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Abstract

Continual Semantic Parsing (CSP) enables
parsers to generate SQL from natural lan-
guage questions in task streams, using minimal
annotated data to handle dynamically evolv-
ing databases in real-world scenarios. Pre-
vious works often rely on replaying histori-
cal data, which poses privacy concerns. Re-
cently, replay-free continual learning methods
based on Parameter-Efficient Tuning (PET)
have gained widespread attention. However,
they often rely on ideal settings and initial
task data, sacrificing the model’s generalization
ability, which limits their applicability in real-
world scenarios. To address this, we propose
a novel Adaptive PET eXpert meta-learning
(APEX) approach for CSP. First, SQL syntax
guides the LLM to assist experts in adaptively
warming up, ensuring better model initializa-
tion. Then, a dynamically expanding expert
pool stores knowledge and explores the rela-
tionship between experts and instances. Finally,
a selection/fusion inference strategy based on
sample historical visibility promotes expert col-
laboration. Experiments on two CSP bench-
marks show that our method achieves superior
performance without data replay or ideal set-
tings, effectively handling cold-start scenarios
and generalizing to unseen tasks, even surpass-
ing performance upper bounds1.

1 Introduction

The rapid development of Large Language Models
(LLMs) has greatly advanced semantic parsing, pro-
viding non-expert users with a convenient interface
for querying and analyzing large-scale structured
data (Yang et al., 2024; Zhang et al., 2024a; Qu
et al., 2024; Li et al., 2024). However, frequent
database updates require semantic parsers to adapt
to evolving data environments dynamically.

*Corresponding Authors.
1Codes are publicly available at https://github.com/tom68-

ll/APEX
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Figure 1: CSP process based on the PET method. Each
task in the task stream learns a dedicated PET module
and adds it to the pool. Previous method: ① Require
manual data collection for warming up parsers. ② As-
sume known task identifier and load Oracle PET mod-
ules. ③ Handle only seen tasks, unable to generalize
to new tasks. Our method: ① No need for manual
warm up data. ② Model autonomously selects/fuses
PET modules. ③ Handle both seen and unseen tasks.

Consequently, task stream-oriented continual se-
mantic parsing has garnered significant attention
from academia and industry, presenting three ma-
jor challenges: (1) Few-shot Challenge: For new
databases, obtaining sufficient text-to-SQL pairs in
a short time is difficult, which may lead to overfit-
ting of the parser (Chen et al., 2023b). (2) Catas-
trophic Forgetting: In continual learning, a model
may forget previously learned knowledge while ac-
quiring new information (Wang et al., 2024). (3)
Knowledge Transfer: Accumulating and gener-
alizing knowledge from task sequences to unseen
data is challenging (Zhao et al., 2024).

To tackle these challenges, recent studies have
explored PET methods to prevent forgetting caused

https://github.com/tom68-ll/APEX
https://github.com/tom68-ll/APEX
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by extensive parameter updates (Wang et al., 2022;
Chen et al., 2023c; Yadav et al., 2023). As shown
in Figure 1, PET modules such as prompt (Lester
et al., 2021) are trained to capture task-specific
knowledge and stored in a PET pool. During test-
ing, the appropriate PET module is selected from
the pool. While these methods have made some
progress in reducing training overhead and prevent-
ing catastrophic forgetting, they still have limita-
tions: (1) Ideal Setting: Current methods perform
well in preventing catastrophic forgetting but rely
on a simplified scenario where task identifiers are
known during testing, enabling the selection of the
appropriate PET module. This assumption ignores
the shared SQL syntax across tasks, limiting knowl-
edge transfer and accumulation, and sacrificing the
model’s ability to generalize, making it less suitable
for real-world applications (Chen et al., 2023c). (2)
Initial Task Data Dependency: General language
models are pre-trained on large-scale natural lan-
guage corpora. Previous methods often depend on
substantial labeled data for the initial task and su-
pervised fine-tuning to ensure proper initialization
of the model backbone, enabling adaptation to com-
plex and dynamic semantic parsing task streams.
Consequently, CSP performance heavily relies on
this initial labeled data, which conflicts with the
few-shot challenge (Chen et al., 2023b,c).

Inspired by the Mixture-of-Experts (MoE) the-
ory (Jacobs et al., 1991), we propose a novel CSP
framework, named APEX. The framework first
builds a dynamically expanding shared expert pool
and trains PET experts with domain-specific knowl-
edge for each task. To enable the model to actively
select the appropriate expert at the instance level,
we assign a meta-representation as an index to each
expert and propose a meta-learning approach for
CSP to model the matching relationship between
experts and instances. During inference, we pro-
pose a routing strategy based on the historical visi-
bility of samples to facilitate expert collaboration.
This approach effectively prevents catastrophic for-
getting and improves generalization without task
identifiers. Moreover, to reduce the dependency
on initial task data, we propose an SQL syntax-
guided adaptive warm-up method. It infers the
SQL syntax features of current and future tasks
through induction and evolution and then guides
LLMs to synthesize pseudo sample pairs. Accu-
racy and fidelity are enhanced through correction
and filtering strategies. Extensive experimental
results demonstrate that our method achieves supe-

rior performance without replaying historical data,
ideal settings, or manual data collection for warm-
up, outperforming previous rehearsal-based meth-
ods by up to 15.8%. Compared to methods with
ideal settings, our approach not only adapts well
to cold-start scenarios but also exhibits strong for-
ward transfer capabilities, generalizing to unseen
tasks and even exceeding the upper performance
bound by as much as 8.8%. The main contributions
of this work are summarized as follows:

• We propose a novel CSP framework, APEX,
which accumulates knowledge via a dynami-
cally expanding expert pool, without replay-
ing historical data, and supports adaptive
warm-up without manual intervention.

• We introduce a multi-expert meta-learning
method and an active selection/fusion strat-
egy based on task visibility to guide expert
collaboration for different instances in CSP.

• Experimental results show that our method
surpasses baselines, exceeding performance
limits, and handles cold-start scenarios with-
out relying on data replay or ideal settings.

2 Related Work

2.1 Continual Semantic Parsing
Previous semantic parsing research primarily fo-
cuses on fine-tuning Pre-trained Language Models
(PLMs) on large static datasets (Cai et al., 2022; Li
et al., 2023a), but high-quality SQL annotations
often require domain experts, making it costly.
Recently, with the rapid advancement of LLMs
(Anil et al., 2023; OpenAI et al., 2024), few-shot
in-context learning has made significant progress
(Li et al., 2023b; Mao et al., 2024). However,
these methods often rely on powerful closed-source
LLMs, posing risks of data privacy breaches and
high inference costs (Xue et al., 2024; Li et al.,
2024; Zhang et al., 2024b). Furthermore, they are
still designed for static data, making it difficult to
update and iterate models as environments change.
Inspired by human knowledge accumulation and
adaptive learning paradigms, continuous semantic
parsing based on few-shot and dynamic data has
become a promising direction (Yadav et al., 2023;
Chen et al., 2023b,c). Earlier related works fo-
cus on rehearsal-based methods (Li et al., 2021;
Chen et al., 2023b), which prevent forgetting by re-
playing real samples from past tasks during current
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Figure 2: The overall architecture of APEX. [T], [C], and [V] represent table names, column names, and database
values, respectively. For more details, see Section 4.1.

training. While simple and effective, these methods
depend on the number of replayed samples and are
unsuitable for scenarios with data privacy concerns
or limited storage resources. Recently, PET-based
methods that do not rely on replay have gained
significant attention (Smith et al., 2023; Liu et al.,
2024a; Zhao et al., 2024).

2.2 Parameter-Efficient Continual Learning

Techniques like prompt tuning (Lester et al., 2021),
Adapter (Poth et al., 2023), and LoRA (Hu et al.,
2022) in PET enable LLMs to adapt to low-
resource downstream tasks by efficiently updating
knowledge without large-scale parameter updates
(Liao et al., 2024). These methods help mitigate dis-
tribution shifts and prevent catastrophic forgetting
in continual learning without relying on historical
data replay (Chen et al., 2023c; Zhao et al., 2024).
Typically, PET modules are trained separately for
each task to decouple task-specific knowledge. Dur-
ing inference, two settings are used: Task-aware,
where the task identity of each sample is known,
allowing the appropriate PET module to be loaded
(Chen et al., 2023c). This ideal setting simplifies
the continual learning scenario but struggles to gen-
eralize to unseen samples, making it difficult to
apply in real-world practice. A more challenging
and realistic scenario is Task-agnostic, where the

model needs to autonomously organize PET mod-
ules (Wang et al., 2022; Razdaibiedina et al., 2023;
Zhao et al., 2024; Menabue et al., 2024).

3 Problem Definition

The goal of semantic parsing is to generate an
SQL query Y = F (Q,D) from a natural lan-
guage question Q and a database D = (L, C),
where L represents the set of table names, C is
the set of corresponding column names, and F is
the parser. CSP aims to learn from a sequence
of tasks {T1, T2, ..., TNT

}, where NT denotes the
number of tasks. Each task involves an independent
semantic parsing task Tt = {(X i

t ,Y i
t)}

Nt
i=1, with

X = (Q,D), and Nt is the data size. The database
information between tasks is non-overlapping. At
time step t, the parser F is trained only on the data
from the current task Tt, without access to previous
tasks’ data. After training, the model is expected
to perform well on all seen tasks and generalize
effectively to unseen future tasks.

4 Methodology

4.1 Overview

The framework of APEX is shown in Figure 2, con-
sisting of three stages: ①Warm-up preparation
(Figure 2(a)): To reduce reliance on large manu-
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ally labeled data (Chen et al., 2023b,c), we propose
a SQL syntax-guided adaptive warm-up method
using LLMs. SQL prototypes are extracted from
existing samples and evolved for potential future
tasks, guiding LLMs to generate question-SQL
pairs with accuracy and fidelity ensured through
correction and filtering. ②Training (Figure 2(b)):
A dynamically expanding expert pool is first es-
tablished (Figure 2(c)). We then propose a multi-
expert meta-learning approach to capture instance-
expert commonalities and differences, enabling the
most suitable expert collaboration for each sam-
ple. ③Prediction (Figure 2(d)): For task-agnostic
samples, we infer task visibility and apply different
decoding strategies. For seen tasks, the most rele-
vant expert is selected, for unseen tasks, multiple
experts are fused for collaborative inference.

4.2 Adaptive Warm-Up with LLMs

To enhance the model’s initial semantic parsing per-
formance, previous methods rely on large amounts
of manually labeled data for supervised fine-tuning.
However, in real-world settings, acquiring suffi-
cient labeled data at the start of continual learn-
ing is challenging (Chen et al., 2023b). To over-
come this issue, inspired by related work (Liu et al.,
2024b), we propose a SQL syntax-guided adaptive
warm-up method leveraging LLMs’ generation and
reasoning abilities, as shown in Figure 2(a). All
prompt details are provided in Appendix A.

SQL Prototype Extraction The model’s under-
standing of SQL syntax reflects its semantic pars-
ing ability. While databases vary across CSP tasks,
they share the same SQL syntax. Early in continual
learning, limited labeled data hinders the model’s
grasp of diverse SQL. Thus, we extract SQL syntax
features from two perspectives: reinforcing current
knowledge and anticipating future syntax. Consid-
ering SQL’s code-like properties, we use CodeT5
(Wang et al., 2021) as the encoder to jointly repre-
sent the question Q, schemas D, and SQL Y from
existing samples, and then apply k-means cluster-
ing to decouple the complexity of semantic parsing.
This allows each cluster to share similar sub-SQL
knowledge. Next, database-specific information is
removed from the SQL of cluster centers Ac, to ob-
tain syntax-focused SQL prototypes Ap. However,
limiting the model to existing syntax may restrict
its scope. To address this, we use the extracted
prototypes as seeds, combining them with com-
mon SQL keywords, and leverage LLMs to infer

potential future SQL prototypes to obtain A∗
p.

Pseudo-Sample Synthesis To tackle the scarcity
of labeled data, previous works often rely on semi-
supervised learning (Qin and Joty, 2022), such as
self-training (Chen et al., 2023b), which requires
extra data and yields low-quality labels due to its
one-way generation. We propose a SQL syntax-
guided soft synthesis method using LLMs, where
LLMs are provided with database schemas and
SQL prototypes A = {Ap,A∗

p} to generate natural
language questions Q̂ and corresponding SQL Ŷ
simultaneously. This bidirectional generation taps
into LLMs’ internal knowledge, avoiding one-way
limitations and removing the need for additional
semi-supervised data.

Correction and Filtering Although our method
mitigates some challenges in pseudo-sample syn-
thesis, LLMs’ hallucination issues (Qu et al., 2024)
can still produce SQL queries with execution er-
rors or deviations from the intended syntax. To
enhance accuracy and fidelity, inspired by prior
code-related works (Huang et al., 2024; Chen et al.,
2023a), we design a two-stage correction-filtering
strategy. First, the LLM performs self-correction,
retaining only executable samples. Then, we mask
the database schema and select the Top-Ng samples
with the smallest edit distance to the target syntax.

4.3 Multi-Expert Meta-Learning

After the warm-up phase, our method splits into
two parts: multi-expert meta-learning and active
selection or fusion, corresponding to the training
and prediction stages in CSP, as shown in Figure
2(b)-(d). During training, the matching relationship
between the meta-representations of different PET
experts and instances is modeled and optimized.
In inference, dynamic recognition of a sample’s
visibility guides the decoding strategy, mitigating
forgetting and enhancing generalization.

Dynamic Expert Pool Expansion Unlike previ-
ous work that assigns an Oracle expert module to
test samples (Chen et al., 2023c), this work focuses
on real-world continual learning scenarios where
the task identifier is unknown. Inspired by prior
work (Wang et al., 2022), an expert pool is main-
tained to encourage the model to actively invite
experts to collaborate, as shown in Figure 2(c). We
observe that previous methods use a large, fixed
expert pool, which makes early expert collabora-
tion challenging (Yadav et al., 2023). To address
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this, we propose a dynamically expanding expert
pool that grows with tasks. For each task Tt, we
similarly use k-means to cluster the samples into K
groups, train a PET module for each cluster as its
expert, and assign a learnable meta-representation
as a key. The expert pool then expands to include
all key-expert paris up to task Tt, forming the pool
Et, represented as:

Et = {(k1, P1), (k2, P2), . . . , (kNt
p
, PNt

p
)} (1)

Here, k ∈ R1×d represents different keys, initial-
ized from the hidden state representation of each
cluster center xc, i.e., kinit = Fe(xc). d is the
encoding dimension. Pi represents the i-th PET
expert module, with i ∈ [1, N t

p], and N t
p denotes

the total number of experts in the pool at task Tt.
During training, the model actively queries key-

value pairs to select the appropriate expert for each
sample. We first use the parser’s frozen encoder as
a function Fe to extract query features of the sam-
ple: q(x) = Fe(x), then apply a scoring function
Φ(·) to find the most relevant key k∗ in Et:

k∗ = argmax
ki∈Et

Φ(q(x),ki) (2)

Where Φ(u,v) = u·v
∥u∥∥v∥ represents the similarity

between u and v. This design eliminates the need
for real historical data during training or Oracle
task identifiers during prediction.

Meta-Continual Learning In each training step
t, the most relevant expert module is selected based
on the above strategy, loaded into the frozen back-
bone model for training, and the match loss be-
tween the query vector and the meta-representation
is then computed as follows:

Lmatch = −
∑
xt∈Tt

Φ(q(xt),k
∗) (3)

Although the above calculation helps the model
select expert modules by learning keys at the in-
stance level, this approach treats different keys in-
dependently (Wang et al., 2022), overlooking the
relationships between them. As a result, the model
struggles to capture the similarities and differences
among various experts effectively. To tackle this,
we propose a Meta-Contrastive Loss (MCL) in CSP,
aligning the current task with the relevant key while
enhancing differentiation from other tasks, and im-
proving expert distinguishability during inference.

For the sample xt, we treat its query feature
q(xt) and the corresponding task’s key k+ as a

positive pair, while q(xt) and keys from other tasks
k− ∈ K− are negative pairs. We then apply a non-
linear projection p(·) to map the query feature into
the latent space and compute the following:

ht = p(q(xt)) = W2ReLU(W1q(xt)) (4)

Here, W1 and W2 are trainable weight matrices.
Next, we calculate the meta-contrastive loss:

Lmcl =

−
|Tt|∑
t

log
exp(Φ+

t /τ)

exp(Φ+
t /τ) +

∑
k−∈K− exp(Φ−

t /τ)

(5)

Where Φ+
t = Φ(ht,k

+), and similarly for Φ−
t .

τ is the temperature factor. We define the train-
ing loss of PET parameters θpet as: Ltask =

−
∑Tt

(xt,yt)∈Tt logP (yt|xt; θpet). Thus, the total
loss with weight factors α and β is:

Ltotal = Ltask + αLmatch + βLmcl (6)

Active Selection or Fusion During prediction,
samples are classified as seen (from previous tasks)
or unseen (from new tasks). For seen samples, the
expert module from their original task is loaded,
while for unseen samples, relevant expert modules
are dynamically selected and combined based on
SQL skills. We propose a simple but effective rout-
ing mechanism to predict sample historical visibil-
ity and choose the appropriate inference strategy.
It calculates the similarity between the test sample
and keys of all PET modules in the expert pool,
using the z-score (standard score) (Abdi, 2007)
to measure visibility. A high z-score indicates a
significant deviation from the mean, suggesting a
strong association with a specific expert, while a
low z-score indicates a weak association with the
current expert. The calculation is as follows:

Zi =
Φ(q(x),ki)− µ

σ
(7)

In this case, Zi represents the z-score of sample x
with the i-th expert module, where i ∈ [1, Np]. µ
is the mean of the similarity scores with all expert
modules, and σ is the standard deviation. Finally,
we select the largest Zi among all experts as the
final target: Z = max

(
Z1, Z2, . . . , ZNp

)
.

We also introduce a threshold γ to infer sample
historical visibility by comparing it with Z, which
guides the inference strategy. For seen tasks, the
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Top-1 expert module is loaded. For unseen tasks,
the Top-N experts are selected, and their scores
are normalized to serve as weight proportions for
fusing the parameters of these modules. The expert
key set K̂ ∈ E selection process is as follows:

K̂ =

{
argmax Φ(q(x),ki) if Z ≥ γ

Top-N(Φ(q(x),ki)) else
(8)

The calculation process of expert module parameter
selection or fusion is as follows:

P̂ =

{
V (K̂) if Z ≥ γ∑N

i=1wiV (K̂) else
(9)

Where wi =
eΦ(q(x),ki)∑N

j=1 e
Φ(q(x),kj)

. V (·) maps a key to

expert module parameters.

5 Experiments

5.1 Datasets
We evaluate our method on two benchmarks:
Spider-stream and Combined-stream (Chen
et al., 2023c). Spider-stream, built from the Spi-
der (Yu et al., 2018), has most tasks with fewer
than 500 labeled samples. It assesses the impact
of domain shifts in databases on CSP under lim-
ited resources. Combined-stream, constructed from
Spider and WikiSQL (Zhong et al., 2018), intro-
duces single-table queries from WikiSQL, evalu-
ating performance across both domain shifts and
SQL complexity. Notably, in the original setting,
large amounts of labeled data are manually col-
lected for the initial task to warm up the model. To
better reflect real-world scenarios, we introduce a
cold-start setting where the first task does not have
the most labeled data, and tasks are shuffled ran-
domly to evaluate the effects of initial performance
and task order. More details are in Appendix B.1.

5.2 Evaluation Metrics
Following previous works (Yu et al., 2018; Chen
et al., 2023b,c), we adopt four common continual
learning metrics and report the official semantic
parsing metrics: Exact-set-Match (EM) and EX-
ecution (EX) accuracy. EM checks the correct-
ness of the generated SQL, while EX verifies its
execution on the database. (1) Average Accuracy
(ACCa): Average performance across all seen tasks.
(2) Whole Accuracy (ACCw): Performance on
the combined test set of all seen tasks. (3) Back-
ward Transfer (BWT): Impact on previous tasks

after learning the last task. (4) Forward Transfer
(FWT): Ability to generalize to unseen tasks. No-
tably, the previous method (Chen et al., 2023c) fails
to generalize to new tasks due to its ideal settings.
Metric calculations are detailed in Appendix B.2.

5.3 Implementation Details

Our method is independent of PLMs and PET
structures, allowing seamless integration with
Transformer-based LLMs. To ensure a fair compar-
ison with prior works, we use the T5 series as the
backbone model. For PET, we choose the popular
Adapter (Poth et al., 2023) and LoRA (Hu et al.,
2022), which are widely used for supervised fine-
tuning of PLMs. During the warm-up phase, we
utilize the publicly available Mixtral-8x7B-Instruct-
v0.1, and generate 10 pairs of pseudo-samples per
SQL prototype. The expert pool is expanded with
K = 5 clusters per task. In training, the tempera-
ture factor τ is 0.07, and loss weights α and β are
0.3 and 0.1. The inference threshold γ is set to 1.6,
and the Top-N for fusion is 3. All experiments are
run on an A100 GPU with 80GB memory. Further
details are provided in Appendix B.3.

5.4 Baselines

We conduct a comprehensive comparison with
the following three types of baselines: (1) Orig-
inal method: Sequential Fine-Tuning (SFT) (Yo-
gatama et al., 2019) reflects the performance of
a vanilla model. (2) Rehearsal-based methods:
EMAR (Han et al., 2020), SFNET (Chen et al.,
2023b). They require replaying real historical ex-
amples and using additional unlabeled data. (3)
PET-based methods:Fusion (Pfeiffer et al., 2021),
PEFT (Chen et al., 2023c), C3 (Chen et al., 2023c),
ProgPrompt (Razdaibiedina et al., 2023), L2P
(Wang et al., 2022), Soup (Chronopoulou et al.,
2023). Some of them rely on ideal settings. As our
method uses LLMs to generate pseudo-samples
(zero-shot) during the warm-up, we also report its
standalone zero-shot performance. The ORACLE
setting incrementally trains the model on all task
data, representing the upper bound of CSP. More
details are in Appendix B.4.

6 Results and Analysis

6.1 Overall Results

Table 1 shows the overall results of different meth-
ods. Our method demonstrates clear advantages
across benchmarks, even exceeding theoretical per-
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Method DR PET Spider-stream Combined-stream

ACCa ACCw BWT FWT ❄ACCw ACCa ACCw BWT FWT ❄ACCw

T5-Base(220M)

SFT
✗ Full 51.9/57.9 47.1/52.8 -19.6/-14.9 29.6/33.2 45.7 51.0/36.0 52.4/38.3 -11.1/-17.6 19.9/11.1 32.0
✗ Adapter 40.8/43.5 38.9/41.7 -32.3/-31.3 23.9/27.4 35.6 38.8/33.9 43.0/40.9 -33.6/-37.8 11.4/5.4 18.5
✗ LoRA 42.3/47.8 42.2/47.6 -28.4/-24.1 27.2/30.7 32.6 46.9/40.6 48.6/45.1 -21.0/-26.3 16.8/11.1 17.0

L2P
✗ Adapter 22.6/24.3 22.4/24.2 -42.2/-41.6 15.4/17.2 21.4 27.0/25.7 26.8/25.6 -38.1/-35.0 8.7/2.4 12.3
✗ LoRA 30.1/32.7 34.8/38.2 -33.2/-31.2 23.0/25.9 26.0 27.1/22.0 26.0/23.2 -31.0/-35.8 8.2/3.7 16.7

Fusion ✗ Adapter 41.1/45.2 39.7/43.6 -32.4/-29.7 24.5/27.4 23.9 35.0/29.8 43.2/40.7 -33.8/-37.4 10.2/5.1 13.5
Soup ✗ Adapter 31.4/34.3 43.1/46.0 -1.7/-1.7 27.5/30.4 8.1 25.5/22.7 40.2/38.9 -5.2/-3.7 19.0/15.7 13.7
ProgPrompt ✗ Prompt 21.0/23.6 23.5/27.1 -40.1/-39.7 16.3/16.9 7.1 21.3/19.2 27.2/26.8 -43.9/-41.2 6.1/3.3 0.1
EMAR ✓ Full 55.6/59.4 50.6/55.1 -17.5/-15.0 28.5/31.1 53.2 61.2/59.4 57.6/57.9 -7.3/-6.8 28.4/25.9 50.1
SFNET♣ ✗ Full 51.8/57.8 47.1/52.2 -18.9/-13.8 28.3/32.7 46.4 56.2/49.4 51.8/48.4 -7.9/-14.4 21.0/14.6 24.4
SFNET♣ ✓ Full 60.4/62.5 54.6/57.4 -11.3/-10.7 28.8/31.8 51.3 61.3/60.9 57.5/56.7 -5.4/-5.2 29.7/27.5 55.9

APEX(Ours)
✗ Adapter 61.0/62.4 63.4/64.8 1.3/1.4 25.1/28.3 53.5 62.7/59.3 64.9/63.1 6.8/9.2 21.9/20.7 57.7
✗ LoRA 63.3/65.3 62.1/63.9 0.4/0.5 24.4/27.5 57.8 63.5/61.4 64.3/63.5 7.2/10.6 29.2/25.8 56.1

Ideal Setting & Upper Bound

PEFT♢
✗ Prompt 65.7/- 64.5/- 0.0/0.0 N/A 14.9 63.8/- 66.2/- 0.0/0.0 N/A 16.6
✗ Adapter 69.9/71.1 70.7/72.0 0.0/0.0 N/A 70.1 66.7/65.2 67.6/67.5 0.0/0.0 N/A 64.3
✗ LoRA 68.0/69.8 69.6/71.4 0.0/0.0 N/A 64.7 63.1/61.4 67.0/66.7 0.0/0.0 N/A 58.4

ORACLE - Full 75.6/77.0 76.4/78.4 4.2/3.3 29.7/32.0 - 70.2/68.2 71.1/70.8 5.6/4.7 29.2/26.6 -
T5-Large(770M)

SFT
✗ Full 60.6/67.3 56.2/62.0 -20.0/-14.6 39.7/44.4 56.9 57.8/48.9 58.9/53.3 -7.6/-16.4 28.3/25.4 44.3
✗ Adapter 47.1/51.8 48.0/52.8 -30.5/-27.3 34.3/37.8 44.2 47.3/39.6 52.0/47.5 -28.6/-35.0 16.4/11.0 22.6
✗ LoRA 52.4/56.5 52.3/56.4 -25.3/-21.9 37.6/41.8 43.8 47.7/41.2 46.3/42.6 -28.7/-35.6 26.5/21.2 18.5

ProgPrompt ✗ Prompt 27.9/29.6 32.8/35.3 -37.0/-36.5 17.2/17.2 11.5 23.5/20.2 29.8/27.7 -46.4/-42.7 10.2/3.7 1.4
EMAR ✓ Full 63.9/68.0 59.2/62.7 -13.7/-12.0 36.5/39.5 59.0 58.1/55.8 55.2/54.3 -12.4/-12.8 28.1/22.1 53.0
SFNET♣ ✗ Full 54.1/60.2 50.3/55.6 -21.0/-17.6 37.3/41.1 51.5 65.0/60.3 61.5/59.7 -7.5/-11.9 28.2/20.4 32.6
SFNET♣ ✓ Full 63.1/66.6 56.5/59.9 -10.5/-8.6 34.3/38.7 58.6 66.2/65.2 61.4/61.3 -3.9/-3.2 37.1/35.0 59.8

APEX(Ours)
✗ Adapter 67.0/68.8 68.3/70.3 0.0/4.4 29.2/32.3 60.3 64.3/60.5 66.0/63.2 6.8/9.3 27.1/23.1 62.9
✗ LoRA 69.2/70.9 70.8/72.6 -0.4/-0.4 33.3/37.2 61.4 66.3/63.0 68.3/65.2 8.4/11.1 32.8/30.3 58.5

Ideal Setting & LLMs Performance & Upper Bound

PEFT♢
✗ Prompt 69.8/- 67.4/- 0.0/0.0 N/A 51.7 67.3/- 70.0/- 0.0/0.0 N/A 38.2
✗ Adapter 73.3/75.5 73.8/76.0 0.0/0.0 N/A 74.7 70.4/68.1 71.3/70.4 0.0/0.0 N/A 70.1
✗ LoRA 75.7/76.8 76.1/77.5 0.0/0.0 N/A 72.3 70.6/70.3 71.8/72.6 0.0/0.0 N/A 66.7

C3♢ ✗ Prompt 70.7/- 68.9/- 0.0/0.0 N/A - 69.0/- 71.2/- 0.0/0.0 N/A -
C3♢† ✗ Prompt 71.3/- 69.6/- 0.0/0.0 N/A - 67.6/- 70.0/- 0.0/0.0 N/A -
Mixtral-8x7B ✗ - 23.9/29.7 23.1/28.5 -/- -/- - 28.6/24.4 27.0/26.0 -/- -/- -
ORACLE - Full 80.9/82.8 80.5/82.6 2.4/2.9 38.1/41.3 - 73.7/73.2 75.8/76.0 1.9/2.3 37.3/34.2 -

Table 1: Results (EM/EX) on Spider-stream and Combined-stream datasets (%). APEX uses Mixtral-8x7B for
warm-up. DR indicates whether historical data replay is used, with a memory size set to 15. PET refers to different
training architectures, with FULL being full-parameter tuning. ❄ACCw represents the ACCw-EM in the cold start
scenario, detailed results can be found in Appendix C.2. ♣ indicates the need for additional unsupervised data,
and ♢ means a known task ID, but forward transfer is impossible (N/A). Some PEFT and C3 results are from
their original papers or official code repositories. † signifies the use of GPT-3.5 as the teacher. The best results are
highlighted in bold, and the second-best results are underlined. Our results are the average of three random runs.

formance limits on some metrics. Notably, it re-
quires no historical data replay, additional unsuper-
vised data, or idealized settings. More results and
analysis are in Appendix C.

VS. Rehearsal-Based Methods These baselines
rely on full parameter fine-tuning, data replay,
and additional data, differing from ours and mak-
ing comparisons less fair. Meanwhile, SFT re-
sults show that simply adding PET modules re-
duces overhead but lowers performance. Despite
this, APEX achieves significant improvements with-
out relying on data strategies, outperforming the
rehearsal-based SFNET with a BWT increase of
up to 15.8% on the Combined-stream. Notably,
SFNET’s performance drops below SFT when re-
play strategies are removed, underscoring its heavy

reliance on replay, whereas APEX remains unaf-
fected. More results are in Appendix C.1.

VS. PET-Based Methods They can be divided
into with and without ideal settings. Baselines with-
out ideal settings perform poorly due to task-level
PET module combinations lacking fine-grained
guidance. L2P, despite instance-level selection, is
limited by a fixed prompt pool and single selec-
tion strategy, hindering knowledge accumulation
and ignoring sample visibility (Yadav et al., 2023).
Baselines relying on ideal settings use task iden-
tifiers, restricting knowledge sharing and making
them unsuitable for new tasks. In contrast, APEX

excels without ideal settings by flexibly accumu-
lating knowledge and organizing expert collabo-
ration. It mitigates forgetting, enhances general-
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(a) ACCa (b) ACCw (c) BWT (d) FWT

Figure 3: Comparison of results (EM) across all seen tasks on Spider-stream (T5-base).

Figure 4: t-SNE visualization results without MCL (left)
and with MCL (right). • represent samples from the
same task. ✗ denotes the specific key related to the
current task, and ✗ indicates unrelated keys.

ization, and ensures efficient parameter utilization.
APEX outperforms PET-based methods across most
metrics, surpassing ORACLE in BWT by 8.8% on
the Combined-stream, proving its effectiveness.

Cold Start Results Table 1 also shows the per-
formance of different methods in the cold-start
scenario, where most methods experience a per-
formance drop, highlighting the challenges of this
scenario. In particular, PET-based methods suffer
a noticeable decline, emphasizing their reliance
on manually collected warm-up data. ProgPrompt
struggles on the Combined-stream dataset due to
increased task diversity and its progressive prompt
design, which limits input length. In contrast, our
method uses LLMs for adaptive warm-up, adapts
well to cold-start conditions, and performs best.
See Appendix C.2 for more detailed results.

6.2 Detailed Results and Analysis

Results Till the Seen Tasks Figure 3 shows that
our method maintains stable and significant ad-
vantages in all tasks, even surpassing ORACLE.
Most PET-based methods suffer severe forgetting
as tasks increase, while rehearsal-based methods
perform slightly better. APEX with LoRA signifi-
cantly boosts generalization, consistently surpass-
ing ORACLE. More details are in Appendix C.3.

Impact of Warm-Up and MCL Table 2 shows
that our LLM-based warm-up method significantly
boosts both forgetting prevention and generaliza-
tion, with gains up to 9.3%. Additionally, MCL
consistently improves model performance. Further
results in Figure 4 demonstrate that MCL effec-
tively pulls samples closer to relevant keys and dis-
tances them from irrelevant ones, helping to predict
the sample’s historical visibility.

ACCa ACCw BWT FWT
APEX 62.7/59.3 64.9/63.1 6.8/9.2 21.9/20.7
w/o Warm up 57.7/50.1 60.5/57.4 -0.5/-0.1 15.8/14.2
w/o MCL 60.6/57.0 61.9/59.7 8.0/9.2 20.2/17.1
S/F(γ=1.4) 62.0/61.2 65.5/63.7 7.7/10.2 17.0/13.6
S/F(γ=1.5) 63.4/59.5 64.5/63.3 8.7/11.0 19.4/16.4
S/F(γ=1.7) 60.8/57.4 61.9/60.3 5.2/6.8 23.9/21.2
S/F(Top-2) 62.9/59.6 65.3/63.5 4.4/5.3 24.0/21.7
S/F(Top-4) 62.7/59.3 64.9/63.0 8.7/10.6 21.3/20.0
only S 60.6/57.2 60.8/59.4 -1.0/-1.0 18.2/15.7
only F(Top-2) 45.8/38.8 47.8/42.2 1.4/0.8 29.9/23.8
only F(Top-3) 33.6/26.9 39.9/34.3 0.1/0.8 23.5/18.1
only F(Top-4) 29.3/23.2 36.3/30.4 0.4/0.6 20.7/15.7

Table 2: Ablation study on Combined-stream (Adapter,
T5-base). S/F indicates prediction using Select/Fuse.

Impact of Selection/Fusion We experiment with
different Top-N , γ thresholds, and inference strate-
gies, including selecting only the top expert (treat-
ing all samples as seen) and only fusing experts
(treating all samples as unseen). γ is crucial in
balancing the model’s forgetting and generaliza-
tion. From Table 2, we observe that the lower
γ, the more likely a sample is to be classified as
seen, improving forgetting-related metrics (ACCa,
ACCw, BWT) but lowering generalization (FWT).
Conversely, increasing γ enhances generalization
but increases forgetting. Thus, we search for an
optimal γ to balance forgetting and generalization.
Using only selection or fusion strategies results in a
significant overall performance drop, although the
fusion-only strategy can improve the model’s gen-
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eralization. The number of Top-N experts in the
fusion phase also impacts performance. In APEX,
varying the number of experts consistently yields
good results, while in the fusion-only strategy, in-
creasing experts degrades performance.

7 Conclusion

This work presents a novel parameter-efficient ap-
proach for continual semantic parsing. It uses
LLMs for adaptive warm-up without manual in-
tervention and builds a dynamically expanding ex-
pert pool to accumulate task-specific knowledge.
Through meta-continual learning and a routing
module, the model actively selects appropriate ex-
perts for samples with unknown task identifiers.
Importantly, it requires no real historical data or
ideal settings, while delivering strong performance,
making it well-suited for real-world applications.

Limitations

This study has several limitations that warrant fur-
ther exploration in future work: (1) Optimization
of the expert pool: although our PET-based method
effectively reduces training costs, the growing num-
ber of tasks in the task stream leads to an accumula-
tion of PET modules in the expert pool. This results
in knowledge redundancy and increased storage
overhead. Streamlining the expert pool through
pruning and refinement will be essential for manag-
ing longer task streams in practical applications. (2)
Balancing past and future: our research shows that
combining sample historical visibility with flex-
ible selection/fusion inference strategies can sig-
nificantly improve model performance. However,
this improvement largely depends on the accuracy
of predicting historical visibility. Exploring better
approaches to distinguish between past and future
tasks remains a promising direction. (3) Scaling to
more LLMs and tasks: while this work primarily
focuses on CSP tasks, our approach can also be ap-
plied to continual learning in other domains, such
as code generation and complex reasoning. More-
over, it has the potential to integrate with more
open-source LLMs and PET technologies, broad-
ening its applicability.
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In this paper, we propose a novel continual seman-
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A Method Details

A.1 SQL Prototype Extraction
To prevent the model from being constrained by ex-
isting SQL syntax prototypes, we first utilize LLM
to evolve and expand them, preparing for poten-
tial future tasks. The prompt flow is illustrated in
Figure 5, where {database_schema} represents
the SQL-formatted database schema information,
{sql_keywords} are the given SQL syntax key-
words, such as [SELECT, FROM, JOIN, ...]. This al-
lows our method to generalize to semantic pars-
ing tasks that use different types of SQL syntax.
{existing_sql_queries} refers to the set of SQL
queries obtained from clustering, denoted as Ac.
In practice, we first randomly sample a subset of
SQL queries from Ac as input. Then, using the
prompt shown in Figure 5, we generate Ns new
SQL queries. Next, we retain only the executable
SQL queries. This process is repeated Ne times,
and finally, all the newly generated SQL queries
are clustered and stripped of database schema infor-
mation to obtain a new set of SQL prototypes A∗

p.
We set Ns to 20 and Ne to 5, and cluster centers
are set to 80 for warm start and 60 for cold start.

A.2 Pseudo-Sample Synthesis
We use the existing SQL prototype A to guide
the LLM in generating appropriate pseudo-sample
pairs, with the prompt design shown in Figure 6.
Specifically, the LLM is provided with an SQL
prototype and database schema and instructed to
generate corresponding question-SQL pairs. It is
important to note that we do not directly use SQL
prototypes with placeholders such as [T], [C], and
[V], as we found that most open-source LLMs
struggle to generate sample pairs that strictly ad-
here to the prototype, while some closed-source

LLMs perform better. To accommodate different
LLMs and reduce the complexity of the task, we
follow previous work (Liu et al., 2024b) and sim-
plify the prototype into a set of SQL keywords. To
reduce noise in generation and improve fidelity to
the SQL prototype, we introduce a reflection phase
for sample correction, with the prompt shown in
Figure 7. Finally, we replace the database schema
in the generated SQL with placeholders, compute
the edit distance from the SQL prototype, and se-
lect the Top-Ng most similar pseudo-sample. A
total of 10 pseudo-samples are generated for each
SQL prototype, and Ng is set to 1.

B Experimental Details

B.1 Datasets

Spider-stream consists of 11 tasks, while
Combined-stream contains 7 tasks, with statistics
for both datasets shown in Figure 8. In the cold-
start scenario, the original task order IDs we used
for the two datasets are [5, 2, 9, 0, 7, 4, 10, 1,
8, 3, 6] (Spider-stream) and [3, 2, 4, 0, 6, 5, 1]
(Combined-stream). It is important to note that
SFNET requires additional semi-supervised data,
so we followed the approach from prior work (Chen
et al., 2023c) by using unused data from the cor-
responding databases in Spider and WikiSQL as
semi-supervised data. Figure 8 also shows the
amount of such data, while the other methods do
not require this data. During the warm-up with
LLMs phase, Table 3 lists the amount of synthe-
sized data for our method’s initial tasks in Spider-
stream and Combined-stream.

Spider-stream Combined-stream
Warm 3,393 3,430
Cold 1,445 1,828

Table 3: The number of pseudo samples synthesized on
the initial task. Warm and Cold represent the original
task order and the cold-start task order, respectively.

B.2 Evaluation Metrics

We define ai,j , where i, j ∈ [1, |T |], as the test ac-
curacy (including EM and EX) of the parser on task
Tj after training on task Ti. |T | denotes the total
number of tasks. The four metrics are calculated as
follows:

• ACCa =
1
|T |

∑|T |
i=1 a|T |,i
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You are provided with a database schema, a list of SQL keywords, and several sample SQL queries. Your task is 
to generate a diverse set of new SQL queries that reflect different structures, SQL patterns, and use cases. 
Ensure that each generated SQL query incorporates different SQL keywords, refers to the provided schema, and 
follows SQL best practices.

### Database Schema: {database_schema} 

### SQL Keywords: {sql_keywords} 

### Sample SQL Queries: {sample_sql_queries      } 

### Instructions: 
-- Generate 20 new SQL queries. 
-- Each query must use SQL keywords from the provided list. 
-- Vary the structure and style of the queries, such as by using different SQL clauses, joins, subqueries, 
aggregation functions, and conditions. 

### Generated SQL Queries:

c

Figure 5: The prompt of SQL evolution.

You are provided with a set of SQL keywords and a database schema. Your task is to generate 10 pairs of natural 
language questions and corresponding SQL queries. Each SQL query should incorporate as many of the 
provided SQL keywords as possible while being valid and executable based on the given database schema. 
Ensure that the questions and SQL queries are varied and meaningful, reflecting realistic use cases.

### Database Schema: {database_schema} 

### SQL Keywords: {sql_prototype_keywords} 

### Instructions: 
-- Generate a natural language question that accurately reflects the SQL query.
-- Ensure that the final SQL query includes as many of the SQL keywords as possible.
-- The question-SQL pair should make sense in the context of the given database schema.

### Generated Question—SQL Pairs:

Figure 6: The prompt of pseudo-sample synthesis.

You are provided with a pair consisting of a natural language question and a corresponding SQL query, along 
with the database schema. Your task is to reflect on this pair and verify if the SQL query correctly answers the 
question based on the given schema.

### Sample pairs: {sample_pairs}

### Database Schema: {database_schema} 

### Instructions: 
--If the pair matches, respond with "Yes", and don't give unnecessary explanations. 
--If the pair does not match, respond with "No", provide corrections to the question or SQL query.

### Generated Response: 

Figure 7: The prompt of self-correction.
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(a) Spider-stream (b) Combined-stream

Figure 8: Number statistics of Spider-stream and Combined-stream.

• ACCw = aT (1:|T |)
test

, T (1:|T |)
test = ∪|T |

i=1T i
test rep-

resents the combined test set from task T1 to
T|T |.

• BWT = 1
|T |−1

∑|T |−1
i=1 (a|T |,i − ai,i)

• FWT = 1
|T |−1

∑|T |
i=2(ai−1,i − âi), where âi

represents the accuracy of a randomly initial-
ized model on task Ti.

B.3 Implementation Details

Our experiments are conducted using the Pytorch
framework (Paszke et al., 2019) with the Adam op-
timizer (Kingma and Ba, 2017). Following previ-
ous work (Chen et al., 2023c), we use T5-base2 and
T5-large3 as backbone models. For full fine-tuning,
batch sizes are set to 12 and 8, with a learning rate
of 1e-4. The maximum training epoch is 150, and
the evaluation delay is set to 50 epochs. The input
and output length limits are set to 512 and 256,
respectively. In parameter-efficient fine-tuning,
we experiment with two representative methods:
Adapter and LoRA, both widely used for updating
LLM parameters, with a learning rate of 1e-3 and
an evaluation delay of 50 epochs. Our method is
implemented using the Transformer (Wolf et al.,
2020) library and AdapterHub4 repository.

Adapter (Poth et al., 2023) adapts to new tasks
by inserting additional small networks (usually
feed-forward neural networks) between the lay-
ers of the model, without modifying the existing
weights. Each Adapter layer typically consists of a
dimensionality reduction and restoration through

2https://huggingface.co/google/t5-base-lm-adapt
3https://huggingface.co/google/t5-large-lm-adapt
4https://adapterhub.ml

linear transformations, along with a nonlinear ac-
tivation function. We use Bottleneck Adapters,
which introduce bottleneck feed-forward layers in
each layer of the transformer model. The forward
computation process is as follows:

h = Wup·f(Wdown·x) + r (10)

Where Wup and Wdown represent the projection
matrices. r denotes the residual connection. We
set the reduction factor to 16, and the nonlinear
activation function is ReLU.

LoRA (Low-Rank Adaptation) (Hu et al., 2022)
is an efficient fine-tuning technique that adjusts the
weights of certain layers in a pre-trained model by
introducing low-rank matrices. These low-rank ma-
trices serve as modifiers to the pre-trained weights
rather than replacements. For the output of a linear
layer h = W0x, the reparameterization process is
as follows:

h = W0x+
α

r
BAx (11)

Here, A ∈ Rr×k and B ∈ Rd×r. W0 remains
fixed during training. We set the low rank to 8. In
summary, LoRA modifies existing weights, while
Adapter adds new layers without altering the origi-
nal weights.

During the warm-up phase, we utilize different
types and sizes of LLMs, including Mistral-7B-
Instruct-v0.35, Meta-Llama-3-8B-Instruct6, and
Mixtral-8x7B-Instruct-v0.17. All models were run

5https://huggingface.co/mistralai/Mistral-7B-Instruct-
v0.3

6https://huggingface.co/meta-llama/Meta-Llama-3-8B-
Instruct

7https://huggingface.co/mistralai/Mixtral-8x7B-Instruct-
v0.1

https://huggingface.co/google/t5-base-lm-adapt
https://huggingface.co/google/t5-large-lm-adapt
https://adapterhub.ml
https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.3
https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.3
https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct
https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct
https://huggingface.co/mistralai/Mixtral-8x7B-Instruct-v0.1
https://huggingface.co/mistralai/Mixtral-8x7B-Instruct-v0.1
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using the vLLM8 inference framework with the fol-
lowing settings: temperature of 0.6, top_p of 0.95,
and max_token set to 256.

B.4 Baselines

Following the setting of previous works (Chen
et al., 2023b,c; Liu et al., 2024b), we compare our
approach with three types of baseline methods. In
addition to citing results from the original papers,
certain baselines using different backbone mod-
els and evaluation approaches are reimplemented
using their official code. Four key metrics are re-
ported: ACCa, ACCw, BWT, and FWT, to provide
deeper insights into the performance of existing
methods on CSP. The details of each baseline are
as follows:
(1) Sequential Fine-Tuning (SFT) (Yogatama
et al., 2019) is a naive method of sequentially fine-
tuning tasks in a stream, typically suffering from
severe catastrophic forgetting and limited general-
ization, representing the lower bound of continual
learning performance. We use the same backbone
parameter settings as our method.
(2) Rehearsal-based Methods mitigate forgetting
by repeatedly replaying real data from previous
tasks during the current task. They allocate mem-
ory for each task to store past data, which is re-
played in every training batch to directly enhance
performance in continual learning tasks. Some
approaches, such as SFNET, also incorporate man-
ually collected semi-supervised data. While com-
parisons with these methods may not be entirely
fair, as our approach does not require replaying
historical data or using external manual data, it still
shows strong competitive performance.

EMAR (Han et al., 2020) enhances memory
consolidation by combining prototype replay of
both new and old relational data, allowing the
model to retain prior knowledge while learning new
relations, thus preventing catastrophic forgetting
through memory reconsolidation. We do not di-
rectly reference the results from Chen et al. (2023c)
because the original paper does not specify the task
sequence order, so we reproduce the results using
the official code.

SFNET (Chen et al., 2023b) is a semi-
supervised continual learning method that inte-
grates self-training (for pseudo-label generation)
and episodic memory replay (to retain informa-
tion from previous tasks), leveraging both super-

8https://docs.vllm.ai/en/latest/

vised and unsupervised data. It employs a teacher-
student framework where the teacher optimizes the
current task through self-training, and the student
learns from pseudo-labeled data across all tasks
to ensure overall task performance. Notably, the
original SFNET uses GRAPPA (Yu et al., 2021)
(encoder-only), which is pre-trained on semantic
parsing, as its backbone model and evaluates a sim-
plified custom intermediate representation. How-
ever, GRAPPA utilizes database information from
the Spider dataset during pre-training, which raises
concerns about potential data leakage. Moreover,
its generated intermediate representation cannot be
directly executed on the database, and converting it
to SQL results in significant performance loss. To
ensure fair comparisons with other methods, we fol-
low previous work (Chen et al., 2023c) and use the
T5 series models based on a seq2seq architecture.
We carefully replace the backbone model while
keeping all other parameters from the original code
unchanged and report the updated results.
(3) PET-based Methods typically require training
on supervised data, and then the model’s backbone
parameters are frozen. Efficient parameter tuning is
then applied to learn a PET for each task in the task
stream. During inference, these methods generally
operate under two configurations:
① Task-aware: This is an ideal setting that focuses
solely on the CSP training phase, bypassing the
task selection process during inference, thereby
simplifying continual learning. Specifically, the
task identifier for each sample is known during
inference, so only the corresponding PET module
needs to be loaded. However, this setting limits the
model’s generalization ability as it cannot handle
samples from unseen tasks. Such methods include:

• PEFT (Chen et al., 2023c) is a vanilla method
based on the ideal setting, where it learns a
specific PET module for each task and loads
it during inference. This approach makes the
results independent of task order, so we report
the results from the original paper.

• C3 (Chen et al., 2023c) builds upon PEFT
by introducing a teacher-student architecture
and using in-context tuning to strengthen con-
textual information. Since the original paper
does not specify the task stream order, we re-
port the results provided in the official code
repository.

② Task-agnostic: This challenging and more re-

https://docs.vllm.ai/en/latest/
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alistic setting requires the model to infer without
knowing the task identifier during inference. The
model must autonomously select the appropriate
PET module, allowing it to naturally generalize to
unseen tasks. This paper focuses on this scenario.

• Fusion (Pfeiffer et al., 2021) improves multi-
task learning by separating knowledge ex-
traction (Adapter training) from knowledge
combination (fusion), preventing catastrophic
forgetting and task interference, while en-
abling effective cross-task information trans-
fer. Specifically, it trains an additional layer
on each task to fuse all previously learned
Adapter modules.

• ProgPrompt (Razdaibiedina et al., 2023) pro-
gressively accumulates learned prompts over
the task stream, so the prompt length grows
with the number of tasks. We set the prompt
length to 50 and prompt learning rate to 0.3.

• L2P (Wang et al., 2022) introduces a prompt-
based continual learning method that prede-
fines a subset of learnable prompt parameters
in a prompt pool, allowing dynamic prompt
selection and task-specific learning without
modifying the large model parameters. Since
the original method is designed for classifica-
tion tasks, we adapt it to sequence generation
based on prior work (Yadav et al., 2023). The
initial prompt pool size is set to 5 × the num-
ber of tasks, and the Top-1 PET module is
selected for each instance.

• Soup (Chronopoulou et al., 2023) is a simple
yet effective method that improves domain
adaptation by performing weight-space aver-
aging of domain-specific adapters, achieving
better performance on new domains without
additional training.

C More Results and Analysis

C.1 Impact of Memory Size and Ideal Settings

Table 4 presents the impact of different memory
sizes and ideal settings on baseline performance.
It is evident that rehearsal-based methods heavily
depend on memory size. When memory size is re-
duced to 1, EMAR’s performance on Spider-stream
even falls below that of SFT. SFNET, which is sup-
ported by replay strategies and additional unlabeled
data, achieves better results. However, our method

consistently outperforms without relying on any
replay or external data.

For baselines based on ideal settings, we ex-
amine their performance in real-world scenarios
with unknown task identifiers by employing ran-
dom loading of pre-trained PET modules in the
core PEFT approach. The results show a signifi-
cant decline in ACCa and ACCw, indicating that
PEFT methods experience severe catastrophic for-
getting when not relying on ideal settings. Inter-
estingly, random loading reduces task interference,
resulting in better BWT and FWT performance on
Spider-stream. However, on Combined-stream, the
diversity of task types leads to a drop in BWT. In
contrast, our method remains stable and unaffected
by these external conditions.

C.2 Cold Start Results
Table 5 shows the performance of different meth-
ods in the cold-start scenario, where only a small
amount of labeled data is available for the first task.
Nearly all methods experience performance degra-
dation, highlighting the challenge of the cold-start
scenario. Our findings include:
Dependence on Initialization for PET-based
Methods. From the results of L2P, Fusion, Soup,
ProgPrompt, and PEFT, we observe a sharp perfor-
mance drop, even below that of SFT. This is due
to the requirement for strong initial performance in
these methods.
Differences among PET Methods. In ideal set-
tings, prompt-based methods perform worse than
others, indicating greater reliance on supervised
data in the initial task. This may be due to the fixed
prefix design in prompt methods, which, while
minimally invasive to the model, struggles with
complex sequence generation tasks (Qin and Joty,
2022). The prefix also consumes input space, trun-
cating long inputs. This issue is exacerbated in
ProgPrompt, where the growing prefix severely im-
pacts performance on later tasks.
Impact of Replay and External Data. Full-
parameter fine-tuning methods like EMAR and
SFNET, which utilize historical data replay and in-
corporate additional semi-supervised data, perform
well in preventing catastrophic forgetting and en-
hancing generalization. As seen in Appendix C.1,
their performance is highly dependent on the mem-
ory size allocated for replay data (the more data
replayed, the slower the forgetting). In contrast,
PET-based methods, like ours, which do not rely
on data replay, show limited effectiveness in gen-
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Method
Memory

Size
Spider-stream Combined-stream

ACCa ACCw BWT FWT ACCa ACCw BWT FWT
Original Method

SFT 0 51.9/57.9 47.1/52.8 -19.6/-14.9 29.6/33.2 51.0/36.0 52.4/38.3 -11.1/-17.6 19.9/11.1
Rehearsal-Based Method

EMAR
1 46.7/51.6 43.6/47.8 -26.7/-23.5 26.4/30.7 53.7/51.2 50.8/49.4 -15.8/-16.5 23.1/19.0
10 55.0/57.4 50.0/52.5 -17.8/-17.1 28.4/32.1 60.6/58.9 55.7/55.3 -7.9/-7.1 28.7/25.4
15 55.6/59.4 50.6/55.1 -17.5/-15.0 28.5/31.1 61.2/59.4 57.6/57.9 -7.3/-6.8 28.4/25.9

Rehearsal-Based Method Requiring Unsupervised Data

SFNET

0 51.8/57.8 47.1/52.2 -18.9/-13.8 28.3/32.7 56.2/49.4 51.8/48.4 -7.9/-14.4 21.0/14.6
1 50.9/54.2 50.3/54.1 -20.2/-19.1 24.8/27.9 59.1/54.1 53.3/50.8 -6.3/-9.7 25.6/19.9
10 58.1/61.7 52.7/56.8 -12.4/-9.9 28.7/32.2 60.7/57.7 55.2/53.9 -6.0/-6.7 28.7/26.0
15 60.4/62.5 54.6/57.4 -11.3/-10.7 28.8/31.8 61.3/60.9 57.5/56.7 -5.4/-5.2 29.7/27.5

Random PET
RandomAdapter 0 37.8/40.1 42.6/45.5 4.8/4.2 25.5/28.2 21.8/17.1 28.1/26.3 -17.4/-20.3 25.2/21.0
RandomLoRA 0 36.9/40.2 42.3/45.8 2.6/2.6 25.9/29.1 30.5/25.0 35.1/32.4 -8.0/-10.8 32.8/30.6

Without Rehearsal and Unsupervised Data
APEXAdapter 0 61.0/62.4 63.4/64.8 1.3/1.4 25.1/28.3 62.7/59.3 64.9/63.1 6.8/9.2 21.9/20.7
APEXLoRA 0 63.3/65.3 62.1/63.9 0.4/0.5 24.4/27.5 63.5/61.4 64.3/63.5 7.2/10.6 29.2/25.8

Upper Bound
ORACLE 75.6/77.0 76.4/78.4 4.2/3.3 29.7/32.0 70.2/68.2 71.1/70.8 5.6/4.7 29.2/26.6

Table 4: Effect of memory size and ideal settings on baseline performance (T5-base).

(a) ACCa (b) ACCw (c) BWT (d) FWT

Figure 9: Comparison of results (EM) across all seen tasks on Combined-stream (T5-base).

(a) ACCa (b) ACCw (c) BWT (d) FWT

Figure 10: Comparison of results (EM) across all seen tasks on Spider-stream (T5-large).

(a) ACCa (b) ACCw (c) BWT (d) FWT

Figure 11: Comparison of results (EM) across all seen tasks on Combined-stream (T5-large).
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Method DR PET Spider-stream (cold start) Combined-stream (cold start)

ACCa ACCw BWT FWT ACCa ACCw BWT FWT
T5-Base(220M)

SFT
✗ Full 49.6/55.4 45.7/52.0 -20.8/-16.3 26.7/27.8 39.9/36.4 32.0/29.4 -25.9/-28.5 24.5/20.5
✗ Adapter 40.4/44.9 35.6/39.8 -33.2/-29.4 23.0/23.6 28.9/25.6 18.5/16.4 -40.1/-43.2 23.4/19.4
✗ LoRA 36.4/39.6 32.6/36.0 -30.2/-28.8 21.4/22.9 27.7/25.7 17.0/15.8 -35.6/-36.3 20.6/17.4

L2P
✗ Adapter 25.7/28.4 21.4/23.7 -41.0/-39.9 15.9/16.4 20.1/16.5 12.3/10.1 -47.5/-49.6 15.0/12.8
✗ LoRA 29.6/33.5 26.0/30.5 -39.2/-37.4 18.8/19.7 27.1/24.0 16.7/14.8 -40.7/-42.6 20.7/16.8

Fusion ✗ Adapter 25.7/30.1 23.9/28.3 -14.1/-13.3 23.4/24.7 22.0/20.3 13.5/12.4 -28.1/-29.4 18.1/15.3
Soup ✗ Adapter 9.0/10.2 8.1/9.7 -2.5/-2.5 4.5/4.8 22.5/19.8 13.7/12.0 -0.3/0.3 17.9/15.6
ProgPrompt ✗ Prompt 8.7/11.0 7.1/9.4 -34.7/-35.3 8.4/8.5 0.2/0.6 0.1/0.3 -10.2/-11.2 0.1/0.0
EMAR ✓ Full 57.2/61.4 53.2/58.1 -15.6/-12.2 27.4/28.0 54.4/51.5 50.1/50.0 -10.0/-12.1 17.8/15.9
SFNET♣ ✗ Full 50.1/55.3 46.4/51.9 -21.0/-17.9 25.9/27.5 34.5/31.9 24.4/23.3 -33.7/-34.6 22.5/19.2
SFNET♣ ✓ Full 55.4/59.3 51.3/55.5 -13.4/-11.4 24.7/25.6 58.4/56.7 55.9/56.3 -6.8/-7.0 24.2/20.0

APEX(Ours)
✗ Adapter 54.1/55.6 53.5/55.5 2.9/2.7 9.1/9.4 58.2/55.5 57.7/57.1 7.6/9.3 26.3/24.3
✗ LoRA 57.2/59.3 57.8/60.1 3.5/3.7 13.0/13.3 57.3/55.3 56.1/55.7 2.5/2.2 27.6/23.4

Ideal Setting

PEFT♢
✗ Prompt 11.5/14.5 14.9/18.6 0.0/0.0 N/A 25.0/23.1 16.6/18.2 0.0/0.0 N/A
✗ Adapter 69.6/71.0 70.1/72.1 0.0/0.0 N/A 61.7/62.0 64.3/65.7 0.0/0.0 N/A
✗ LoRA 63.6/65.8 64.7/67.4 0.0/0.0 N/A 55.3/55.0 58.4/59.0 0.0/0.0 N/A

T5-Large(770M)

SFT
✗ Full 60.9/67.7 56.9/63.5 -16.8/-11.0 34.6/36.3 49.5/47.2 44.3/41.7 -22.1/-23.0 32.6/27.0
✗ Adapter 48.2/53.2 44.2/48.9 -28.7/-24.9 30.5/31.4 32.5/30.7 22.6/21.4 -40.4/-42.0 29.4/23.9
✗ LoRA 48.0/53.7 43.8/49.0 -27.3/-22.4 32.1/33.5 30.1/27.8 18.5/17.1 -41.2/-43.4 28.3/23.4

ProgPrompt ✗ Prompt 13.9/16.5 11.5/13.8 -38.3/-37.1 10.2/10.7 1.1/1.5 1.4/1.5 -13.5/-14.1 0.3/0.2
EMAR ✓ Full 61.2/65.3 59.0/63.2 -14.1/-11.7 32.6/33.3 55.0/51.5 53.0/50.4 -11.9/-14.4 25.2/19.6
SFNET♣ ✗ Full 56.4/61.4 51.5/56.0 -18.3/-14.7 31.2/32.1 40.9/37.0 32.6/29.7 -29.9/-33.5 28.8/25.0
SFNET♣ ✓ Full 63.4/67.3 58.6/62.6 -10.6/-8.8 32.8/34.4 62.2/61.9 59.8/60.6 -6.5/-5.1 31.3/27.2

APEX(Ours)
✗ Adapter 58.9/59.7 60.3/61.9 4.7/5.0 16.6/17.8 61.9/57.4 62.9/61.1 -0.1/-0.1 27.6/25.3
✗ LoRA 61.2/62.9 61.4/63.6 2.5/2.5 18.1/18.3 61.4/60.8 58.5/58.9 4.6/4.4 35.2/32.7

Ideal Setting

PEFT♢
✗ Prompt 42.6/46.2 51.7/55.1 0.0/0.0 N/A 43.9/45.5 38.2/40.8 0.0/0.0 N/A
✗ Adapter 74.1/75.6 74.7/76.6 0.0/0.0 N/A 65.4/65.9 70.1/71.2 0.0/0.0 N/A
✗ LoRA 72.1/73.4 72.3/74.2 0.0/0.0 N/A 63.3/63.8 66.7/68.5 0.0/0.0 N/A

Table 5: Results on Spider-stream and Combined-stream datasets under cold start settings (%). DR indicates
whether historical data replay is used, with a memory size set to 15. PET refers to different training architectures,
with FULL being full-parameter tuning. ♣ indicates the use of additional unsupervised data, and ♢ means a known
task ID, but forward transfer is impossible. The best results are highlighted in bold, and the second-best results are
underlined. Our results are from three random runs.

eralization. For example, in Spider-stream, even
though Soup is designed for task generalization and
uses a fusion of Adapters similar to our approach,
its FWT performance is only 4.5/4.8.
Robustness and Effectiveness of Our Method.
APEX achieves consistent performance without
requiring historical data replay or external semi-
supervised data. It significantly outperforms PET-
based baselines and rivals or surpasses replay-
based methods, with a 16.9% improvement over
SFNET in BWT, further proving its effectiveness.

C.3 Results Till the Seen Tasks
Figures 9 to 11 provide further comparison results
on previously seen tasks. It can be observed that
our method shows significant advantages across
most metrics, even surpassing ORACLE perfor-
mance in some cases. We also notice that methods

based on full-parameter fine-tuning, such as SFT-
Full, EMAR, and SFNET, generally perform better
on FWT compared to PET-based methods, indicat-
ing that a larger parameter update range helps the
model generalize to new tasks more effectively.

C.4 Impact of Threshold γ

To further explore the impact of threshold γ, we
evaluate sample visibility prediction accuracy us-
ing known task identifiers in the test set across
different threshold values, as shown in Figure 12.
The results indicate that as the threshold increases,
the accuracy for seen and unseen samples becomes
inversely related. The threshold of 1.6, used in Sec-
tion 6.2, is located near the intersection of the two
curves on the x-axis, which further demonstrates
that balancing the prediction accuracy for seen and
unseen samples is key to balancing the model’s
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Figure 12: Prediction accuracy of sample history visi-
bility (seen/unseen) under different γ settings.

resistance to forgetting and its generalization.

C.5 Warm Up with Different LLMs
To further explore the impact of different types
and scales of LLM warm-up on model perfor-
mance, in addition to the previously mentioned
Mixtral-8x7B-Instruct-v0.1, we also used Mistral-
7B-Instruct-v0.3 and Meta-Llama-3-8B-Instruct.
Table 6 presents the results of our method under
different LLM warm-up settings, as well as the
performance of LLMs in zero-shot inference. It is
evident that the zero-shot results of LLMs alone are
not satisfactory, further highlighting the importance
of continual learning. Notably, our method, when
combined with various types and scales of LLMs,
continues to demonstrate strong performance, espe-
cially in the BWT metric, consistently exceeding
the upper performance bound, which further vali-
dates the effectiveness of our approach.

Model ACCa ACCw BWT FWT
SFT-Full 51.0/36.0 52.4/38.3 -11.1/-17.6 19.9/11.1
SFT-LoRA 46.9/40.6 48.6/45.1 -21.0/-26.3 16.8/11.1
Mistral-7B 27.3/22.1 24.9/23.2 -/- -/-
+APEX 64.3/62.8 66.7/66.9 8.1/9.6 23.4/22.1
Llama-3-8B 33.5/26.2 27.7/24.9 -/- -/-
+APEX 64.9/63.1 66.9/65.9 7.8/9.5 24.0/21.5
Mixtral-8x7B 28.6/24.4 27.0/26.0 -/- -/-
+APEX 63.5/61.4 64.3/63.5 7.2/10.6 29.2/25.8

Ideal Setting & ORACLE
PEFT-LoRA 63.1/61.4 67.0/66.7 0.0/0.0 N/A
ORACLE 70.2/68.2 71.1/70.8 5.6/4.7 29.2/26.6

Table 6: Comparison of LLM zero-shot results and the
performance of different LLMs warming up APEXLoRA
on Combined-stream (T5-base).
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