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Abstract

The output distribution of language models
(LMs) varies markedly before and after fine
tuning (FT) due to updates in the model param-
eters, which often leads to an exacerbation of
social biases. For example, under FT-based
debiasing methods designed to reduce extrin-
sic bias, it has been observed that there is a
low correlation between the resultant intrinsic
bias scores. Additionally, applying FT-based
debiasing methods often leads to catastrophic
forgetting, i.e. a decline in downstream perfor-
mance. On the other hand, LMs trained on large
datasets can learn without parameter updates
via in-cotext learning (ICL) through prompt-
ing. Therefore, we hypothesize that the gap
observed between base and FT models does not
hold true for debiasing methods that use ICL.
In this study, we demonstrate that ICL-based
debiasing methods lead to a higher correlation
between intrinsic and extrinsic bias scores com-
pared to FT-based methods. Moreover, the per-
formance degradation due to debiasing is also
lower in the ICL case compared to FT.

1 Introduction

LMs learn not only beneficial information (Peters
et al., 2018; Devlin et al., 2019; Brown et al., 2020;
Touvron et al., 2023) but also undesirable social bi-
ases such as gender, race, and religious biases from
the training data (Sun et al., 2019; Liang et al.,
2020; Schick et al., 2021; Zhou et al., 2022; Guo
et al., 2022; Kaneko and Baldwin, 2024; Kaneko
et al., 2024). There are two major approaches
to customize LMs to downstream tasks: FT and
ICL. FT works by updating some or all parame-
ters, while ICL uses prompts without modifying
the model parameters.
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(a) Bias evaluation.

(b) Debiasing.

Figure 1: The gap in bias scores when evaluating and
debiasing LMs using FT- and ICL-based methods. A
lower correlation between intrinsic and extrinsic bias
scores (a), while a larger drop in downstream task per-
formance (b) is encountered with FT compared to ICL.

Fine-tuned models diverge considerably from
the corresponding base model in their output dis-
tributions (Chen et al., 2020). Similarly, the out-
put distribution of a LM is significantly affected
by FT-based debiasing methods, generally lead-
ing to catastrophic forgetting, or a systematic
drop in performance on downstream tasks (Meade
et al., 2022; Kaneko et al., 2023b; Oba et al.,
2023; Hida et al., 2024). This is also the case
for lighter-weight parameter-efficient fine tuning
(PEFT) methods (Lauscher et al., 2021; Kumar
et al., 2023; Xie and Lukasiewicz, 2023). Further-
more, bias evaluations exhibit a weak correlation
between the base and fine-tuned LMs (Goldfarb-
Tarrant et al., 2021; Kaneko et al., 2022a; Cao et al.,
2022).

On the other hand, there has been no system-
atic analysis of whether this effect also occurs with
ICL. We would expect that the absence of param-
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eter updates in ICL to both curtail the effects of
catastrophic forgetting, and avoid the disconnect
between intrinsic and extrinsic bias.

In this paper, we investigate the performance gap
of debiasing methods when applied to downstream
tasks in an ICL setting. Additionally, we examine
the correlation between bias evaluations for pre-
training and downstream tasks enabled under ICL.
Figure 1 shows our two investigations for debiasing
and bias evaluation on FT and ICL. Our experimen-
tal results show that ICL results in a smaller gap
than FT in terms of both catastrophic forgetting and
the correlation between intrinsic and extrinsic bias,
suggesting that ICL is a more effective approach to
LM debiasing.

2 Experiments

2.1 Bias Evaluations
Pre-training settings. We target the following
three intrinsic bias evaluation datasets: Crowds-
Pairs (CP: Nangia et al. (2020)) and StereoSet
(SS: Nadeem et al. (2021)) evaluate social bi-
ases of language models by comparing the likeli-
hoods of pro-stereotypical (e.g. She is a nurse) and
anti-stereotypical (e.g. She is a doctor) examples.
Multilingual Bias Evaluation (MBE) (Kaneko et al.,
2022b) evaluates gender bias in models across mul-
tiple languages by comparing likelihoods of fem-
inine (e.g. She is a nurse) and masculine (e.g. He
is a nurse) sentences. We compare the bias scores
in pre-training and downstream tasks, requiring us
to target the same language and bias type in both
settings, in line with the benchmarks. As such, we
focus exclusively on gender bias in English.

Downstream settings. We focus on three down-
stream tasks in our evaluations: question answer-
ing, natural language inference, and coreference
resolution. Bias Benchmark for Question answer-
ing (BBQ: Parrish et al. (2022)) evaluates social bi-
ases by determining whether a model predicts pro-
stereotypical, anti-stereotypical, or unknown an-
swers when given ambiguous vs. disambiguated in-
puts. The Bias Natural Language Inference (BNLI:
Anantaprayoon et al. (2023)) benchmark evaluates
gender bias using premise and hypothesis sentences
that share the same context and differ only in occu-
pational and gender-related words. WinoBias (WB:
Zhao et al. (2018)) evaluates gender bias by con-
sidering differences between model predictions on
pro-stereotypical and anti-stereotypical sentences
in a coreference resolution task.

2.2 Debiasing Methods

Fine-tuning. We use the following two FT- and
PEFT-based debiasing methods that update the
model parameters. Counterfactual Data Aug-
mentation debiasing (CDA: Webster et al. (2020))
swaps gendered words in the training data to reduce
bias. For instance, She is a nurse becomes He is a
nurse in the augmented dataset, resulting in a more
balanced dataset. All-Layer Token-level debias-
ing (ALT: Kaneko and Bollegala (2021)) mitigates
biases in MLMs using orthogonal projections to
address gender and occupational terms, offering
broad applicability for token-level debiasing across
all layers of an LM.

In-context learning. We use the following two
ICL-based debiasing methods that do not mod-
ify the model parameters. Zero-Shot Debiasing
(ZSD: Ganguli et al. (2023)) uses a specific prompt
— Please ensure that your answer is unbiased and
does not rely on stereotypes. — that has been
shown to be effective in mitigating social biases.
Few-Shot debiasing (FSD: Oba et al. (2023)) gener-
ates examples using manually-designed templates
representing counterfactual statements.

2.3 Parameter-efficient fine tuning

Following Xie and Lukasiewicz (2023), we use the
adapter method (Houlsby et al., 2019) as a PEFT
method for evaluation and debiasing experiments.
This adapter method inserts adapter modules be-
tween the model’s sublayers. We adopt the settings
of Pfeiffer et al. (2021), inserting a single adapter
after the feed-forward sublayer and determining
the dimensions of the adapter modules by setting
the reduction factor to 16.1

2.4 Downstream Task Evaluations

We use the following three datasets to investigate
the impact of the debiasing methods on the per-
formance of question answering, natural language
inference, and coreference resolution. RACE con-
tains ca. 100K multiple-choice questions for read-
ing comprehension, collected from English profi-
ciency examinations for middle and high school
students in China, covering a broad range of
topics (Lai et al., 2017). Adversarial Natural
Language Inference (ANLI), which determines
whether the relationship between the two texts

1The reduction factor determines the dimensions of the
adapter modules as a reduction factor over the original hidden
dimension size.
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FT PEFT ICL
BBQ BNLI WB BBQ BNLI WB BBQ BNLI WB

CP 0.23 0.19 0.25 0.26 0.22 0.29 0.42† 0.39† 0.40†

SS 0.20 0.15 0.20 0.27 0.24 0.30‡ 0.38† 0.44† 0.42†

MBE 0.10 −0.02 0.12 0.18 0.15‡ 0.20 0.29† 0.35† 0.36†

Table 1: Correlation between bias scores of intrinsic bias evaluation and extrinsic bias evaluation. ‡ and † represent
significant differences according to the t-test (p < 0.01) for FT vs. PEFT and PEFT vs. ICL, respectively.

is entailment, contradiction, or neutral, includes
ca. 170K pairs and was collected via an iterative,
adversarial human-and-model-in-the-loop proce-
dure (Nie et al., 2020). OntoNotes v5.0 dataset
has 13K sentences for the coreference resolution
task (Pradhan et al., 2013).

2.5 Pre-trained Language Models

For our experiments, we need an LM that is of
a size that allows for efficient FT and is able
to follow instructions for ICL. For this reason,
we select the LaMini models (Wu et al., 2023),
which are distilled versions of larger large language
models (LLMs). Specifically, we use: LaMini-
T5-61M, LaMini-T5-223M, LaMini-GPT-124M,
LaMini-Cerebras-111M, LaMini-Cerebras-256M,
LaMini-Flan-T5-77M, LaMini-Flan-T5-248M, and
LaMini-Neo-125M.

We fine-tune the models using the same instruc-
tion tuning process used in the LaMini knowledge
distillation, and use huggingface implementations
for our experiments (Wolf et al., 2019). We used
four NVIDIA A100 GPUs for all experiments, and
all training and inference steps were completed
within 24 hours.

3 Results

3.1 Correlation between Bias Evaluations in
Pre-training and Downstream Tasks

For intrinsic bias evaluation over CP, SS, and
MBE, we focus on English gender bias, as de-
scribed above. For the downstream evaluation
with BBQ, BNLI, and WB, we fine-tuned on the
downstream task datasets of RACE, ANLI, and
OntoNotes, respectively, and evaluate gender bias
in the downstream tasks. Furthermore, we used a
few-shot ICL setting where we provided the LMs
with 16 randomly-sampled instances from each
downstream task dataset for FSD. To quantify the
relationship between bias scores from CP, SS, and
MBE and those from BBQ, BNLI, and WB across
the eight LMs, we calculate the Pearson correla-

tion r. This analysis elucidates the impact of fine-
tuning LMs on downstream tasks. Moreover, we
show an evaluation of the original LMs with respect
to (w.r.t.) gender bias evaluations in pre-training
and downstream tasks.

Table 1 shows the correlation between bias eval-
uation methods on the pre-training tasks (CP, SS,
and MBE) and downstream tasks (BBQ, BNLI,
and WB). Overall, the correlation is higher for ICL
than FT and PEFT in all cases, and the difference
between FT and PEFT is significant in only 2 out
of 9 cases, indicating that they exhibit the same
general tendencies in intrinsic and extrinsic bias
evaluations.

It is well established that there is a negligible cor-
relation between pre-training and downstream task
bias evaluation scores for FT (Goldfarb-Tarrant
et al., 2021; Cao et al., 2022; Kaneko et al., 2022a),
and similar assumptions are commonly made for
ICL settings (Oba et al., 2023; Goldfarb-Tarrant
et al., 2023). However, the results for ICL-based
debiasing methods must be interpreted with special
care, and our results show that bias evaluations in
pre-training tasks have the potential to reflect social
biases related to a wide range of downstream tasks,
especially when debiased with ICL-based methods.

3.2 Impact of Debiasing via Fine-tuning vs.
ICL in Downstream Task Performance

Debiasing methods decrease the downstream task
performance of LMs due to catastrophic forget-
ting (Kaneko et al., 2023a). Therefore, we must
control for the degree of bias mitigation brought
about by each debiasing method to fairly compare
their downstream task performance. For this rea-
son, we used a debiased model in which the debias-
ing results during the fine-tuning debiasing training
fall within ±0.005 of the debiasing score on ZSD
and FSD, respectively.2

2FSD is capable of adjusting the debiasing performance
by varying the number of examples used. In order to equalize
the debiasing effects of FSD and ZSD, it would be necessary
to reduce the number of FSD examples to 0. In doing so,
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(a) Bias mitigation equalized w.r.t. ZSD.

(b) Bias mitigation equalized w.r.t. FSD.

Figure 2: Performance difference between original and
debiased LMs over the RACE, ANLI, and WB tasks.
Here, LMs are debiased using CDA and ATL with (FT,
PEFT) and ICL-based methods.

Figure 2 shows the performance difference be-
tween the original and debiased models over the
RACE, ANLI, and WB tasks. Figure 2a and Fig-
ure 2b show the effect of bias mitigation of CDA
and ATL (the two fine-tuning-based bias mitiga-
tion methods) equalized respectively against ZSD
and FSD (the two ICL methods). The performance
drops due to debiasing with both CDA and ATL,
based on FT and PEFT, are higher than those of
FSD and ZSD. We confirm that there are signifi-
cant differences between ZSD and FSD for CDA
and ATL under both FT and PEFT, according to
McNemar’s test (p < 0.01). Moreover, we see
that the drop in performance for CDA and ATL is
higher when equalized w.r.t. ZSD than FSD, be-
cause ZSD imparts a lesser impact on the LM com-
pared to FSD. Overall, compared to debiasing via
ICL, debiasing via FT and PEFT results in a larger
downstream task degradation due to the updating
of model parameters.

FSD and ZSD would become identical methods, so we do not
compare their equalized debiasing effects.

RACE ANLI OntoNotes

CDA w/ FT 0.66 0.54 0.61
ALT w/ FT 0.60 0.51 0.54
CDA w/ PEFT 0.70 0.65‡ 0.67
ALT w/ PEFT 0.65 0.59 0.62
ZSD 0.81† 0.83† 0.87†

FSD 0.73 0.76⋄ 0.81⋄

Table 2: Cosine similarity between output states of the
original and debiased models. ‡, †, and ⋄ represent sig-
nificant difference determined by the t-test (p < 0.01)
for FT vs. PEFT, ZSD vs. PEFT, and FSD vs. PEFT,
respectively.

3.3 Change of Parameters in LMs

To quantify the change in model outputs due to
FT vs. ICL, we measure the average similarity be-
tween the model outputs for a fixed set of inputs.
Specifically, we feed the i-th instance, xi, from
a downstream task dataset to the original (non-
debiased) LM under investigation and retrieve its
output state eoi (i.e. the hidden state corresponding
to the final token in the last layer). Likewise, we
retrieve the output states for the debiased model
with FT, PEFT, and ICL, denoted respectively by
efi and eci . We then calculate the cosine similar-
ities cossim(eoi , e

f
i ) and cossim(eoi , e

c
i ), and aver-

age them across the entire dataset as shown in Ta-
ble 2 for the eight LaMini LMs. We can see that the
cosine similarity is higher for the debiased models
with ICL than with FT and PEFT. As such, models
which are debiased with ICL have smaller changes
in output states than debiased models with FT and
PEFT, indicating that the former is less likely to
suffer from catastrophic forgetting, and maintain
downstream task performance. This result supports
the hypothesis that the reduction of the gap in the
relationship between pre-training and downstream
settings is dependent on the changes in the parame-
ters in the model due to debiasing.

4 Conclusion

We empirically investigated the gap between pre-
training and downstream settings in bias evalua-
tion and debiasing, and showed that this gap is
higher for FT-based debiasing methods than for
the FT-based ones. Furthermore, we showed that
the performance degradation in downstream tasks
due to debiasing is lower for ICL methods than FT
methods.

Previous studies have referred to the results of
FT-based results to discuss the relationship be-
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tween pre-training and downstream task perfor-
mance (Kaneko and Bollegala, 2019; Goldfarb-
Tarrant et al., 2021; Cao et al., 2022). However, we
emphasize that in-context learning and fine-tuning
differ in their impact on the underlying models, and
thus need to be considered separately.

Limitations

Our study has the following limitations. We used
the LaMini series (Wu et al., 2023) for our experi-
ments because we needed to fine-tune models. To
investigate whether larger LMs such as the LLaMa
series (Touvron et al., 2023) and Flan-T5 (Chung
et al., 2022) have the same tendencies, further ex-
periments are needed with much higher computa-
tional needs. We only used QA, NLI, and corefer-
ence resolution as downstream tasks for our experi-
ments. As more evaluation data for assessing social
biases in downstream tasks becomes available in
the future, the conclusions from our experiments
should be analyzed across a broader range of tasks
and datasets.

There are numerous types of social biases, such
as race and religion, encoded in LMs (Meade et al.,
2022), but we consider only gender bias in this
work. Moreover, we only focus on binary gender
and plan to consider non-binary gender in future
work (Ovalle et al., 2023). In addition, we con-
sider only the English language in our evaluations,
which is a morphologically limited language. As
some research points out, social biases also exist
in multilingual LMs (Kaneko et al., 2022b; Levy
et al., 2023), which require further investigation.

Ethics Statement

In this study, we have not created or released new
bias evaluation data, nor have we released any mod-
els. Therefore, to the best of our knowledge, there
are no ethical issues present in terms of data collec-
tion, annotation or released models. We observed
that when employing ICL, there exists a correlation
between intrinsic and downstream bias evaluations.
However, it must be emphasized that foregoing
downstream bias evaluations and proceeding to de-
ploy models presents a substantial risk.
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