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Abstract

The use of language models (LMs) has in-
creased considerably in recent years, and the
biases and stereotypes in training data that are
reflected in the LM outputs are causing so-
cial problems. In this paper, inspired by the
task arithmetic, we propose the “Bias Vector”
method for the mitigation of these LM biases.
The Bias Vector method does not require man-
ually created debiasing data. The three main
steps of our approach involve: (1) continual
training the pre-trained LMs on biased data us-
ing masked language modeling; (2) construct-
ing the Bias Vector as the difference between
the weights of the biased LMs and those of
pre-trained LMs; and (3) subtracting the Bias
Vector from the weights of the pre-trained LMs
for debiasing. We evaluated the Bias Vector
method on the SEAT across three LMs and
confirmed an average improvement of 0.177
points. We demonstrated that the Bias Vector
method does not degrade the LM performance
on downstream tasks in the GLUE benchmark.
In addition, we examined the impact of scal-
ing factors, which control the magnitudes of
Bias Vectors, with effect sizes on the SEAT and
conducted a comprehensive evaluation of our
debiased LMs across both the SEAT and GLUE
benchmarks.

Warning: This paper presents examples that can
be considered discriminatory.

1 Introduction

As language models (LMs) have become more
widely used in recent years, the biases and stereo-
types inherent in the training data for LMs are
creating social problems (Liu et al., 2020; Kumar
et al., 2023). These biases reflect the stereotypes
of specific social groups (such as those related to
race, profession, gender, and religion) (Bolukbasi
et al., 2016; Nadeem et al., 2021). People tend to
use racially biased stereotypical phrases (like “The

men from afghanistan ride on camels”), rather than
phrases that contradict stereotypes (e.g., “The men
from afghanistan ride on skateboards”).1

As a consequence, LMs often make unfair pre-
dictions about certain groups, leading to biased or
stereotyped outcomes that can cause discomfort
among users. The widespread and frequent use of
LMs (such as ChatGPT (GPT-3.5 / 4) (OpenAI,
2022, 2024)), with their biased predictions is result-
ing in discrimination and inequality, which is be-
coming a social problem (Feng et al., 2023). Hence,
developing effective bias mitigation methods for
LM systems is essential.

Prior to the advent of Large Language Models
(LLMs), debiasing studies primarily targeted word
embeddings (Zhao et al., 2018; Kaneko and Bol-
legala, 2019; Wang et al., 2020). Models such
as word2vec (Mikolov et al., 2013) are debiased
by reshaping the word embeddings in their out-
put representations. However, these methods are
less practical for Transformer-based LMs, such as
BERT (Devlin et al., 2019), because the model pa-
rameters need to be debiased as the required model
outputs vary depending on the downstream task.

To address biases in Transformer-based LMs,
methods have been developed to reduce biases and
stereotypes by continually training of LMs with
debiased datasets (Zmigrod et al., 2019; Webster
et al., 2020; Dinan et al., 2020; Barikeri et al., 2021;
Jentzsch and Turan, 2022). However, these meth-
ods typically require manually created debiased
data, which is resource-intensive.

In this work, we aim to mitigate biases and
stereotypes of LMs (hereafter referred to collec-
tively as “bias”) using a proposed method inspired
by the task arithmetic approach (Ilharco et al.,
2023). We hypothesize that biases can be reduced
through vector subtractions in the parameter space,

1The (anti-/)stereotype examples shown are from
the datasets which are publicly available on https://
huggingface.co/datasets/McGill-NLP/stereoset.

https://huggingface.co/datasets/McGill-NLP/stereoset
https://huggingface.co/datasets/McGill-NLP/stereoset
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Figure 1: Overview of the Bias Vector method: (1) Training pre-trained LMs on biased data to create the biased
models; (2) Subtracting pre-trained LM weights from those of the biased models for constructing the Bias Vectors;
(3) Mitigating the Bias Vectors from the pre-trained LM weights for debiasing models.

assuming the same model architecture for all LMs.
Most existing debiasing techniques rely on man-
ually created debiased data. In contrast, our pro-
posed debiasing method avoids the necessity of
resource-intensive manual work. Specifically, we
construct debiased LMs by subtracting the “Bias
Vectors” from the weights of LMs.

An overview of the proposed method is shown in
Figure 1. The Bias Vector is created by subtracting
the weights of a pre-trained LM from those of a
biased LM, which is continually trained on biased
text. By applying this Bias Vector to the pre-trained
LM weights, we construct a debiased LM.

The masked language modeling (MLM) task
is adopted for the continual training, and our ex-
periments target BERT (Devlin et al., 2019), AL-
BERT (Lan et al., 2020), and RoBERTa (Liu et al.,
2019), following Meade et al. (2022). We eval-
uated the debiased LMs using the Sentence En-
coder Association Test (SEAT) (May et al., 2019)
and confirmed the effectiveness of our Bias Vector
method.

Additionally, we analyzed how scaling the Bias
Vector by a factor λ influences LM biases, allow-
ing us to control the magnitude of the Bias Vector
applied to LMs. Furthermore, the evaluation on
the GLUE benchmark (Wang et al., 2018) demon-
strated that LM representations remain effective
for downstream tasks, even after applying the Bias
Vector with λ = 1.

Our main contributions are as follows:

• Proposing the “Bias Vector” method, that en-

ables debias LMs development without manu-
ally creating debiased data;

• Verifying the effectiveness of the Bias Vector
method and confirming that debiased LMs
have equivalent performance as pre-trained
LMs on GLUE;

• Confirming that over-debiasing (i.e., with
large λ) can lead to a collapse of pre-trained
knowledge, by analyzing the effect sizes on
SEAT and the GLUE scores.

2 Related Works

2.1 Language Models and Bias

Language models (LMs) are inherently biased
because their training processes rely on human-
created text data, which would reflect human bi-
ases (Bolukbasi et al., 2016). Navigli et al. (2023)
defined the term bias in the field of Natural Lan-
guage Processing as “prejudices, stereotypes, and
discriminatory attitudes against certain groups of
people.” We adopt this bias definition throughout
this paper.

Various debiasing methods have been proposed
to mitigate these biases (Schick et al., 2021; Zmi-
grod et al., 2019; Webster et al., 2020; Ravfogel
et al., 2020; Liang et al., 2020).

Several studies have shown that for word-
embedding models, such as word2vec (Mikolov
et al., 2013), the bias in word embeddings can be
mitigated using approaches like subtracting the sta-
tistically significant mean vector associated with
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the bias from each word vector (Bolukbasi et al.,
2016; Mu and Viswanath, 2018; Gonen and Gold-
berg, 2019; Wang et al., 2020). In contrast, other
studies ahve proposed bias mitigation techniques
specifically for Transformer-based LMs (Ravfogel
et al., 2020; Liang et al., 2020).

Several benchmarks have been introduced to
evaluate debiasing approaches. Islam et al. (2016)
developed the Word Embedding Association Test
(WEAT) to measure bias scores in word embed-
dings. May et al. (2019) proposed the Sentence
Encoder Association Test (SEAT) as an extension
of WEAT, extending the focus from word to sen-
tence. StereoSet (Nadeem et al., 2021) is another
benchmark designed to evaluate stereotypes across
four bias categories: race, profession, gender, and
religion. StereoSet consists of two subsets: in-
trasentence, which measures biases within a indi-
vidual sentence, and intersentence, which evaluates
biases at the discourse level across multiple sen-
tences. Nangia et al. (2020) also introduced the
CrowS-Pairs benchmark for bias neasurements.

However, Meade et al. (2022) criticized exist-
ing debiasing methods, arguing that these methods
have focused too narrowly on their effectiveness
within specific datasets. Therefore, they conducted
an experimental evaluation of these methods us-
ing specific LMs on bias benchmarks and released
the evaluation code for debiasing approaches. We
utilized the code2 in our evaluation experiments.

2.2 Task Arithmetic Approaches

Recent studies have focused on the weight ma-
nipulation weights in neural network models Il-
harco et al. (2023). Several approaches for merging
model weights have been proposed in the field of
Computer Vision, (Wortsman et al., 2022; Matena
and Raffel, 2022; Ainsworth et al., 2023). Worts-
man et al. (2022) found that a model constructed
by averaging the weights of multiple models fine-
tuned with different hyperparameters often results
in improved model performance and robustness.
Matena and Raffel (2022) proposed that computing
the average parameter weights in different models
corresponds to approximating the posterior distri-
bution of each model parameter Matena and Raffel
(2022) proposed a method to combine the charac-
teristics of each model by considering the mean
of multiple model parameters with the same archi-
tecture. Ainsworth et al. (2023) hypothesized that

2https://github.com/mcgill-nlp/bias-bench.

the loss landscape in the training and optimization
process of deep learning models exhibits a “single
basin” phenomenon and introduced an algorithm
to align the weights between models.

Some studies in Natural Language Processing
have also attempted to manipulate LM weights. Li
et al. (2022) improved the overall LM performance
by dynamically updating and merging multiple ex-
pert LMs that were independently trained on dif-
ferent data subsets; therefore, the LMs could be
effectively trained toward domain-specific knowl-
edge.

Inspired by these works, Ilharco et al. (2023) in-
troduced the task arithmetic approach, which edites
model parameters using a task vector containing
the information necessary to achieve good perfor-
mance on a given task. Motivated by the task arith-
metic concept, Huang et al. (2024) introduced the
“Chat Vector” approach which enables pre-trained
LMs to gain conversational abilities in new lan-
guages without any additional training.

Ilharco et al. (2023) also evaluated the toxicity
of LMs; however, their evaluation results did not
align with the benchmarks for bias evaluation. In
addition, its effectiveness was demonstrated with
only GPT-2 model (Radford et al., 2019). We com-
prehensively examine the effectiveness of our Bias
Vector method in the bias benchmarks following
Meade et al. (2022).

3 Proposed Methods

3.1 Continual Training

We continually train the LMs using biased text data
to adjust their parameters toward the biased LMs.

As an additional training task, we adopt the
masked language modeling (MLM)3, which is also
used in the BERT pre-training process.

In MLM task, a portion of tokens in sentences is
replaced with [MASK] tokens, and LMs are trained
to predict these masked tokens.

3.2 Bias Vector

In order to mitigate biases in LMs, we propose the
“Bias Vector” method, inspired by the task arith-
metic approach (Ilharco et al., 2023), assuming
the LMs share the same model architecture. An
overview of the proposed method is presented in
Figure 1.

3Our MLM experiments follow the HuggingFace
library: https://huggingface.co/docs/transformers/
main/en/tasks/masked_language_modeling.

https://github.com/mcgill-nlp/bias-bench
https://huggingface.co/docs/transformers/main/en/tasks/masked_language_modeling
https://huggingface.co/docs/transformers/main/en/tasks/masked_language_modeling
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Our experiments are conducted using pre-trained
LMs such as BERT (Devlin et al., 2019). We con-
tinually train these LMs on biased text data, follow-
ing the process described in Section 3.1.

We construct a Bias Vector by subtracting the
weights of the biased LMs from those of the pre-
trained LMs. This process can be described by the
following equation:

Vbias = θbias − θorg, (1)

where θorg ∈ Rd and θbias ∈ Rd represent the
weights of pre-trained LMs and biased LMs, re-
spectively, and Vbias ∈ Rd is the Bias Vector. Here,
the LM parameters and the Bias Vector are repre-
sented in d dimensions. Since the pre-trained LMs
and biased LMs are composed of the same model
structures, their parameters θorg, θbias, and Vbias

can be directly added to or subtracted from one
another.

In addition to calculating the Bias Vector, we
construct debiased LMs by subtracting the Bias
Vector from the pre-trained LM weights. This pro-
cedure is represented by the following equation:

θdebias = θorg − λ Vbias, (2)

where θdebias ∈ Rd denotes the weights of the
debiased LMs, which share the same architecture
as θorg, The hyperparameter λ ∈ R is a scaling
factor used to control the magnitude of the Bias
Vector.

In this subtraction process, the Layer Normal-
ization layers are excluded from the parameters to
be subtracted. These layers are designed to solely
normalize the data distribution and do not learn any
bias information.

4 Experiments

4.1 Target Pre-trained LMs

In our experiments, we adopt three LMs: BERT
(Devlin et al., 2019), ALBERT (Lan et al., 2020),
and RoBERTa (Liu et al., 2019). These LMs are
chosen based on the empirical survey by Meade
et al. (2022) for bias investigation.

The links to these pre-trained LMs are listed in
Appendix A.

4.2 Experimental Setup for Continual
Training

In this section, we outline the details of the contin-
ual training for building biased LMs.

bias text
race The mountain tribes of

afghanistan have a reputation
for being the most dangerous
peoples on earth.

gender The mother takes care of the chil-
dren at home.

profession The civil servant was a bureau-
crat at heart, so he knew where
he really belonged.

religion The bible is holy scripture.

Table 1: Examples of the StereoSet intrasentence dataset
used for the continual training. This dataset consists of
sentences with one word blanked out and an associated
bias type (race, profession, gender, and religion). In
these examples, bold words in text indicate blanked-out
words in the original StereoSet dataset, and red words
represent the targets of stereotypes.

type category text
target Science The experiment is here.

The person’s name is
Einstein.

Arts This is a symphony.
The dramas are here.

attribute Female That is a mother.
This is a grandmother.

Male That is a father.
This is a grandfather.

Table 2: Examples of SEAT dataset for evaluating social
bias. These samples are a subset of SEAT-8 data used
to evaluate the gender bias.

4.2.1 Training Dataset

We utilize the StereoSet intrasentence dataset
(Nadeem et al., 2021) for the continual training
of the target LMs in our experiments. The dataset
consists of biased text categorized into four types
(race, profession, gender, and religion), sentences
with one word blanked out, and a set of options
for a fill-in-the-blank task. These options include
three types of words: stereotype, anti-stereotype,
and meaningless.

To construct a bias-only dataset for the contin-
ual training we fill the blanks with stereotype op-
tions (i.e., a biased word). The other options are
excluded from the continual training process. Ex-
amples from this dataset are presented in Table 1.

This dataset for the continual training contains
8,498 sentences, categorized as follows: race
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(3,989), profession (3,269), gender (996), and reli-
gion (604). In our experiments, 15% of the tokens
in the text are randomly masked with [MASK] to-
kens for the MLM task.

It is important to note that the StereoSet intrasen-
tence dataset reflects stereotypes as perceived by
annotators who were residents of the United States
(U.S.). Since stereotypes vary not only by gender
and race but also by cultural and regional contexts
(Nadeem et al., 2021), the biases that can be mit-
igated using our proposed method are limited to
those biases held by the U.S. annotators.

4.2.2 Experimental Details
Our experiments are conducted with the following
hyperparameters. We use AdamW (Loshchilov and
Hutter, 2017) as the optimizer, which improves
weight decay behavior over Adam (Kingma and
Ba, 2017). The learning rate is set to 1e-4, the
weight decay is 0.01, the number of warmup steps
is fixed to 10,000, the batch size is 128, and the
learning rate scheduler is linear. All other training
parameters follow the default settings provided by
the Training Arguments library.4 To effectively
overfit the LMs toward biases, we train the models
with the number of epochs set to 30.

We construct the Bias Vectors using ten different
seeds, and evaluate the average effect sizes of our
debiasing method. The seed values remain consis-
tent across all evaluation experiments.

The scaling factor λ of the Bias Vector is set to
1, 10, or 100 to analyze how varying magnitudes
of the vector impact bias mitigation.

The computational resources used for the contin-
ual training are described in Appendix B.

4.3 Experimental Setup for Debias Evaluation

This section describes the experimental setup for
evaluating the debiasing methods.

4.3.1 Debias Benchmark
Our experiments used the Sentence Encoder Asso-
ciation Test (SEAT) (May et al., 2019) to evaluate
the bias magnitudes of the debiased LMs, following
Meade et al. (2022).

The SEAT is an extension of the Word Embed-
ding Association Test (WEAT) (Islam et al., 2016)
to measure LM biases in sentence embeddings.
WEAT comprises two sets of attribute words and

4https://huggingface.co/docs/transformers/v4.
40.2/en/index.

two sets of target words. For example, the {fe-
male / male} attribute sets and the {science / arts}
target sets can be used to evaluate biases, such as
gender-related bias.

Table 2 shows examples from SEAT-8, a subset
specifically designed to evaluate gender bias as part
of social biases.

It should be noted that the StereoSet dataset,
used for the continual training (Section 3.1), is
excluded from our evaluation experiments to pre-
vent data leakage. Instead, we rely on the SEAT
benchmark, which provides an assessment of bias
magnitudes.

4.3.2 Evaluation Metrics
This section explains the bias evaluation metrics
for assessing LMs.

The bias magnitude is measured based on the
statistical method Cohen’s d which calculates the
effect sizes of two groups as follows:

d =
diff(X,Y,A,B)

σ ({s(t,X, Y ) | t ∈ A ∪B})
. (3)

where, µ represents the mean, and σ denotes
the standard deviation. A and B are sets of
attribute sentences, and X and Y are sets of
target sentences. diff(X,Y,A,B) is the re-
sult of subtracting µ ({s (y,A,B) | y ∈ Y }) from
µ ({s (x,A,B) | x ∈ X}).

Here, s(w,A,B) is the difference in cosine sim-
ilarities between a sentence w and the sets A and
B:

s(w,A,B)

=
1

|A|
∑
a∈A

cos(w, a)− 1

|B|
∑
b∈B

cos(w, b). (4)

We evaluate our debiasing approach on SEAT by
Equation 3.

4.4 Experimental Setup for GLUE
To ensure that our debiasing method does not de-
grade the effectiveness of LM representations, we
evaluate both our debiased LMs and the pre-trained
LMs on the GLUE benchmark (Wang et al., 2018)
after fine-tuning. The training data is randomly
split into a 9:1 ratio: 90% is used for training and
10% for validation. The original validation data
from the GLUE benchmark are used as test data.

The computational resources are provided in Ap-
pendix B. We determine the hyperparameters for
fine-tuning as described in Appendix C.

https://huggingface.co/docs/transformers/v4.40.2/en/index
https://huggingface.co/docs/transformers/v4.40.2/en/index


2804

Methods BERT ALBERT RoBERTa
Pre-Trained LM 0.672 0.675 0.733
w/ BV(race, 1) 0.646 0.663 0.657
w/ BV(prof., 1) 0.661 0.683 0.657
w/ BV(gender, 1) 0.653 0.736 0.672
w/ BV(religion, 1) 0.652 0.735 0.671
w/ BV(all, 1) 0.447 0.534 0.570
w/ BV(all, 10) 0.446 0.311 0.272
w/ BV(all, 100) 0.202 0.201 0.411

Table 3: Average scores of absolute effect sizes across
gender, race, and religion using pre-trained or debiased
LMs (BERT, ALBERT and RoBERTa). BV(bias, λ)
refers to the Bias Vector utilizing bias-typed data with
the scaling factor set to λ. The abbreviation “prof.”
stands for profession, indicating a specific bias type.
Effect sizes closer to 0 suggest that LM representations
are less biased.
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Figure 2: Variation of effect sizes on the SEAT with the
scale factor λ. The dashed lines indicate the effect sizes
on pre-trained LMs. The closer the effect size is to zero,
the smaller the bias.

4.5 Baselines
We adopt the pre-trained LMs (BERT, ALBERT,
and RoBERTa) as baselines to measure the effect of
our debiasing methods. These baselines provide a
point of comparison to assess both bias mitigation
and the preservation of downstream task perfor-
mance.

5 Results and Discussion

We evaluated the LMs using Bias Vectors con-
structed with the following bias type data: race,
profession, gender, religion, and a combination of
all these types (all).

5.1 SEAT Results
The results of effect sizes on SEAT are shown in
Table 3. BV(bias, λ) refers to the Bias Vector

utilizing bias-typed data with the scaling factor set
to λ.

The effect sizes of the debiased BERT with
λ = 1 improved by 0.224 points compared to the
baseline model (average over ten seed values).

Performance improvements were consistently
observed for the other LMs. Compared to the base-
lines, ALBERT improved by 0.142 points, and
RoBERTa achieved a gain of 0.164 points (with
λ = 1).

On average, the proposed method achieved a
0.177 point improvement across the three LMs,
demonstrating consistent bias mitigation effective-
ness.

Specifically, we investigated the relationship be-
tween effect sizes and λ. Table 3 and Figure 2 show
that increasing λ reduces the effect size on SEAT,
indicating that larger scaling factors lead to further
bias mitigation.

5.2 GLUE Scores

We investigated the impact of the Bias Vector on
the performance of downstream tasks in the GLUE
benchmark by comparing the debiased and pre-
trained LMs. Table 4 reports the GLUE scores
for fine-tuned pre-trained LMs and debiased LMs
using the Bias Vector method with λ = 1. Com-
pared with the pre-trained LMs, the debiased mod-
els showed average performance improvements
of 0.23% (BERT: 0.3%, ALBERT: 0.6%, and
RoBERTa: -0.2%).

Our approach does not harm LM representations
when λ = 1, allowing the LMs to maintain high
performance after fine-tuning even after debiasing.
The slight reduction observed in RoBERTa prob-
ably falls within the margin of error, suggesting a
minimal impact on its performance.

With a larger scaling factor λ = 10, performance
degradation was minimal for BERT and RoBERTa
in most tasks. ALBERT exhibited a notable decline,
averaging 30.6%.

For the CoLA dataset, the performances notably
decreased, indicating the need for further investiga-
tion into task-specific effects.

When the scaling factor was excessively in-
creased (λ = 100), the GLUE scores significantly
declined. These results suggest that overly in-
creasing the scaling factor severely damages the
representational capabilities acquired during pre-
training.
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Methods cola sst-2 mrpc sts-b qqp mnli-{m/mm} qnli rte wnli avg.
BERT 0.556 0.927 0.830 0.854 0.891 0.837/0.835 0.906 0.523 0.366 0.776
w/ BV(all, 1) 0.572 0.922 0.821 0.851 0.892 0.840/0.838 0.896 0.585 0.352 0.779
w/ BV(all, 10) 0.000 0.894 0.763 0.858 0.845 0.823/0.828 0.860 0.505 0.408 0.678
w/ BV(all, 100) 0.000 0.509 0.748 0.038 0.316 0.327/0.330 0.495 0.473 0.437 0.367
ALBERT 0.508 0.923 0.822 0.870 0.888 0.842/0.849 0.913 0.520 0.408 0.779
w/ BV(all, 1) 0.545 0.920 0.770 0.866 0.888 0.844/0.847 0.907 0.570 0.521 0.785
w/ BV(all, 10) 0.000 0.849 0.748 0.697 0.316 0.327/0.330 0.495 0.527 0.437 0.473
w/ BV(all, 100) 0.000 0.509 0.748 0.090 0.316 0.327/0.330 0.495 0.473 0.437 0.373
RoBERTa 0.552 0.944 0.763 0.891 0.877 0.879/0.873 0.924 0.527 0.563 0.794
w/ BV(all, 1) 0.539 0.944 0.758 0.869 0.899 0.875/0.873 0.928 0.527 0.563 0.792
w/ BV(all, 10) 0.000 0.919 0.850 0.884 0.890 0.869/0.867 0.910 0.625 0.563 0.737
w/ BV(all, 100) 0.000 0.509 0.748 0.015 0.316 0.327/0.330 0.495 0.527 0.437 0.370

Table 4: GLUE evaluation scores with fine-tuning pre-trained LMs and the debiased LMs with Bias Vector methods
(λ = 1). To save space in this table, the results of MNLI-matched and MNLI-mismatched are displayed in the
same cell (matched / mismatched), and cells of {MRPC, QQP} show average scores over accuracies and F1 scores.
STS-b cells show average values of pearson and spearman correlations. Again, BV(bias, λ) refers to the Bias Vector
utilizing bias-typed data with the scaling factor set to λ.

5.3 SEAT Results on Profession Bias

The SEAT data do not strictly evaluate the pro-
fession bias (Meade et al., 2022). Since the bias
data used for the continual training in this study
includes the profession bias, this section investi-
gates the effects of incorporating this bias into the
training process.

The bias mitigation was also observed with
BV(prof., 1) in the SEAT results as shown in Ta-
ble 3. The effect sizes for RoBERTa improved
from 0.733 (pre-trained) to 0.657 (debiased with
BV(prof., 1)).

Since different types of biases are interrelated,
debiasing profession bias likely mitigates other bi-
ases as well. For instance, the sentence “Engi-
neers are male” reflects both profession and gen-
der biases. If such profession-biased sentences are
learned during the construction of BV(prof., 1), the
resulting Bias Vector may unintentionally encoded
other biases, contributing to the improved effect
sizes.

The occurrence of bias duplication highlights
the need for task arithmetic approaches that pre-
vent overlapping bias vectors from being subtracted
multiple times. For example, removing both the
profession and gender Bias Vectors from a pre-
trained LM may inadvertently amplify mitigation
effects, leading to over-debiasing.

Future work should focus on developing meth-
ods to address overlapping biases more effectively,
ensuring precise bias mitigation across multiple
biases.

5.4 Effectiveness of λ

To evaluate the effectiveness of the scaling factor
λ, we varied its value from 0.01 to 10,000 and
measured the resulting effect sizes on SEAT. The
results are reported in Figure 2.

The evaluation across all SEAT datasets con-
firmed that the effect sizes converged approxi-
mately to zero.

Our initial hypothesis was that increasing the
scale factor λ of the Bias Vector would first reduce
the effect size (debiasing), and then shift it toward
an anti-stereotypical effect size (biasing).

For instance, if the Bias Vector had been learned
in the male direction, we expected that increasing
the scale factor λ would gradually be biased in the
female direction.

Contrary to this hypothesis, the results showed
that the effect size consistently converged toward
zero across all evaluations. This outcome may be
due to two possible reasons: (1) The task arithmetic
approach used to construct the Bias Vector may not
have effectively captured the specific bias direction
(investigating in Section 5.5); and (2) The biased
LM may learn unintended information during con-
tinual training, leading to a collapse in the repre-
sentations of the debiased LM when λ is scaled up
(discussing in Section 5.6).

5.5 Effect Size Behavior in Each SEAT Task

In Section 5.4, we hypothesized that effect sizes
would initially decrease (debiasing) and then in-
crease in the opposite direction. However, the ob-
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Figure 3: Effect sizes on the gender-biased SEAT
dataset (SEAT-8) with varying λ. The effect sizes are
computed as the average of scores across ten different
seed values. The closer the effect size is to zero, the
smaller the bias.

served results deviated from this trend.
This section investigates whether the discrep-

ancy between our hypothesis and the SEAT results
can be attributed to the Bias Vectors failing to ade-
quately capture bias information. To explore this
issue, we analyze the effect sizes for each bias cat-
egory within the SEAT dataset.

The effect sizes for SEAT-8 (gender bias) and
SEAT-5b (race bias) are shown in Figure 3 and Fig-
ure 4, respectively. The corresponding results, in-
cluding standard deviations over ten different seed
values, are shown in Appendix E.

For ALBERT, the effect sizes begin to converge
toward zero after λ exceeds one, whereas for other
LMs, the scores approach zero after λ is larger than
10.

For each model, prior to convergence, we ob-
served behavior consistent with our hypothesis: ini-
tial debiasing occurs, followed by a reversal of
the bias direction (i.e., effect sizes increase in the
anti-stereotypical direction). The increase in ef-
fect sizes in the opposite direction confirms that
the Bias Vector successfully mitigates the biases in
LMs, demonstrating that its training process effec-
tively captured the intended bias direction.

These findings confirm that the Bias Vector ef-
fectively mitigates biases and captures the intended
bias direction.

5.6 Impact of λ on LM Representations
According to Section 5.4, the effect sizes ap-
proached zero as λ increased.
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Figure 4: Effect sizes on the race-biased SEAT dataset
(SEAT-5b) with varying λ. The effect sizes are com-
puted as the average of scores across ten different seed
values. The closer the effect size is to zero, the smaller
the bias.

The convergence behavior of the effect sizes
varies across LMs. For BERT and RoBERTa, the
convergences occur when λ is set between 10 and
100, while, the convergence begins around λ = 10
for ALBERT.

As mentioned in Sections 5.2 and 5.5, the col-
lapse of representations in LMs was observed at
λ = 10 for ALBERT and at λ = 100 for BERT
and RoBERTa.

This observation suggests that the convergence
of the effect sizes toward zero coincides with a col-
lapse in the LM representations across all models.
Specifically, as λ increases, the LMs lose their abil-
ity to distinguish between stereotypical and anti-
stereotypical information, leading to predictions
that are uniformly inaccurate. This inaccuracy re-
duced the difference in effect sizes between the two
types of information, leading to a false impression
of sufficient bias mitigation.

These results indicate that the small effect sizes
observed for large values of λ do not signify suc-
cessful bias mitigation. Rather, they reveal a col-
lapse in the LM representations at large λ, where
the models fail to distinguish between stereotypical
and anti-stereotypical information. Consequently,
LM predictions become inaccurate for both types
of information, driving the bias effect sizes toward
zero.
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6 Conclusions and Future Works

In this paper, we introduced a “Bias Vector”
method for bias mitigation of language models
(LMs) without manually created debiasing data.
We constructed the Bias Vector by calculating the
difference between the weights of the pre-trained
LMs and those of the biased LMs, which were con-
tinually trained on the biased text. We attempted to
mitigate the LM bias by subtracting the Bias Vector
from the pre-trained LM weights.

On average over three LMs (BERT, ALBERT,
and RoBERTa), our debiasing method improved
0.177 points on all test sets in SEAT with setting
the scale factor λ = 1. We also confirmed that the
debiased LMs using our method had an average
score improvement of 0.23% on the GLUE bench-
mark. These results demonstrate that our method
can successfully debias LMs with preserving their
representational performances.

By varying λ from 0.01 to 10,000, we observed
that effect sizes decreased and approached zero.
However, for large λ values (e.g., λ = 100), the
GLUE scores significantly declined, suggesting
that this bias mitigation may result from a collapse
of pre-trained knowledge rather than the effective-
ness of our method.

Future work will focus on further analyzing the
relationship between the scaling factor λ and SEAT
scores to better understand the behavior of bias mit-
igation. Additionally, given the widespread use of
Large Language Models (LLMs), we aim to extend
the Bias Vector approach to LLMs and evaluate its
effectiveness on these models.

Limitations

In this study, we evaluated debiased LMs on GLUE
benchmark to ensure that LM representations had
not decreased compared to pre-trained LMs by
our debias methods “Bias Vector.” This paper pre-
sented only the GLUE scores using our debiased
LMs with λ = 1, 10, 100. Evaluations of debiased
LMs on other λ conditions are not conducted due to
limited computational resources. To confirm the re-
lationship between λ and GLUE scores, the GLUE
evaluation experiments on the other λ should be
conducted in future.

Following Meade et al. (2022), we should evalu-
ate our method toward GPT-2 model, in addition to
BERT, ALBERT and RoBERTa. However, due to
computational resource constraints, GPT-2 was not
conducted in our experiments. We plan to conduct

and evaluate those experiments in the future.

Ethics Statement

Navigli et al. (2023) defined the term bias in the
field of Natural Language Processing as “preju-
dices, stereotypes, and discriminatory attitudes
against certain groups of people.” We adopt this
bias definition throughout this paper.

For this bias definition, we refer to both stereo-
types and biases as “bias” for simplicity. We un-
derstand that these are different concepts, and we
acknowledge that the stereotypical data (StereoSet)
used in our experiments reflect those of the U.S.
residents (Nadeem et al., 2021).

We particularly address bias mitigation for LMs
by utilizing stereotypes. Biases arise when con-
cepts that should not be associated with particular
social groups are unfairly linked (e.g., “program-
mers are male”). If LLM systems possess such
biases, they are likely to leave a negative impres-
sion on users. This work examines the applicability
of a task arithmetic approach for bias mitigation.
The purpose of our study is to reduce the LM bias
using the proposed methods.

We understand the importance of maintaining an
objective stance. Therefore, we emphasize that the
content of this study is not influenced by our politi-
cal positions, stereotypes or biases. Our research
aims to respect the ethical principle of fairness in
scientific inquiry and make responsible and con-
structive contributions to the development of AI
technologies.
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A Language Models

For evaluating our methods, we adopt three LMs:
BERT (Devlin et al., 2019) ALBERT (Lan et al.,
2020), and RoBERTa (Liu et al., 2019). These
models are available on the following sites:

• BERT: https://huggingface.co/
google-bert/bert-base-uncased;

• ALBERT: https://huggingface.co/
albert/albert-base-v2;

• RoBERTa: https://huggingface.co/
FacebookAI/roberta-base.

B Computing Environments

The process of generating biased LMs and our pro-
posed Bias Vector was facilitated using four GPUs
(NVIDIA RTX A6000), a procedure that spanned
several hours. In the same way, the GLUE train-
ing procedure, which was conducted without the
exploration of hyperparameter combinations, re-
quired approximately a full day utilizing four GPUs
(NVIDIA Quadro RTX 8000).

C Experimental Setup for GLUE

C.1 Training Arguments for BERT

In addition to ALBERT, we fine-tune BERT for
GLUE downstream tasks. We determine hyperpa-
rameters following Devlin et al. (2019), i.e., we
explore all combinations of the following hyperpa-
rameters and evaluate the model, which yields the
best score on the validation dataset, using the test
data on each task.

• Batch size: 16, 32

• Learning rate: 5e-5, 4e-5, 3e-5, 2e-5

• Number of epochs: 2, 3, 4

Here, a type of learning rate scheduler is linear,
Adam (Kingma and Ba, 2017) is utilized for the op-
timizer, a number of weight decay is 0.01, warmup
steps is fixed to 500, a seed value is fixed to the
same number through all evaluation experiments,
and the other training hyperparameters follow the
default values of Training Arrguments library.

C.1.1 Training Arguments for ALBERT and
RoBERTa

We fine-tune ALBERT and RoBERTa for GLUE
downstream tasks. The following hyperparameters
are adopted in the experiments:

• Batch size: 32

• Learning rate: 4e-5

• learning rate scheduler: linear

• Optimizer: Adam (Kingma and Ba, 2017)

• warmup steps: 500

• number of weight decay: 0.01

This combination of hyperparameters was cho-
sen because it yields the best when evaluating
BERT on the GLUE validation data, which is ex-
plained on Appendix C.1.

A seed value is fixed to the same number through
all evaluation experiments, and the other training
hyperparameters follow the default values of Train-
ing Arrguments library.

D SEAT score for Gender bias

In this section, we show the SEAT results focusing
specifically on the gender bias. The reason for
showing results only for gender bias is that this
bias is the most widely studied in the context of
debiasing LMs.

It is to be noted that the experimental setup for
the debias evaluation follows the same configura-
tion as described in Section 4.3.

D.1 Evaluation Metrics

In addition to the bias measurement (Equation 3),
we show the permutation test for each dataset, de-
fined as follows:

p = Pr [s(X∗
i , Y

∗
i , A,B) > s(X,Y,A,B)] , (5)

where (Xi, Yi) is a subset of X ∪ Y .
s(X,Y,A,B) is obtained through the following

formula:

s(X,Y,A,B) (6)

=
∑
x∈X

s(x,A,B)−
∑
y∈Y

s(y,A,B). (7)

https://huggingface.co/google-bert/bert-base-uncased
https://huggingface.co/google-bert/bert-base-uncased
https://huggingface.co/albert/albert-base-v2
https://huggingface.co/albert/albert-base-v2
https://huggingface.co/FacebookAI/roberta-base
https://huggingface.co/FacebookAI/roberta-base
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D.2 Comparing Methods
This section compares other approaches with the
Bias Vector method. These methods are selected
based on the emperical study by Meade et al.
(2022).

D.2.1 Comparing Methods for Gender Bias
This section explains the four existing methods that
have been used in gender bias mitigation experi-
ments.

Counterfactual Data Augmentation (CDA)
(Zmigrod et al., 2019; Dinan et al., 2020; Web-
ster et al., 2020; Barikeri et al., 2021): The CDA
involves creating data by swapping biased words
in text data (such as {she / he} for the gender bias).

Dropout (Webster et al., 2020): The Dropout
method attempts to reduce bias by increasing the
dropout parameters that is originally used to miti-
gate the gender bias.

Iterative Nullspace Projection (INLP) (Ravfo-
gel et al., 2020): The INLP is a debiasing method
that uses a classifier to predict bias types (e.g., gen-
der); it then projects the embeddings into the null-
space of that classifier for eliminating information.
This process is iteratively applied to debias the em-
beddings of LM outputs.

SentDebias (Liang et al., 2020): The SentDebias
technique extends the word embedding debiasing
technique (Hard-Debias) proposed by Bolukbasi
et al. (2016) to sentence embeddings. SentDebias
estimates a linear subspace of a specific bias and
removes the bias by projecting the sentence embed-
dings into this subspace.

D.3 Results and Discussion
The detail results on SEAT regarding gender bias
are shown in Table 5 and Figure 5.

It was confirmed that BV(all, 1) yields better
than BV(gender, 1). Two reasons are considered
for why BV(gender, 1) did not work sufficiently.
First, words indicating gender, such as {she / he},
likely appeared frequently in the pre-training cor-
pus. This high frequency made only a small dif-
ference between pre-trained LMs and biased ones,
therefore, the Bias Vector could not capture enough
gender bias. Second, the amount of data used to
continually train LMs toward gender bias was lim-
ited (996 instances). This data limitation suggests
that the data volume might be insufficient.

Furthermore, it can be said that BV(all, 1) de-
biased across all LMs, and was sometimes com-
petitive with existing methods specialized in em-
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Figure 5: Effect sizes on gender bias tests in SEAT when
varying the value of λ. The dashed lines indicate effect
sizes on pre-trained LMs.

bedding spaces. Additionally, by adjusting λ to
10 or 100, BV(gender, λ) results outperformed the
existing methods except for INLP on BERT.

E Results in Each SEAT dataset

In this section, we show the results for subset of
SEAT dataset, SEAT-8 and SEAT-5b, with means
and standard deviations of effect sizes over ten seed
values.

We present the results of SEAT-8 dataset in Fig-
ure 6 (BERT), Figure 8 (ALBERT), and Figure 10
(RoBERTa).

The effect sizes with SEAT-5b dataset are de-
scribed in Figure 7 (BERT), Figure 9 (ALBERT),
and Figure 11 (RoBERTa).
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Methods SEAT-6 SEAT-6b SEAT-7 SEAT-7b SEAT-8 SEAT-8b Average (↓)
BERT 0.932* 0.090 -0.124 0.937* 0.783* 0.858* 0.621
w/ CDA 0.846* 0.186 -0.278 1.342* 0.831* 0.849* ↑ 0.101 0.722
w/ Dropout 1.136* 0.317 0.138 1.179* 0.879* 0.939 ↑ 0.144 0.765
w/ INLP 0.317 -0.354 -0.258 0.105 0.187 -0.004 ↓ 0.417 0.204
w/ SentDebias 0.350 -0.298 -0.626 0.458* 0.413 0.462* ↓ 0.187 0.434
w/ BV(all, 1) 0.979* 0.021* -0.344 0.829* 0.701* 0.828* ↓ 0.004 0.617
w/ BV(gender, 1) 0.937 0.089 -0.146 0.942 0.774 0.852 ↑ 0.002 0.623
w/ BV(gender, 10) 0.962* 0.078 -0.257 0.901* 0.739* 0.780* ↓ 0.002 0.619
w/ BV(gender, 100) 0.760 -0.060 -0.107 0.482* 0.188 0.266 ↓ 0.311 0.310
ALBERT 0.637* 0.151 0.487* 0.956* 0.683* 0.823* 0.623
w/ CDA 1.040* 0.170 0.830* 1.287* 1.212* 1.179* ↑ 0.330 0.953
w/ Dropout 0.506* 0.032 0.661* 0.987* 1.044* 0.949* ↑ 0.074 0.697
w/ INLP 0.574* -0.068 -0.186 0.566* 0.161 0.518* ↓ 0.278 0.345
w/ SentDebias 0.490* -0.026 -0.032 0.489* 0.431 0.647* ↓ 0.271 0.352
w/ BV(all, 1) 0.311 0.019 0.345 0.612* 0.509 0.569 ↓ 0.229 0.394
w/ BV(gender, 1) 0.636* 0.151 0.479* 0.946 0.673* 0.813 ↓ 0.007 0.616
w/ BV(gender, 10) 0.643* 0.127 0.396* 0.508* 0.590* 0.701* ↓ 0.129 0.494
w/ BV(gender, 100) -0.370 -0.162 0.475* 0.236 0.130 0.253 ↓ 0.441 0.182
RoBERTa 0.922* 0.208 0.979* 1.460* 0.810* 1.261* 0.940
w/ CDA 0.976* 0.013 0.848* 1.288* 0.994* 1.160* ↓ 0.060 0.880
w/ Dropout 1.134* 0.209 1.161* 1.482* 1.136* 1.321* ↑ 0.134 1.074
w/ INLP 0.812* 0.059 0.604* 1.407* 0.812* 1.246* ↓ 0.117 0.823
w/ SentDebias 0.755* 0.068 0.869* 1.372* 0.774* 1.239* ↓ 0.094 0.846
w/ BV(all, 1) 0.829* 0.187 0.943* 1.46* 0.724* 1.220* ↓ 0.046 0.894
w/ BV(gender, 1) 0.914* 0.203* 0.983* 1.47* 0.822 1.264* ↑ 0.002 0.942
w/ BV(gender, 10) 0.845* 0.153 0.905* 1.515* 0.908* 1.273* ↓ 0.007 0.933
w/ BV(gender, 100) 0.517* 0.041 -0.366 1.173 -0.144* 0.842* ↓ 0.426 0.514

Table 5: Effect sizes on SEAT with pre-trained or debiased LMs (BERT, ALBERT and RoBERTa) in gender bias
tests. Average presents the mean of absolute effect sizes across all six gender tests for each LMs. Effect sizes closer
to 0 suggest that LM representations are less biased. Statistically significant effect sizes with p-values lower than
0.01 are marked with *. All results of the existing methods are cited from Meade et al. (2022).
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Figure 6: Means and standard deviations of effect
sizes on SEAT-8 with debiased BERT.
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Figure 7: Means and standard deviations of effect
sizes on SEAT-5b with debiased BERT.
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Figure 8: Means and standard deviations of effect
sizes on SEAT-8 with debiased ALBERT.
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Figure 9: Means and standard deviations of effect
sizes on SEAT-5b with debiased ALBERT.
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Figure 10: Means and standard deviations of effect
sizes on SEAT-8 with debiased RoBERTa.
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Figure 11: Means and standard deviations of effect
sizes on SEAT-5b with debiased RoBERTa.
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