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Abstract

This study investigates the effectiveness of
Large Language Models (LLMs) for zero-shot
keyphrase extraction (KE). We propose and
evaluate four prompting strategies: vanilla, role
prompting, candidate-based prompting, and hy-
brid prompting. Experiments conducted on six
widely-used KE benchmark datasets demon-
strate that Llama3-8B-Instruct with vanilla
prompting outperforms state-of-the-art unsu-
pervised methods, PromptRank, by an average
of 9.43%, 7.68%, and 4.82% in F1@5, F1@10,
and F1@15, respectively. Hybrid prompting,
which combines the strengths of vanilla and
candidate-based prompting, further enhances
overall performance. Moreover role prompting,
which assigns a task-related role to LLMs, con-
sistently improves performance across various
prompting strategies. We also explore the im-
pact of model size and different LLM series:
GPT-4o, Gemma2, and Qwen2. Results show
that Llama3 and Gemma2 demonstrate the
strongest zero-shot KE performance, with hy-
brid prompting consistently enhancing results
across most LLMs. We hope this study provides
insights to researchers exploring LLMs in KE
tasks, as well as practical guidance for model
selection in real-world applications. Our code is
available at https://github.com/kangnlp/
Zero-shot-KPE-with-LLMs.

1 Introduction

Keyphrases are single words or multi-word phrases
that summarize the core content of a document.
Keyphrase extraction (KE) is the task of au-
tomatically identifying and extracting multiple
keyphrases from a given document. Numerous KE
methods have been proposed, with a significant
focus on unsupervised approaches due to their flex-
ibility and applicability across diverse domains.
Most unsupervised keyphrase extraction (UKE)
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(a) Vanilla
Extract keyphrases from the text. The answer should be listed after 
'Keyphrases: ' and separated by semicolons (;). 'Keyphrases: keyphrase 1 
; keyphrase 2 ; ... ; keyphrase N'"

Text: {document}

(b) Role Prompting

You are a keyphrase extractor. Extract keyphrases from the text. The 
answer should be listed after 'Keyphrases: ' and separated by semicolons 
(;). 'Keyphrases: keyphrase 1 ; keyphrase 2 ; ... ; keyphrase N'"

Text: {document}

(c) Candidate-based Prompting

You are a keyphrase extractor. Extract top 5 keyphrases from the 'Key
phrase candidates' consisting of noun phrases extracted from the text. 
The answer should be listed after 'Keyphrases: ' and separated by semic
olons (;). 'Keyphrases: keyphrase 1 ; keyphrase 2 ; ... ; keyphrase N'

Text: {document}
Keyphrase candidates: { Candidates (noun phrases)}

You are a keyphrase extractor. Extract top 15 keyphrases from the 'Key
phrase candidates'. The answer should be listed after 'Keyphrases: ' and 
separated by semicolons (;). 'Keyphrases: keyphrase 1 ; keyphrase 2 ; ... 
; keyphrase N'

Text: {document}
Keyphrase candidates: {(b)Output + (c)Output}

(d) Hybrid Prompting

Figure 1: Examples of four prompting strategies for
zero-shot keyphrase extraction.

methods follow a two-step process: 1) extracting
candidates from the document and 2) estimating
their importance. The candidate set is constructed
by performing part-of-speech (POS) tagging on
all words in the given document and extracting all
noun phrases, resulting in a larger number of candi-
dates than the ground truth keyphrases. Thus, accu-
rately estimating the importance of each candidate
is crucial for the performance of UKE. To estimate
the importance of candidates, various methods have
been proposed, including statistical (Sparck Jones,
1988; Campos et al., 2018), graph-based (Mihal-
cea and Tarau, 2004; Wan and Xiao, 2008), and
embedding-based (Bennani-Smires et al., 2018;
Sun et al., 2020; Liang et al., 2021; Zhang et al.,

https://github.com/kangnlp/Zero-shot-KPE-with-LLMs
https://github.com/kangnlp/Zero-shot-KPE-with-LLMs
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2022; Song et al., 2023) approaches.
The emergence of Large Language Models

(LLMs), such as ChatGPT1 and Llama (Touvron
et al., 2023), has transformed the NLP landscape.
These instruction-following LLMs can perform
various NLP tasks in a zero-shot setting simply
by providing task instructions as prompts. Conse-
quently, a new approach to UKE has become pos-
sible, which guides LLMs to generate a sequence
of correct keyphrases by providing an appropri-
ate prompt as context. This prompting-based ap-
proach is distinctly different from traditional meth-
ods that focused on measuring the importance of
candidates. Given the potential of this novel ap-
proach, this study aims to explore and leverage
the capabilities of LLMs for zero-shot KE. We
also investigate whether LLMs possess the ability
to estimate candidate importance through prompt-
ing. Which is more effective: directly instructing
LLMs to extract keyphrases, or instructing LLMs
to select keyphrases from a set of candidates? Ad-
ditionally, are there ways to improve the zero-shot
performance of LLMs? Can we achieve improved
performance by combining these approaches? To
address these questions and thoroughly explore the
potential of LLMs for KE, we propose and evaluate
four prompting strategies:

• Vanilla: We evaluate the fundamental KE ca-
pabilities of LLMs, acquired through their pre-
training and instruction tuning, by using basic
task instructions. The prompt is shown in Fig-
ure 1 (a).

• Role Prompting: We explore whether assign-
ing a task-related role at the beginning of the
prompt contributes to improving zero-shot KE
performance, as illustrated in Figure 1 (b).

• Candidate-based Prompting: Similar to tra-
ditional UKE methods, we provide candidates
as context and instruct the model to select the
top-k among them (Figure 1 (c)). This strat-
egy evaluates whether LLMs can be utilized
as candidate importance estimators.

• Hybrid Prompting: We combine the pre-
dicted keyphrases obtained through vanilla
and candidate-based prompting (both with
role prompting applied), instructing the LLMs
to make a final keyphrase prediction. This ap-
proach investigates the potential for ensemble

1https://openai.com/index/chatgpt

of these prompting strategies. The example is
shown in (d) of Figure 1.

We conduct comprehensive experiments on six
widely-used benchmark datasets for KE, primar-
ily focusing on Llama3-8B-Instruct, which can
run inference on GPUs with 24GB memory, rep-
resenting a practical scale for real-world applica-
tions. Our results show that Llama3-8B-Instruct,
with vanilla prompting, can outperform the state-of-
the-art KE method PromptRank by an average of
9.43%, 7.68%, and 4.82% in F1@5, F1@10, and
F1@15, respectively. Furthermore, hybrid prompt-
ing improves LLMs’ vanilla performance by an
average of 3.52%, 1.42%, and 0.68% in F1@5,
F1@10, and F1@15, respectively. Through ab-
lation studies, we demonstrate that role prompt-
ing consistently improves Llama3-8B-Instruct’s
zero-shot performance across almost all cases. Ad-
ditionally, we conduct comprehensive comparative
experiments with ChatGPT and several recently
released open-source LLMs, demonstrating that
Llama3 and Gemma2 can be reasonable choices.

We hope this paper can provide insights for re-
searchers exploring LLMs in KE, as well as prac-
tical guidance for model selection in real-world
applications.

2 Related Work

2.1 Unsupervised Keyphrase Extraction
Traditional UKE methods involve extracting noun
phrases from a given document to form a candidate
set. They estimate the importance of each candi-
date and rank them to extract the top-k keyphrases.
To estimate the importance of candidates, statistics-
based methods (Sparck Jones, 1988; Campos et al.,
2018) and graph-based methods have been pro-
posed (Mihalcea and Tarau, 2004; Wan and Xiao,
2008; Bougouin et al., 2013; Boudin, 2018). With
the advancement of deep learning and pre-trained
language models, embedding-based methods have
shown strong performance by estimating the se-
mantic relevance between candidates and the input
document (Bennani-Smires et al., 2018; Sun et al.,
2020; Liang et al., 2021; Zhang et al., 2022; Song
et al., 2023). Recently, Kong et al. (2023) proposed
PromptRank, a novel approach where the document
is input to the encoder of T5 (Raffel et al., 2020),
and a prompt-candidate pair template is input to the
decoder, estimating the importance of candidates
based on the probability that the decoder’s prompt
generates the candidate.

https://openai.com/index/chatgpt
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2.2 Large language models and Prompting

Since the advent of LLMs (Brown et al., 2020;
Ouyang et al., 2022), numerous NLP tasks can be
approached through few-shot or zero-shot learning
without task-specific training, leading to intensive
exploration of prompting techniques. Particularly
in the domain of reasoning, various methods have
been proposed. To enhance reasoning performance
on complex problems, methods such as Chain of
Thought (CoT) (Wei et al., 2022), which creates
a reasoning chain between the problem and the
solution, Zero-CoT (Kojima et al., 2022), which
prompts LLMs to generate their reasoning chain
using the prompt "Let’s think step by step." and
Plan and Solve (Wang et al., 2023), which prompts
LLMs to devise a plan and solve tasks accordingly,
have been proposed.

In the field of Information Extraction (IE), the
use of LLMs and prompting has also been explored.
Wei et al. (2024) demonstrated that by prompting
ChatGPT, a powerful zero-shot IE model could
be derived for tasks such as entity relation triple
extraction, named entity recognition (NER), and
event extraction. Xie et al. (2023) conducted a sys-
tematic empirical study on NER using ChatGPT
with various prompting techniques.

Following this trend, benchmarking and prelimi-
nary studies have been conducted to utilize LLMs
for KE and keyphrase generation (Martínez-Cruz
et al., 2023; Song et al., 2024a,b). These studies
primarily focused on ChatGPT, while the zero-shot
KE performance of more recently released LLMs
has not yet been deeply investigated. To the best
of our knowledge, this study is the first to conduct
a comprehensive empirical investigation into the
zero-shot KE abilities of various LLMs.

3 Method

3.1 Vanilla

To find prompts that yield strong zero-shot KE
performance, we conduct preliminary experiments
on various prompts (See Appendix A). The prompt
"Extract keyphrases from the text." is selected as
our vanilla prompt, as it performed the best on
average. The template for the vanilla prompt is
shown in Figure 1 (a).

3.2 Role Prompting

Kong et al. (2024) demonstrated that role-play
prompting, which assigns specific roles to LLMs,
improves their zero-shot reasoning performance.

Inspired by this, we assign the role of "Keyphrase
extractor" to the LLMs. This role, selected through
preliminary experiments (See Appendix B), is im-
plemented by prepending "You are a keyphrase
extractor." to the prompt, as shown in Figure 1 (b).

3.3 Candidate-based Prompting
Traditional UKE methods compute the importance
of each candidate in a set of noun phrases extracted
from the input document, rank them, and then ex-
tract the top k to predict the final keyphrases. Simi-
lar to traditional methods, we investigate whether
LLMs can be utilized as candidate importance
estimators. We first perform POS tagging us-
ing the widely-used StanfordCoreNLP2 tool and
then extract noun phrases using NLTK3’s Regexp-
Parser. The extraction is based on a regex pattern
<NN.*|JJ>*<NN.*> that captures sequences of op-
tional adjectives followed by one or more nouns
to form a candidate set. Subsequently, we pro-
vide this candidate set along with the document
in the prompt, asking the LLMs to extract the top
k keyphrases from the candidate set. The template
for candidate-based prompting is shown in Figure
1 (c).

3.4 Hybrid Prompting
The vanilla prompting relies entirely on the LLM to
recognize keyphrases within the text and determine
their boundaries independently. In contrast, the
candidate-based prompting presents a pre-extracted
set of candidates to the LLM, instructing it to se-
lect the relatively more important ones, utilizing the
model’s ability to discriminate between candidates.

To leverage the strengths of both approaches, we
propose a hybrid prompting strategy that ensembles
two different perspectives of prompting. This ap-
proach first concatenates the keyphrases predicted
by the vanilla prompt with the top k keyphrases se-
lected through candidate-based prompting (both
with role prompting applied) to form the final
keyphrase candidates. Then, we instruct the LLMs
to predict the final keyphrases from this combined
set through another stage of inference. The tem-
plate for hybrid prompting is depicted in Figure 1
(d).

Our hybrid prompting strategy is designed to
address the limitations of each individual method
by leveraging their complementary strengths. Thus,
it has the potential to capture keyphrases that might

2https://stanfordnlp.github.io/CoreNLP
3https://github.com/nltk

https://stanfordnlp.github.io/CoreNLP
https://github.com/nltk
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Dataset Domain NDoc LDoc NKP NCan

Inspec Scientific 500 122 9.8 27.2
SemEval2017 Scientific 494 170 17.3 36.8
SemEval2010 Scientific 100 190 15.1 36.1

DUC2001 News 307 725 8.1 93.0
NUS Scientific 211 7702 11.7 92.0

Krapivin Scientific 460 8545 5.7 90.5

Table 1: Statistics of testing datasets. NDoc: number of
documents; LDoc: average document length; NKP : av-
erage number of gold keyphrases per document; NCan:
average number of candidate per document (based on
truncated input of 512 words).

be missed by one approach but identified by the
other, offering a more comprehensive keyphrase
extraction.

4 Experiments

4.1 Experimental Setup

Datasets To comprehensively evaluate the per-
formance of LLMs, we conduct experiments us-
ing six keyphrase extraction benchmark datasets
widely used in previous studies: Inspec (Hulth,
2003); SemEval2017 (Augenstein et al., 2017); Se-
mEval2010 (Kim et al., 2010); DUC2001 (Wan
and Xiao, 2008); NUS (Nguyen and Kan, 2007);
Krapivin (Krapivin et al., 2009). The domains and
statistical information of each dataset are presented
in Table 1. For a fair comparison with baselines,
the maximum length of input documents is set to
512.

Evaluation Metrics Following previous studies
(Liang et al., 2021; Zhang et al., 2022; Kong et al.,
2023), we use the F1@K score (K = 5, 10, and
15), a widely used metric in KE. Traditional UKE
methods extract the top-k keyphrases based on the
importance score of each candidate, but LLMs pre-
dict multiple keyphrases as a single text sequence.
Therefore, we consider the order of keyphrases pre-
dicted by LLMs as their rank for evaluation. Dupli-
cate keyphrases are removed from the predictions,
and NLTK’s PorterStemmer is applied for word
stemming before matching predicted and ground
truth keyphrases.

Baselines We set the following methods as
baselines: the statistical method YAKE (Cam-
pos et al., 2020); graph-based methods Tex-
tRank (Mihalcea and Tarau, 2004), SingleRank
(Wan and Xiao, 2008), TopicRank (Bougouin
et al., 2013), MultipartiteRank (Boudin, 2018);

embedding-based methods EmbedRank (Bennani-
Smires et al., 2018), SIFRank (Sun et al., 2020),
MDERank (Zhang et al., 2022); and the method
PromptRank (Kong et al., 2023), which is based
on the probability that the T5 decoder’s prompt
generates the candidate.

LLMs In this study, we primarily experiment
with Llama-3-8B-Instruct4, released by Meta
on Hugging Face. Additionally, we conduct exper-
iments on other open-source LLM series, Qwen2
and Gemma2. We also evaluate ChatGPT using the
OpenAI API.

Implementation Details The experiments con-
ducted in this paper use the source code released by
Kong et al. (2023) with PromptRank for data pre-
processing and evaluation. To ensure reproducibil-
ity, we set do_sample=False for open-source
LLMs and set temperature=0 when calling the
ChatGPT API. Experiments are conducted on an
NVIDIA GeForce RTX 4090 24GB. For large-scale
models of 70B parameters and above, we use two
NVIDIA H100 80GB GPUs.

4.2 Main Result

Table 2 shows the zero-shot KE performance
of Llama3-8B-Instruct across six datasets. The
results indicate that the simplest prompt, "Ex-
tract keyphrases from the text." referred to as
vanilla, achieves state-of-the-art (SOTA) perfor-
mance on most datasets. On average, vanilla out-
performs the previous best-performing method,
PromptRank, with improvements by approxi-
mately 9.43% in F1@5, 7.68% in F1@10, and
4.82% in F1@15. Notably, on the NUS dataset,
which contains longer documents, vanilla surpasses
PromptRank by 31.67%, 25.68%, and 16.05% in
F1@5, F1@10, and F1@15, respectively. Similarly,
on the Krapivin dataset, vanilla shows improve-
ments of 33.15%, 23.61%, and 14.36% in F1@5,
F1@10, and F1@15, respectively. These results
suggest that the prompting-based approach is more
effective for longer documents, where the tradi-
tional ranking methods struggle with the increased
number of candidates. This demonstrates the ability
of LLMs to make more refined keyphrase predic-
tions on longer documents. This highlights the effi-
ciency and power of LLMs as zero-shot keyphrase
extractors with simple instructions.

4https://huggingface.co/meta-llama/
Meta-Llama-3-8B-Instruct

https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct
https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct
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F1@K Method
Dataset

AVG
Inspec SemEval2017 SemEval2010 DUC2001 NUS Krapivin

5

TextRank 21.58 16.43 7.42 11.02 1.80 6.04 10.72
SingleRank 14.88 18.23 8.69 19.14 2.98 8.12 12.01
TopicRank 12.20 17.10 9.93 19.97 4.54 8.94 12.11

MultipartiteRank 13.41 17.39 10.13 21.70 6.17 9.29 13.02
YAKE 8.02 11.84 6.82 11.99 7.85 8.09 9.10

EmbedRank (BERT) 28.92 20.03 10.46 8.12 3.75 4.05 12.56
SIFRank (ELMo) 29.38 22.38 11.16 24.30 3.01 1.62 15.31

MDERank (BERT) 26.17 22.81 12.95 13.05 15.24 11.78 17.00
PromptRank (T5) 31.73 27.14 17.24 27.39 17.24 16.11 22.81

Vanilla (Llama3-8B-Instruct) 36.75 24.21 17.04 27.60 22.70 21.45 24.96
Hybrid (Llama3-8B-Instruct) 36.81 25.12 18.44 29.98 23.27 21.41 25.84

10

TextRank 27.53 25.83 11.27 17.45 3.02 9.43 15.76
SingleRank 21.50 27.73 12.94 23.86 4.51 10.53 16.85
TopicRank 17.24 22.62 12.52 21.73 7.93 9.01 15.18

MultipartiteRank 18.18 23.73 12.91 24.10 8.57 9.35 16.14
YAKE 11.47 18.14 11.01 14.18 11.05 9.35 12.53

EmbedRank (BERT) 38.55 31.01 16.35 11.62 6.34 6.60 18.41
SIFRank (ELMo) 39.12 32.60 16.03 27.60 5.34 2.52 20.54

MDERank (BERT) 33.81 32.51 17.07 17.31 18.33 12.93 21.99
PromptRank (T5) 37.88 37.76 20.66 31.59 20.13 16.71 27.46

Vanilla (Llama3-8B-Instruct) 46.42 34.95 22.46 27.74 25.30 20.58 29.57
Hybrid (Llama3-8B-Instruct) 45.80 36.08 22.45 29.55 24.99 21.09 29.99

15

TextRank 27.62 30.50 13.47 18.84 3.53 9.95 17.32
SingleRank 24.13 31.73 14.40 23.43 4.92 10.42 18.17
TopicRank 19.33 24.87 12.26 20.97 9.37 8.30 15.85

MultipartiteRank 20.52 26.87 13.24 23.62 10.82 9.16 17.37
YAKE 13.65 20.55 12.55 14.28 13.09 9.12 13.87

EmbedRank (BERT) 39.77 36.72 19.35 13.58 8.11 7.84 20.90
SIFRank (ELMo) 39.82 37.25 18.42 27.96 5.86 3.00 22.05

MDERank (BERT) 36.17 37.18 20.09 19.13 17.95 12.58 23.85
PromptRank (T5) 38.17 41.57 21.35 31.01 20.12 16.02 28.04

Vanilla (Llama3-8B-Instruct) 48.16 38.56 22.89 25.09 23.35 18.32 29.39
Hybrid (Llama3-8B-Instruct) 45.17 40.23 22.87 27.21 23.70 18.35 29.59

Table 2: F1@K performance of zero-shot keyphrase extraction with Llama3-8B-Instruct on six datasets, for K ∈ {5,
10, 15}. The best performance is bold and the second-best is underlined.

In Table 2, hybrid refers to the experimental re-
sults where LLMs re-predict the final keyphrases
from a set that combines the keyphrases predicted
using the vanilla prompt with the top-5 keyphrases
predicted using candidate-based prompting. For
both stages, the prompts begin with a role assign-
ment. The results show that the hybrid method im-
proves upon the vanilla performance in most cases,
with average improvements of 3.52%, 1.42%, and
0.68% in F1@5, F1@10, and F1@15, respectively.
The impact of each component is discussed in de-
tail in the ablation study in the following section
4.3.

4.3 Ablation Study

4.3.1 Effects of Role Prompting

Table 3 shows the performance when applying role
prompting to each proposed prompting strategy

compared to when it is not applied. The results indi-
cate that role prompting enhances performance not
only for the vanilla prompt but also for candidate-
based prompting and the combined Hybrid method.
Notably, in some cases, such as SemEval’s F1@10
and F1@15, the simpler role prompting outper-
forms the more complex Hybrid method. This sug-
gests that role prompting, despite merely adding a
single sentence to the prompt, can play a critical
role in improving zero-shot performance.

To further analyze the impact of the assigned
role on LLM performance, we conducted experi-
ments applying various role prompts to the vanilla
prompt, as discussed in B. The results show that
assigning the role of ‘keyphrase extractor’ consis-
tently improves the zero-shot performance of the
vanilla prompt. Conversely, assigning roles irrel-
evant to the task leads to decreased performance
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F1@K Method
Dataset

AVG
Inspec SemEval2017 SemEval2010 DUC2001 NUS Krapivin

5

PromptRank (T5) 31.73 27.14 17.24 27.39 17.24 16.11 22.81
Vanilla w/o Role 36.75 24.21 17.04 27.60 22.70 21.45 24.96
Vanilla w/ Role 36.66 24.90 17.24 28.16 22.47 21.17 25.10
Candidate w/o Role 31.89 23.46 17.74 29.58 18.09 17.93 23.12
Candidate w/ Role 33.57 23.84 18.63 30.43 20.53 19.39 24.40
Hybrid w/o Role 37.18 24.52 18.04 28.88 23.09 21.62 25.56
Hybrid w/ Role 36.81 25.12 18.44 29.98 23.27 21.41 25.84

10

PromptRank (T5) 37.88 37.76 20.66 31.59 20.13 16.71 27.46
Vanilla w/o Role 46.42 34.95 22.46 27.74 25.30 20.58 29.58
Vanilla w/ Role 46.24 35.75 22.92 28.65 25.04 20.86 29.91
Candidate w/o Role 40.57 33.36 21.62 31.10 21.40 18.37 27.74
Candidate w/ Role 42.18 33.06 21.70 32.31 23.19 19.39 28.64
Hybrid w/o Role 46.27 35.40 21.94 28.73 24.90 20.66 29.65
Hybrid w/ Role 45.80 36.08 22.45 29.55 24.99 21.09 29.99

15

PromptRank (T5) 38.17 41.57 21.35 31.01 20.12 16.02 28.04
Vanilla w/o Role 48.16 38.56 22.89 25.09 23.35 18.32 29.40
Vanilla w/ Role 48.04 39.68 23.21 25.79 23.53 18.27 29.75
Candidate w/o Role 41.40 37.60 21.68 28.56 20.76 17.57 27.93
Candidate w/ Role 42.30 37.53 22.95 29.76 22.61 18.50 28.94
Hybrid w/o Role 45.85 39.50 23.10 26.83 23.48 18.34 29.52
Hybrid w/ Role 45.17 40.23 22.87 27.21 23.70 18.35 29.59

Table 3: Ablation study results on six datasets with Llama3-8B-Instruct. "Vanilla" refers to the predictions from (a)
in 1. "Candidate" refers to the prompt format shown in (c) of 1, but with the instruction to extract the top 15 instead
of top 5. "Hybrid" refers to the combination of the output from (a) in 1 and the top-5 outputs obtained from (c) to
make the final prediction through (d). "w/ Role" refers to adding the sentence "You are a keyphrase extractor." at
the beginning of the prompt, whereas "w/o Role" refers to the case where this sentence was not included. The best
performance is bold.

across all metrics compared to the vanilla prompt.
This demonstrates that simply assigning any role
does not enhance performance; rather, the role must
be relevant and helpful for the LLM to understand
the task to achieve performance improvements.

4.3.2 Performance of Candidate-based
Prompting

We evaluated the performance of candidate-based
prompting alone to determine if LLMs could ef-
fectively select keyphrases from a candidate set.
To assess performance across F1@5, F1@10, and
F1@15, we modified the prompt in Figure 1 (c) by
changing "top 5" to "top 15". As shown in Table
3, candidate-based prompting generally performs
lower than the vanilla prompt on average. However,
when a role is assigned, the average performance
surpasses that of PromptRank, the best among tra-
ditional KE methods. This indicates that while di-
rectly extracting keyphrases might be more effec-
tive, LLMs are still capable of accurately identify-
ing relatively important keyphrases from a candi-
date set more effectively than traditional methods.

Figure 2: Average F1@5, F1@10, and F1@15 perfor-
mance across 6 datasets for hybrid prompting with in-
creasing number of augmented candidates.

4.3.3 Effects of Augmented Candidates
In Table 3, Hybrid refers to the results where the
final keyphrases are re-predicted from a set that
combines the keyphrases predicted by the vanilla
prompt with five additional keyphrases selected
through candidate-based prompting. The results
show that Hybrid generally improves performance
over the vanilla prompt, both with and without role
assignment. This indicates that the candidates se-
lected by LLMs can serve as valuable information
for predicting the final keyphrases.

We also evaluated the impact of the number of
keyphrases (k) augmented on the final Hybrid pre-
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dictions by experimenting with k values of 5, 10,
15, and 20. Figure 2 shows the performance of
F1@5, F1@10, and F1@15 as the number of aug-
mented candidates increases. The highest perfor-
mance for F1@5 and F1@10 is observed when aug-
menting with five candidates, while performance
decreases when augmenting with 15 or more candi-
dates. This suggests that simply increasing the num-
ber of augmented candidates does not contribute
to performance improvements; rather, augmenting
with a few selected candidates by the LLMs is more
effective.

4.4 Experiments with Larger and Different
LLMs

To investigate the KE performance of various
LLMs and evaluate the generalizability of our ap-
proach, we conducted experiments on different se-
ries of LLMs recently released, specifically GPT-
4o, Gemma2, and Qwen2. We also conducted ex-
periments across various model scales to investi-
gate the impact of model size on performance. We
discovered that GPT-4o tends to generate longer
phrases when the term ‘keyphrase’ is used in
prompts. To address this, we experimented with
using ‘keyword’ instead of ‘keyphrase’ for GPT-
4o, denoted as GPT-4o* in Table 4.

Table 4 presents the results of our comprehen-
sive evaluation, showing the average performance
across all datasets. Detailed results for each dataset
can be found in Appendix C. The hybrid prompt-
ing approach demonstrates consistent improvement
over vanilla prompting across most models, with
the exception of Qwen2-7B-Instruct and GPT-4o.
Further analysis revealed that while hybrid prompt-
ing itself enhances performance for Qwen2-7B-
Instruct, the application of role-prompting leads
to an overall performance decrease. Interestingly,
for GPT-4o*, where we used ‘keyword’ instead
of ‘keyphrase’, the hybrid approach does improve
performance, further emphasizing the generality of
our method.

Our results reveal a general trend of perfor-
mance improvement with increased model size for
Llama3, Gemma2, and Qwen2, especially when
using the hybrid prompting strategy. However, for
some models, we observe that larger-scale mod-
els exhibit lower performance in vanilla prompting.
We speculate that larger models may be more sen-
sitive to specific vocabulary in prompts, potentially
leading to variations in phrase length and structure.
We discuss more detail in Appendix C.

Model Method
F1@K

5 10 15
T5-base PromptRank 22.81 27.46 28.04

Llama3-8B-Instruct
Vanilla 24.96 29.57 29.39
Hybrid 25.84 29.99 29.59

Llama3-70B-Instruct
Vanilla 24.30 28.44 28.45
Hybrid 26.22 30.54 30.85

Gemma2-9b-it
Vanilla 24.29 28.07 28.07
Hybrid 25.28 29.15 29.64

Gemma2-27b-it
Vanilla 24.95 29.12 29.12
Hybrid 25.48 30.18 30.84

Qwen2-7B-Instruct
Vanilla 19.29 23.93 24.99
Hybrid 18.04 22.34 23.44

Qwen2-72B-Instruct
Vanilla 21.09 26.03 27.06
Hybrid 21.81 26.66 27.96

GPT-4o-mini
Vanilla 22.28 27.68 28.44
Hybrid 22.83 28.09 28.72

GPT-4o
Vanilla 19.78 25.27 27.06
Hybrid 19.65 25.01 26.89

GPT-4o*
Vanilla 21.52 27.58 29.46
Hybrid 22.14 28.43 30.72

Table 4: Performance comparison of various LLMs
on zero-shot keyphrase extraction. Results are shown
for different model sizes and two prompting methods:
vanilla and hybrid. F1@K scores are reported for K=5,
10, and 15. The best scores are in bold, while the second-
best are underlined. * denotes experiments where ‘key-
word’ was used instead of ‘keyphrase’ in prompts.

In summary, among the recently released LLMs,
Llama3 and Gemma2 demonstrated the strongest
zero-shot KE performance. Our experiments show
that hybrid prompting can universally improve the
inherent vanilla performance of various LLMs, not
just Llama3. These results demonstrate the broad
applicability and effectiveness of our proposed
method in enhancing zero-shot KE across various
LLM series and scales.

5 Analysis

To understand why hybrid prompting improves
zero-shot KE performance, we performed a de-
tailed analysis. Our analysis reveals that hybrid
prompting effectively combines the strengths of
vanilla and candidate-based prompting.

Figure 3 illustrates the hybrid prediction pro-
cess using Llama3-8B-Instruct for a document
from the DUC2001 dataset in the News domain.
In stage I (vanilla prompting), 17 keyphrases are
predicted, matching 3 gold keyphrases. Stage II
(candidate-based prompting) identifies 2 additional
gold keyphrases missed in stage I. Notably, in stage
III (hybrid prompting), these newly identified gold
keyphrases are ranked among the top 5, demon-
strating the model’s ability to reassess and refine
keyphrase importance.
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You are a keyphrase extractor. Extract keyphrases from the text. The answer should be listed ...

Text: {Document}

(Output)

(Prompt)

Stage I

the "sunday review" television program said that according to a "very reliable source," the end of the "popu-
lar war," the surrender of weapons, and a general amnesty, would be the main points of a peace agreement 
"without victors or vanquished," between the shining path and the peruvian government. the administration 
of president alberto fujimori has admitted that talks, led by abimael guzman who has been serving a life 
sentence since october 1992, are being held between government representatives and shining path leaders in 
prison. no details however, have been issued on discussions or possible agreements. according to the "sunday 
review" program, directed by journalist nicolas lucar on the lima america channel 4 television network, the 
10-point agreement says its main aspect is to "stop the popular war with its four forms of fighting: terrorism, 
selective murders, sabotage, and armed agitation and propaganda." another point refers to "dismantling the 
people’s guerrilla army with their surrender and the destruction of their weapons." it also includes the 
self-dismantling of the people’s committees and the shining path’s support base throughout the country. a 
general amnesty has been mentioned and a process whereby "little by little and in accordance with the 
circumstances prisoners of war and political prisoners will be released and their sentences reduced." together 
with the "improvement of relations between both parties," it is also stressed that the agreement would be 
without "conquerors or vanquished," and would ease the way for the return of those shining path members 
living abroad "in order to recover the country’s social and normal life." the agreement would entail a "cessa-
tion of hostilities toward relatives of shining path members" and "the movement’s archives library, 
museum, and other symbols would also be returned." one of the points in the agreement mentions the need 
for "economic support and investments in the areas devastated by the war." so far, government authorities 
have not denied or rejected the accuracy of this agreement between the government and shining path.

Document:

Gold Keyphrases:
popular war, shining path members, peace agreement, peruvian government, 10-point agreement, 
guerrilla army, economic support, general amnesty

Keyphrases: Shining Path; Peruvian government; Alberto Fujimori; Abimael Guzman; Sunday 
Review; Nicolas Lucar; Lima America Channel 4; People's Guerrilla Army; People's Committees; Gen-
eral Amnesty; Prisoners of War; Political Prisoners; Improvement of Relations; Cessation of Hostilities; 
Economic Support; Investments; War Devastated Areas.

Text: {Document}

(Output)

(Prompt)

Stage II

Keyphrases: agreement ; general amnesty ; peace agreement ; popular war ; government

Keyphrase candidates: agreement ; general amnesty ; conquerors ; october ; way ; economic support ; forms 
; administration ; committees ; need ; sabotage ; guerrilla army ; path leaders ; political prisoners ; govern-
ment ; circumstances prisoners ; investments ; victors ; sentences ; sunday review ; possible agreements ; 
main aspect ; program ; president alberto fujimori ; return ; terrorism ; hostilities ; relations ; lima america 
channel ; archives library ; destruction ; process ; details ; people ; country ; weapons ; life sentence ; armed 
agitation ; main points ; parties ; museum ; government authorities ; prison ; normal life ; relatives ; popular 
war ; surrender ; peruvian government ; fighting ; war ; path members ; movement ; areas ; path ; point ; jour-
nalist nicolas ; accuracy ; propaganda ; television program ; abimael guzman ; accordance ; reliable source ; 
self-dismantling ; support base ; improvement ; talks ; television network ;  end ; 10-point agreement ; selec-
tive murders ; discussions ; cessation ; peace agreement ; symbols ; government representatives ; points ; 
order

You are a keyphrase extractor. Extract top 5 keyphrases from the 'Keyphrase candidates' consisting of noun 
phrases extracted from the text. The answer should be listed ...

Text: {Document}

(Output)

(Prompt)

Stage III

Keyphrases: shining path ; peruvian government ; peace agreement ; general amnesty ; popular war ; 
abimael guzman ; alberto fujimori ; sunday review ; people's guerrilla army ; people's committees ; cessation 
of hostilities ; economic support ; government ; agreement ; lima america channel 4 ; nicolas lucar ; war 
devastated areas ; prisoners of war ; political prisoners

Keyphrase candidates: shining path ; peruvian government ; alberto fujimori ; abimael guzman ; sunday 
review ; nicolas lucar ; lima america channel 4 ; people’s guerrilla army ; people’s committees ; general 
amnesty ; prisoners of war ; political prisoners ; improvement of relations ; cessation of hostilities ; economic 
support ; investments ; war devastated areas ; agreement ; general amnesty ; peace agreement ; popular war 
; government

You are a keyphrase extractor. Extract top 15 keyphrases from the 'Keyphrase candidates'. The answer 
should be listed ...

Figure 3: Example of hybrid prompting for keyphrase extraction using Llama3-8B-Instruct on a document from the
DUC2001 dataset.

We examined the source of keyphrases in hy-
brid prompting predictions, with results presented
in Table 5. Keyphrases predicted by both vanilla
and candidate-based prompting methods (V∩C)
made up about 20% of final predictions and showed
the highest precision, suggesting that agreement
between methods enables more refined keyphrase
predictions. Vanilla-only predictions (V-C) formed
the largest portion (44-72%) of final keyphrases
with high precision, indicating that the model’s in-
herent vanilla performance plays a comparatively
larger role than the candidate-based approach. De-
spite being limited to just 5 candidates, candidate-
based prompting-only predictions (C-V) accounted
for 4-10% of final keyphrases with high precision.
Hybrid prompting also predicted new keyphrases
(∼(V∪C)), ranging from 1.9% to 21.4% across
datasets, some of which were correct. These re-
sults demonstrate that hybrid prompting effectively
combines different perspectives, leading to more
comprehensive and accurate keyphrase extraction.
This method successfully utilizes the strengths
of individual approaches while complementing
each other’s limitations, allowing it to predict
keyphrases that individual methods might miss.

6 Error Analysis

To gain deeper insights into how LLMs fail at KE,
we conducted a systematic error analysis by cate-

Dataset V∩C (prec.) V-C (prec.) C-V (prec.) ∼(V∪C) (prec.)
Insepc 24.1 (65.99) 44.4 (40.54) 10.1 (28.65) 21.4 (11.44)

SemEval2017 21.7 (62.35) 56.2 (42.82) 8.2 (37.10) 13.9 (20.36)
SemEval2010 23.0 (41.59) 54.3 (20.25) 8.3 (20.33) 14.4 (6.13)

DUC2001 21.3 (43.33) 67.7 (9.46) 7.4 (23.84) 3.6 (11.37)
NUS 22.0 (40.27) 71.6 (11.08) 4.3 (16.37) 2.0 (7.41)

Krapivin 22.0 (23.87) 71.6 (6.82) 4.5 (6.65) 1.9 (7.74)

Table 5: Distribution (%) and precision (in parentheses)
of keyphrase predictions in hybrid prompting. V∩C:
predicted by both vanilla and candidate-based prompt-
ing; V-C: predicted only by vanilla prompting; C-V:
predicted only by candidate-based prompting; ∼(V∪C):
newly predicted by hybrid prompting.

gorizing prediction errors into five types:

• Over: The predicted keyphrase extends be-
yond the gold keyphrase’s boundaries while
containing it fully.

• Partial: The predicted keyphrase captures
only a fragment of the gold keyphrase.

• Misordered: The predicted keyphrase con-
sists of exactly the same components as the
gold keyphrase but in a different sequence.

• Intersection: The predicted keyphrase par-
tially overlaps with the gold keyphrase.

• Unrecognized: The predicted keyphrase has
no lexical overlap with the gold keyphrase.

Table 6 presents the error analysis results of
Llama3-8B-Instruct with hybrid prompting across
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Error Type Percentage Example

Over 13.96%
Gold Keyphrase: computer applications
Predicted Keyphrase: computer applications in power, ...

Partial 14.68%
Gold Keyphrase: legislative term limits
Predicted Keyphrase: term limits, ...

Misorderd 0.76%
Gold Keyphrase: pulse sequence decoupling
Predicted Keyphrase: decoupling pulse sequences, ...

Intersection=1 33.05%
Gold Keyphrase: vulnerable fire zones
Predicted Keyphrase: fire resistant species, ...

Intersection=2 3.96%
Gold Keyphrase: time critical data
Predicted Keyphrase: time sensitive data, ...

Intersection>=3 0.70%
Gold Keyphrase: multi agent distributed system
Predicted Keyphrase: multi agent system, ...

Unrecognized 32.88%
Gold Keyphrase: exchange hamiltonian
Predicted Keyphrase: solid state quantum computing, decoherence, decoupling solution, ...

Table 6: Error analysis results for Llama3-8B-Instruct with hybrid prompting across six datasets. Percentages
indicate the proportion of each error type in the total prediction errors. Examples show gold keyphrases and their
corresponding predicted keyphrases, with matching words highlighted in blue.

all six datasets. Approximately 28.6% of all er-
rors (Over: 13.96%, Partial: 14.68%) stem from
inaccurate boundary detection of gold keyphrases.
This suggests that LLMs are actually predicting
keyphrases quite close to the correct answers, but
these predictions are considered incorrect under
the widely used exact match-based evaluation. This
finding indicates that semantic-based evaluation
methods, such as the recently released KPEval (Wu
et al., 2024), might be more appropriate for assess-
ing KE performance with LLMs.

Word order errors (Misordered) account for only
0.76% of all errors. For Intersection errors, cases
sharing only one word with the gold keyphrase
(Intersection=1) comprise 33.05% of errors, with
the percentage decreasing sharply as the number
of shared words increases (Intersection=2: 3.96%,
Intersection>=3: 0.70%). Finally, Unrecognized er-
rors, where predictions share no words with gold
keyphrases, account for 32.88% of all errors, indi-
cating that LLMs still face significant challenges
in recognizing keyphrases.

7 Conclusion

This study empirically demonstrates that a
prompting-based approach utilizing LLMs can ef-
fectively supersede traditional KE methods. We
show that even simple vanilla prompting, which
provides basic task instructions, significantly out-
performs PromptRank, the previous state-of-the-art
method. Furthermore, we propose candidate-based
prompting, which leverages LLMs as candidate im-
portance estimators. By combining this with vanilla
prompting in our novel hybrid prompting strategy,

we achieve further improvements in LLMs’ zero-
shot KE performance. We also demonstrate that
simply adding a task-related role at the beginning
of the prompt can enhance zero-shot KE perfor-
mance.

Through comprehensive experiments across var-
ious LLM series and scales, we identify Llama3
and Gemma2 as the most effective among recently
released LLMs for KE tasks. Notably, we show
that even models with approximately 8 billion pa-
rameters, which can be run on GPUs with 24GB
of memory, can achieve higher performance than
traditional KE methods. This finding underscores
the practical applicability of our approach in real-
world scenarios.

8 Limitations

As pointed out by Golchin and Surdeanu (2024),
data contamination, where test data from down-
stream tasks is present in the training data of LLMs,
impacts the evaluation of LLMs. The datasets used
in our experiments might overlap with the train-
ing corpora of the LLMs, potentially influencing
the assessment of the models’ inherent keyphrase
extraction capabilities in zero-shot settings.

Moreover, we employ simple prompts, and it’s
possible that more detailed instructions could lead
to different results. The choices made in design-
ing our prompts were not entirely data-driven and
involved some degree of arbitrariness, which may
have impacted performance.

Finally, LLMs demand significantly more com-
putational resources compared to traditional meth-
ods, making them more expensive to run. This
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higher computational cost can limit their practi-
cality in certain applications, especially where re-
sources are constrained.
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A Exploring Robust Vanilla Prompt

To explore a robust vanilla prompt that can lever-
age the strong zero-shot KE capabilities of LLMs,
we conducted experiments by combining various
words. The results are shown in Table 8. We
found that prompts instructing the extraction of
‘keyphrase’ generally performed better than those
instructing the extraction of ‘keyword’. Addition-
ally, using ‘key phrase’ with a space between ‘key’
and ‘phrase’ resulted in decreased performance,
suggesting that the noun ‘keyphrase’ itself may
be a crucial trigger token. When referring to the
input document, the term ‘text’ performed best
on average compared to ‘input text’ and ‘doc-
ument’, though the performance difference was
minimal. Among imperative, polite requests with
‘Please’, and interrogative forms, the imperative
form slightly outperformed the others. Moreover,
adding the modifier ‘the most important’ before
‘keyphrase’ significantly improved F1@5 perfor-
mance but tended to reduce F1@10 and F1@15
scores. These findings highlight that the zero-shot
performance of LLMs is highly sensitive to the
choice of words and format, emphasizing the im-
portance of optimizing prompt selection.

B Impact of Role

To understand the impact of the role assigned to
LLMs, we experimented with the vanilla prompt
by assigning roles unrelated to the task. As shown
in Table 9, the performance decreased when un-
related roles were assigned compared to when no
role was assigned. Conversely, assigning the task-
related role ‘keyphrase extractor’ resulted in better
performance overall, especially with the simplest
form, "You are a keyphrase extractor." outperform-
ing more elaborate variations. Additionally, we
found that the role of ‘information extractor’ also
improved performance. This demonstrates that pro-
viding a clear and relevant role related to the task
can contribute to improved zero-shot performance.

Is the ‘keyphrase extractor’ role effective across
all LLMs? Table 10 shows the experimental re-
sults of role prompting in vanilla prompts for var-
ious LLMs. Role prompting improves the perfor-
mance of vanilla prompts without assigned roles in
all LLMs except Qwen2. Moreover, role prompt-
ing is effective even in large-scale models. In the
DUC2001 dataset, which is in the news domain,
role prompting shows a more significant perfor-
mance improvement compared to other datasets in

the scientific domain. However, we observe that
Qwen2 tends to show decreased performance when
role prompting is applied. We speculate that the
effectiveness of role prompting may stem from the
prompts used in the training of LLMs, particularly
the system prompts. When a prompt format differ-
ent from that used in the prompts during training is
input, it might lead to performance degradation.

C Detailed Results of Various LLMs

In addition to Llama-3-8B-Instruct, we con-
ducted experiments on Llama-3-70B-Instruct5,
Gemma2-9b-it6, Gemma2-27b-it7, Qwen2-7B-
Instruct8, Qwen2-72B-Instruct9, GPT-4o10, and
GPT-4o-mini11.

We observed that when using the vanilla prompt,
GPT-4o’s performance was lower than that of GPT-
4o-mini. Our analysis suggests this may be due to
the vocabulary used in the prompt. As shown in
Table 7, GPT-4o generates a lower proportion of
one- and two-word phrases, but a higher proportion
of keyphrases with three or more words compared
to GPT-4o-mini. Similarly, we found that larger-
scale Llama3 models generate longer keyphrases at
a higher rate. In Table 7, the asterisk (*) denotes re-
sults obtained when replacing the term ‘keyphrase’
with ‘keyword’ in the prompt, which led to the
generation of more short keyphrases. This demon-
strates that larger LLMs are highly sensitive to the
specific words used in prompts. In such cases, us-
ing ‘keyword’ instead of ‘keyphrase’ may yield bet-
ter performance for larger models, as ‘keyphrase’
might induce the generation of excessively long
keyphrases.

Table 11 presents the vanilla and hybrid perfor-
mance of various LLMs. The hybrid prompting
strategy improves upon the vanilla performance
for all LLMs except Qwen2 and GPT-4o. As pre-
viously mentioned, the performance decrease in
Qwen2 may be attributed to the detrimental effect
of role prompting, while for GPT-4o, the hybrid
approach does improve performance when ‘key-
word’ is used instead of ‘keyphrase’ (denoted as

5https://huggingface.co/meta-llama/
Meta-Llama-3-70B-Instruct

6https://huggingface.co/google/gemma-2-9b-it
7https://huggingface.co/google/gemma-2-27b-it
8https://huggingface.co/Qwen/

Qwen2-7B-Instruct
9https://huggingface.co/Qwen/

Qwen2-72B-Instruct
10gpt-4o-2024-05-13
11gpt-4o-mini-2024-07-18

https://huggingface.co/meta-llama/Meta-Llama-3-70B-Instruct
https://huggingface.co/meta-llama/Meta-Llama-3-70B-Instruct
https://huggingface.co/google/gemma-2-9b-it
https://huggingface.co/google/gemma-2-27b-it
https://huggingface.co/Qwen/Qwen2-7B-Instruct
https://huggingface.co/Qwen/Qwen2-7B-Instruct
https://huggingface.co/Qwen/Qwen2-72B-Instruct
https://huggingface.co/Qwen/Qwen2-72B-Instruct
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Model
Keyphrase Distribution

1 2 3 4 >=5
Llama3-8B-Instruct 17.2 56.9 19.0 4.9 2.1
Llama3-70B-Instruct 7.3 56.9 25.1 7.5 3.2
Llama3-70B-Instruct* 26.2 56.4 14.6 2.3 0.6

GPT-4o-mini 9.6 55.6 24.4 7.6 2.7
GPT-4o 8.6 48.5 25.8 11.0 6.1

GPT-4o* 23.8 53.2 18.2 3.7 1.0
Ground truth 20.8 47.4 18.8 6.2 6.9

Table 7: Distribution of keyphrase lengths (in words)
for various LLM configurations. * denotes results when
‘keyphrase’ is replaced with ‘keyword’ in the prompt.
The ground truth distribution is included for compari-
son.

GPT-4o*). These findings demonstrate the efficacy
of the hybrid prompting strategy across multiple
LLMs.

Comparing the baseline KE performance of var-
ious LLM series using the vanilla approach, we
find that Llama3 and Gemma2 exhibit superior KE
capabilities overall, with even their 7B-8B scale
models significantly outperforming traditional KE
methods. In contrast, models like Qwen2 and GPT-
4o show performance comparable to or lower than
existing methods such as PromptRank, even with
the improved performance achieved through hybrid
prompting. This indicates that while the proposed
prompting strategies can enhance the apparent KE
performance of LLMs, the intrinsic KE capabilities
of the models play a substantial role in determining
overall performance.

D Performance Variation by Temperature

To investigate the effect of temperature values on
zero-shot KE performance, we evaluated the vanilla
performance changes of Llama3-8B-Instruct by
varying the temperature from 0.0 to 1.5 in incre-
ments of 0.1. Since setting the temperature above
0 results in different outputs for each inference,
we conducted a total of three experiments and re-
ported the average performance along with the stan-
dard deviation. As shown in Figure 4, we observed
that performance consistently decreases in F1@5,
F1@10, and F1@15 as the temperature increases.
In all cases, the highest performance was achieved
when the temperature was set to 0.0. This indicates
that applying greedy decoding rather than random
sampling decoding may be more advantageous for
zero-shot keyphrase extraction using LLMs.
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No. Prompt F1@K
5 10 15

1

Extract key words from the input text. The answer should be listed after ‘Key words: ’ and
separated by semicolons (;). ‘Key words: key word 1 ; key word 2 ; ... ; key word N’

Input text: {document}

22.39 27.31 27.45

2

Extract keywords from the input text. The answer should be listed after ‘Keywords: ’ and
separated by semicolons (;). ‘Keywords: keyword 1 ; keyword 2 ; ... ; keyword N’

Input text: {document}

22.78 27.41 27.89

3

Extract key phrases from the input text. The answer should be listed after ‘Key phrases: ’
and separated by semicolons (;). ‘Key phrases: key phrase 1 ; key phrase 2 ; ... ; key phrase
N’

Input text: {document}

21.91 26.48 26.73

4

Extract keyphrases from the input text. The answer should be listed after ‘Keyphrases: ’
and separated by semicolons (;). ‘Keyphrases: keyphrase 1 ; keyphrase 2 ; ... ; keyphrase N’

Input text: {document}

24.85 29.43 29.30

5

Extract keyphrases from the document. The answer should be listed after ‘Keyphrases: ’
and separated by semicolons (;). ‘Keyphrases: keyphrase 1 ; keyphrase 2 ; ... ; keyphrase N’

Document: {document}

24.95 29.19 29.10

6

Extract the keyphrases from the text. The answer should be listed after ‘Keyphrases: ’ and
separated by semicolons (;). ‘Keyphrases: keyphrase 1 ; keyphrase 2 ; ... ; keyphrase N’

Text: {document}

24.84 29.30 29.26

7

Extract keyphrases from the text. The answer should be listed after ‘Keyphrases: ’ and
separated by semicolons (;). ‘Keyphrases: keyphrase 1 ; keyphrase 2 ; ... ; keyphrase N’

Text: {document}

24.96 29.57 29.39

8

Please extract keyphrases from the text. The answer should be listed after ‘Keyphrases: ’
and separated by semicolons (;). ‘Keyphrases: keyphrase 1 ; keyphrase 2 ; ... ; keyphrase N’

Text: {document}

24.84 29.30 29.16

9

What are the keyphrases of the text? The answer should be listed after ‘Keyphrases: ’ and
separated by semicolons (;). ‘Keyphrases: keyphrase 1 ; keyphrase 2 ; ... ; keyphrase N’

Text: {document}

25.00 29.02 28.67

10

Extract the most important keyphrases from the text. The answer should be listed after
‘Keyphrases: ’ and separated by semicolons (;). ‘Keyphrases: keyphrase 1 ; keyphrase 2 ; ...
; keyphrase N’

Text: {document}

25.22 28.71 28.35

Table 8: Average F1@K performance (K=5, 10, and 15) on six datasets for ten different vanilla prompts.

Figure 4: Effect of temperature on F1@K performance. The graphs show F1@5, F1@10, and F1@15 scores of
Llama3-8B-Instruct across temperature values from 0.0 to 1.5. Each point represents the average performance over
six datasets and three runs, with red error bars indicating the standard deviation.
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Role Category
F1@K

5 10 15
None vanilla 24.96 29.57 29.39

You are a helpful AI assistant.

instructive

24.49 29.07 29.15
You are a keyphrase generator. 24.44 29.17 29.30

You are a text summarizer. 25.01 29.43 29.22
You are a information extractor. 25.12 29.56 29.49
You are a keyphrase extractor. 25.10 29.91 29.75

You are an excellent keyphrase extractor. 24.85 29.72 29.68
You are a high performance keyphrase extractor. 24.80 29.73 29.66

You are a State-of-the-art (SOTA) keyphrase extractor. 25.01 29.80 29.73
You are a singer.

misleading

24.67 29.14 29.18
You are a soccer player. 24.40 29.14 29.06

You are Batman. 24.63 28.87 28.92
You are a joke generator 24.17 29.11 29.30

Table 9: Experimental results based on assigning different roles to the vanilla prompt, showing the average
performance across six datasets in terms of F1@K (K = 5, 10 and 15).
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F1@K Model Method
Dataset

AVG
Inspec SemEval2017 SemEval2010 DUC2001 NUS Krapivin

5

T5-base PromptRank 31.73 27.14 17.24 27.39 17.24 16.11 22.81

Llama3-8B-Instruct
Vanilla w/o Role 36.75 24.21 17.04 27.60 22.70 21.45 24.96
Vanilla w/ Role 36.66 24.90 17.24 28.16 22.47 21.17 25.10

Llama3-70B-Instruct
Vanilla w/o Role 36.93 23.67 16.64 28.96 19.68 19.91 24.30
Vanilla w/ Role 37.29 24.30 16.94 31.44 20.31 20.64 25.15

Gemma2-9b-it
Vanilla w/o Role 35.14 22.10 16.84 25.95 23.27 22.43 24.29
Vanilla w/ Role 35.13 22.68 17.24 27.64 23.44 23.08 24.87

Gemma2-27b-it
Vanilla w/o Role 36.30 23.21 16.94 28.94 22.58 21.75 24.95
Vanilla w/ Role 36.58 23.54 17.24 30.34 23.21 21.18 25.35

Qwen2-7B-Instruct
Vanilla w/o Role 31.41 19.61 12.46 23.08 14.45 14.75 19.29
Vanilla w/ Role 30.35 18.70 12.46 17.06 13.88 14.02 17.75

Qwen2-72B-Instruct
Vanilla w/o Role 33.64 20.95 13.05 26.13 16.72 16.04 21.09
Vanilla w/ Role 33.24 20.45 12.56 26.08 15.64 16.48 20.74

GPT-4o-mini
Vanilla w/o Role 35.29 22.26 14.15 27.66 17.29 17.04 22.28
Vanilla w/ Role 35.48 22.43 14.25 28.81 18.32 17.53 22.80

GPT-4o
Vanilla w/o Role 34.27 21.56 11.96 22.93 13.54 14.41 19.78
Vanilla w/ Role 34.22 20.88 11.96 22.43 13.59 14.33 19.57

GPT-4o*
Vanilla w/o Role 33.70 21.17 14.05 25.00 18.37 16.84 21.52
Vanilla w/ Role 32.41 21.01 15.65 27.19 22.07 20.40 23.12

10

T5-base PromptRank 37.88 37.76 20.66 31.59 20.13 16.71 27.46

Llama3-8B-Instruct
Vanilla w/o Role 46.42 34.95 22.46 27.74 25.30 20.58 29.57
Vanilla w/ Role 46.24 35.75 22.92 28.65 25.04 20.86 29.91

Llama3-70B-Instruct
Vanilla w/o Role 45.82 34.03 20.17 28.82 21.76 20.02 28.44
Vanilla w/ Role 47.05 35.08 21.33 31.54 22.02 20.66 29.61

Gemma2-9b-it
Vanilla w/o Role 42.66 31.34 20.53 26.17 25.21 22.52 28.07
Vanilla w/ Role 42.16 31.78 20.85 26.94 25.32 22.76 28.30

Gemma2-27b-it
Vanilla w/o Role 45.16 33.21 20.63 29.58 24.35 21.79 29.12
Vanilla w/ Role 44.61 33.68 21.08 30.34 25.16 21.71 29.43

Qwen2-7B-Instruct
Vanilla w/o Role 39.67 30.39 17.03 24.29 16.32 15.89 23.93
Vanilla w/ Role 38.75 28.62 16.40 18.00 16.10 15.09 22.16

Qwen2-72B-Instruct
Vanilla w/o Role 43.10 32.32 17.56 27.17 18.55 17.45 26.03
Vanilla w/ Role 42.78 31.49 17.29 27.05 17.81 17.17 25.60

GPT-4o-mini
Vanilla w/o Role 45.49 33.30 19.07 30.72 19.56 17.95 27.68
Vanilla w/ Role 45.02 33.62 18.68 31.19 20.78 18.75 28.01

GPT-4o
Vanilla w/o Role 43.40 33.16 16.45 26.19 16.45 15.94 25.27
Vanilla w/ Role 43.08 32.01 16.52 25.36 16.32 15.63 24.82

GPT-4o*
Vanilla w/o Role 44.41 33.05 19.11 29.47 21.35 18.06 27.58
Vanilla w/ Role 43.09 32.21 20.75 29.93 24.94 21.79 28.79

15

T5-base PromptRank 38.17 41.57 21.35 31.01 20.12 16.02 28.04

Llama3-8B-Instruct
Vanilla w/o Role 48.16 38.56 22.89 25.09 23.35 18.32 29.39
Vanilla w/ Role 48.04 39.68 23.21 25.79 23.53 18.27 29.75

Llama3-70B-Instruct
Vanilla w/o Role 46.89 36.64 20.80 27.29 20.91 18.17 28.45
Vanilla w/ Role 48.56 38.34 21.96 29.45 21.03 18.30 29.61

Gemma2-9b-it
Vanilla w/o Role 43.20 33.53 20.68 24.98 24.66 21.36 28.07
Vanilla w/ Role 42.63 33.66 21.09 25.69 24.40 21.33 28.13

Gemma2-27b-it
Vanilla w/o Role 45.82 36.04 21.12 27.65 23.87 20.23 29.12
Vanilla w/ Role 45.20 36.43 20.94 28.60 24.41 20.16 29.29

Qwen2-7B-Instruct
Vanilla w/o Role 42.07 35.95 17.73 22.51 16.74 14.94 24.99
Vanilla w/ Role 40.90 34.13 17.93 17.55 16.23 14.56 23.55

Qwen2-72B-Instruct
Vanilla w/o Role 45.68 38.19 18.68 25.57 18.24 16.00 27.06
Vanilla w/ Role 45.61 37.46 18.70 25.83 17.75 15.94 26.88

GPT-4o-mini
Vanilla w/o Role 47.64 39.41 20.41 28.48 18.53 16.16 28.44
Vanilla w/ Role 47.61 39.61 20.12 28.85 19.56 17.08 28.81

GPT-4o
Vanilla w/o Role 46.20 39.60 18.68 25.32 16.89 15.66 27.06
Vanilla w/ Role 45.87 38.49 18.41 24.63 17.19 15.43 26.67

GPT-4o*
Vanilla w/o Role 48.20 39.32 21.64 28.15 21.74 17.72 29.46
Vanilla w/ Role 45.49 38.06 21.98 27.58 23.24 19.26 29.27

Table 10: Performance comparison (F1@K) of various LLMs on keyphrase extraction across datasets using vanilla
prompting with and without role prompting. GPT-4o* uses ‘keyword’ instead of ‘keyphrase’ in prompts. Bold: best
performance per dataset and K.
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F1@K Model Method
Dataset

AVG
Inspec SemEval2017 SemEval2010 DUC2001 NUS Krapivin

5

T5-base PromptRank 31.73 27.14 17.24 27.39 17.24 16.11 22.81

Llama3-8B-Instruct
Vanilla 36.75 24.21 17.04 27.60 22.70 21.45 24.96
Hybrid 36.81 25.12 18.44 29.98 23.27 21.41 25.84

Llama3-70B-Instruct
Vanilla 36.93 23.67 16.64 28.96 19.68 19.91 24.30
Hybrid 37.35 25.19 18.54 33.02 21.67 21.53 26.22

Gemma2-9b-it
Vanilla 35.14 22.10 16.84 25.95 23.27 22.43 24.29
Hybrid 35.28 22.86 17.84 28.09 24.06 23.53 25.28

Gemma2-27b-it
Vanilla 36.30 23.21 16.94 28.94 22.58 21.75 24.95
Hybrid 36.72 23.75 17.54 30.28 23.15 21.42 25.48

Qwen2-7B-Instruct
Vanilla 31.41 19.61 12.46 23.08 14.45 14.75 19.29
Hybrid 30.33 18.92 12.56 18.21 13.99 14.22 18.04

Qwen2-72B-Instruct
Vanilla 33.64 20.95 13.05 26.13 16.72 16.04 21.09
Hybrid 33.92 21.63 13.55 27.88 16.84 17.04 21.81

GPT-4o-mini
Vanilla 35.29 22.26 14.15 27.66 17.29 17.04 22.28
Hybrid 35.48 22.43 14.35 28.76 18.32 17.65 22.83

GPT-4o
Vanilla 34.27 21.56 11.96 22.93 13.54 14.41 19.78
Hybrid 34.21 20.90 11.86 22.83 13.71 14.41 19.65

GPT-4o*
Vanilla 33.70 21.17 14.05 25.00 18.37 16.84 21.52
Hybrid 33.81 21.99 13.65 27.99 18.26 17.12 22.14

10

T5-base PromptRank 37.88 37.76 20.66 31.59 20.13 16.71 27.46

Llama3-8B-Instruct
Vanilla 46.42 34.95 22.46 27.74 25.30 20.58 29.57
Hybrid 45.80 36.08 22.45 29.55 24.99 21.09 29.99

Llama3-70B-Instruct
Vanilla 45.82 34.03 20.17 28.82 21.76 20.02 28.44
Hybrid 46.94 36.23 22.19 34.19 23.45 20.22 30.54

Gemma2-9b-it
Vanilla 42.66 31.34 20.53 26.17 25.21 22.52 28.07
Hybrid 42.90 33.17 21.79 28.77 25.55 22.73 29.15

Gemma2-27b-it
Vanilla 45.16 33.21 20.63 29.58 24.35 21.79 29.12
Hybrid 45.59 35.33 21.93 31.05 25.26 21.90 30.18

Qwen2-7B-Instruct
Vanilla 39.67 30.39 17.03 24.29 16.32 15.89 23.93
Hybrid 38.35 28.78 16.35 19.57 15.97 15.03 22.34

Qwen2-72B-Instruct
Vanilla 43.10 32.32 17.56 27.17 18.55 17.45 26.03
Hybrid 44.27 33.00 17.65 28.94 18.51 17.57 26.66

GPT-4o-mini
Vanilla 45.49 33.30 19.07 30.72 19.56 17.95 27.68
Hybrid 45.00 33.63 18.83 31.29 20.87 18.89 28.09

GPT-4o
Vanilla 43.40 33.16 16.45 26.19 16.45 15.94 25.27
Hybrid 43.08 32.19 16.67 25.87 16.50 15.72 25.01

GPT-4o*
Vanilla 44.41 33.05 19.11 29.47 21.35 18.06 27.58
Hybrid 44.61 34.23 19.15 32.40 21.44 18.75 28.43

15

T5-base PromptRank 38.17 41.57 21.35 31.01 20.12 16.02 28.04

Llama3-8B-Instruct
Vanilla 48.16 38.56 22.89 25.09 23.35 18.32 29.39
Hybrid 45.17 40.23 22.87 27.21 23.70 18.35 29.59

Llama3-70B-Instruct
Vanilla 46.89 36.64 20.80 27.29 20.91 18.17 28.45
Hybrid 47.83 41.16 23.71 31.61 22.29 18.48 30.85

Gemma2-9b-it
Vanilla 43.20 33.53 20.68 24.98 24.66 21.36 28.07
Hybrid 43.92 36.50 22.57 28.96 24.88 21.00 29.64

Gemma2-27b-it
Vanilla 45.82 36.04 21.12 27.65 23.87 20.23 29.12
Hybrid 46.68 39.50 22.96 30.46 25.09 20.36 30.84

Qwen2-7B-Instruct
Vanilla 42.07 35.95 17.73 22.51 16.74 14.94 24.99
Hybrid 39.54 34.25 17.73 18.93 15.65 14.55 23.44

Qwen2-72B-Instruct
Vanilla 45.68 38.19 18.68 25.57 18.24 16.00 27.06
Hybrid 45.97 39.44 19.77 27.18 18.85 16.53 27.96

GPT-4o-mini
Vanilla 47.64 39.41 20.41 28.48 18.53 16.16 28.44
Hybrid 46.38 39.64 20.49 29.11 19.62 17.08 28.72

GPT-4o
Vanilla 46.20 39.60 18.68 25.32 16.89 15.66 27.06
Hybrid 44.70 38.87 18.82 25.69 17.53 15.74 26.89

GPT-4o*
Vanilla 48.20 39.32 21.64 28.15 21.74 17.72 29.46
Hybrid 48.06 41.36 22.33 31.89 22.08 18.59 30.72

Table 11: Performance comparison (F1@K) of various LLMs on keyphrase extraction across datasets using vanilla
and hybrid prompting. GPT-4o*: ‘keyword’ used instead of ‘keyphrase’. Bold: best score per dataset and K.
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