017).

Robust turn-shift prediction: There is room
for improving the robustness of the VAP model.
In particular, the model used in our experiments
was trained on human conversations and often be-
haves unexpectedly when synthesized speech is in-
put. For example, incorrect turn-shifts frequently
occur during system turns because pauses in syn-
thesized speech are longer than those in human ut-
terances. Additionally, the prediction results are
significantly influenced by microphone character-
istics and settings during the experiment. There-
fore, the model must be trained with a wider range
of speech data, including synthesized speech.

Moreover, the VAP model often assumed it was
the system’s turn as soon as the user’s speech
stopped. From post-experiment surveys, many par-
ticipants felt frustrated that the system did not wait
for them to fully finish their utterances. A turn-
shift decision method that considers pauses and
other conversational cues is needed to better ac-
commodate natural dialogue flow.

Conversational speech synthesis: Current
speech synthesis systems are designed to receive
and output entire utterances, and the quality of the
synthesized speech is not guaranteed when par-
tial utterance texts are provided as input. This
limitation necessitates buffering a certain length
of speech for synthesis, which introduces a delay
before the system’s speech is uttered. Streaming
speech synthesis, which incrementally generates
speech from partial text, is necessary to address
this issue. To maximize the effectiveness of cur-
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rent VAP models, the generated speech must also
be made more conversational. Training speech
synthesis models using spoken dialogue data, as
done in previous studies (Rubenstein et al., 2023;
Nguyen et al., 2023; Iizuka and Mori, 2022), will
be useful for achieving this goal.

7 Conclusions

We investigated the effectiveness of incremental
processing with VAP-based turn-taking in spoken
dialogue systems. For the first time, this pa-
per empirically verified the effectiveness of such
turn-taking algorithms in interactive systems us-
ing state-of-the-art dialogue processing. We devel-
oped both task-oriented and non-task-oriented dia-
logue systems, conducted experiments, and eval-
uated the quality of the interactions. The re-
sults showed that although incremental processing
and VAP-based turn-taking successfully reduced
gap duration, they did not notably improve the
dialogue quality, because shorter response times
caused more inaccurate system responses. Our
findings suggest a potential path toward achieving
real-time dialogue systems with high-quality inter-
active performance.

8 Limitations

Effect of model performance: For the non-
task-oriented dialogue systems, we used
gpt-3.5-turbo, which was deemed the best
model at the time of our experiments. Similarly,
for the task-oriented dialogue systems, we used
the T5-based model, which we believed to be the
best system for the JMultiWOZ task. However,
these dialogue models may not necessarily be the
best choice for real-time spoken dialogue. More
recent models, such as gpt-4o-mini, may offer
better user evaluations. The impact of model
performance needs to be investigated further in
future studies.
Cultural differences in turn-taking: Cultural dif-
ferences exist in acceptable pause lengths and the
frequency of backchannels in conversations (Joki-
nen et al., 2013; Cutrone, 2005). These stud-
ies suggest that longer pauses are acceptable in
Japanese conversations, and that Japanese speak-
ers tend to use more backchannels. Our partici-
pants reported that frequent interruptions by the
system were annoying, although perhaps the re-
sults may differ in other cultures. We believe that
more general conclusions can be drawn by investi-

gating the effects of the examined methods across
different languages and cultural contexts.
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