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Abstract

The text-based compliance checking aims to
verify whether a company’s business processes
comply with laws, regulations, and industry
standards using NLP techniques. Existing
methods can be divided into two categories:
Logic-based methods offer the advantage of
precise and reliable reasoning processes but
lack flexibility. Semantic embedding methods
are more generalizable; however, they may
lose structured information and lack logical
coherence. To combine the strengths of both
approaches, we propose a compliance check-
ing framework based on Retrieval-Augmented
Generation (RAG). This framework includes
a static layer for storing factual knowledge, a
dynamic layer for storing regulatory and busi-
ness process information, and a computational
layer for retrieval and reasoning. We employ an
eventic graph to structurally describe regulatory
information as we recognize that the knowledge
in regulatory documents is centered not on en-
tities but on actions and states. We conducted
experiments on Chinese and English compli-
ance checking datasets. The results demon-
strate that our framework consistently achieves
state-of-the-art results across various scenarios,
surpassing other baselines.

1 Introduction

Compliance checking is a critical tool that ensures
a company’s operations adhere to relevant laws,
regulations, and standards, helping prevent viola-
tions (Esposito et al., 2023; Robaldo et al., 2024),
reduce legal risks, and support sustainable devel-
opment. Text-based compliance checks focus on
leveraging natural language processing techniques
to analyze business process documents and regu-
latory documents, aiming to uncover potential vi-
olations (Cejas et al., 2023; Fitkau and Hartmann,
2024; Ren et al., 2024).

*Corresponding author.

The left side of Figure 1 illustrates a schematic
of text-based compliance checking. The second
sentence in the business process document posits
that users, upon registration, consent to share their
location information with partners for service pro-
vision, implying acceptance of certain data-sharing
terms without explicit agreement. However, the
third statement in the General Data Protection Reg-
ulation (GDPR) unequivocally asserts that user data
shall not be shared with third parties unless explicit
consent is granted. Thus, the operational protocol
of this APP encounters a compliance conflict.

Text-based compliance checking methods can
be broadly categorized into two types: logic rea-
soning methods (Bhuiyan et al., 2024; Fitkau and
Hartmann, 2024), as illustrated in the upper right
corner of Figure 1, and semantic embedding meth-
ods (Beach et al., 2024; Chen et al., 2024), as de-
picted in the lower right corner of Figure 1. Logic
reasoning methods typically utilize tools such as
Petri nets, first-order predicate logic, and BPMN to
describe business process information and regula-
tory information. Compliance is then determined
through explicit logical reasoning. These methods
provide precise inference rules to reduce ambigu-
ity and improve checking accuracy but often lack
scalability, making adaptation to changing business
environments difficult. Semantic embedding meth-
ods represent the semantics of business processes
and regulatory requirements using low-dimensional
continuous vectors, and then employ trained neu-
ral network models to assess compliance. These
methods can optimize and improve performance
with new data and regulations but may lose criti-
cal structured information and context, affecting
compliance checking accuracy.

To integrate the advantages of the aforemen-
tioned methods, we design a compliance check-
ing framework based on Retrieval-Augmented
Generation (RAG), which combines structured
knowledge with the parametric knowledge of Large
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• We only collect basic health data that you provide (for example: steps, heart rate) 

and necessary registration information (for example: name, email address).

• We may share your location information with partners to help us provide services, 

which you have agreed to during registration.

• We use industry-standard security measures to protect your data from unauthorized 

access, disclosure, or tampering.

Business process document of an APP

• It is necessary to ensure that the collection of personal data is 

limited only to the minimal extent necessary to provide the service.

• The processing of a user’s personal data is only permissible with the 

user’s explicit consent. Such consent must be clear, informed, and 

revocable at any time.

• User data must not be shared with third parties unless explicit 

permission from the user is obtained.

• Appropriate technical and organizational measures must be used to 

protect personal data from unauthorized or unlawful processing and 

against accidental loss, destruction, or damage.

General Data Protection Regulation

business process documents

regulatory documents

∀𝑥 𝑃 𝑥 ∧ 𝑄 𝑥

∃𝑥¬𝑃(𝑥)
∀𝑥(𝑃(𝑥)⋁𝑄(𝑥)
→ ∃𝑦(𝑅(𝑦) ∧ 𝑆(𝑥, 𝑦)))

∀𝑥∃𝑦 𝑃 𝑥 → 𝑄 𝑦

∧ (¬𝑅(𝑥)⋁𝑆(𝑦))
∃𝑥∀𝑦(𝑃(𝑥, 𝑦)

𝑄(𝑦))⋁((¬𝑅(𝑥) ∧ 𝑆(𝑦))
∀𝑥(𝑃(𝑥)⋁𝑄(𝑥)
→ ∃𝑦(𝑅(𝑦) ∧ 𝑆(𝑥, 𝑦)))

logical 
reasoner 

Results

business process documents

regulatory documents

Model Results

Conflicting

Figure 1: The left depicts a schematic diagram of the text-based compliance checking task, while the upper right
corner illustrates compliance checking methods grounded in pure logical reasoning. Conversely, the lower right
corner portrays compliance checking methods rooted solely in embedding techniques.

Language Models (LLMs) to achieve enhanced
compliance checking. Our framework consists of
three layers: the static layer, the dynamic layer, and
the computational layer. In the static layer, we
utilize conventional knowledge graphs to represent
factual knowledge, including entities or concepts
and their relationships, as well as term definitions.
The dynamic layer comprises two sub-modules: a
regulatory information module based on an eventic
graph and a business process information module
based on chunk vectors. In the computational
layer, we retrieve relevant information from the
static and dynamic layers to guide the LLM in
generating compliance reasoning results. Addition-
ally, to construct the eventic graph about regulatory
information, we propose an unsupervised infor-
mation extraction algorithm centered on deontic
propositions.

We conducted extensive experiments on four
existing compliance checking datasets. The ex-
perimental results demonstrate that the proposed
framework significantly outperforms other base-
lines. Additionally, the experiments indicate that
our framework exhibits greater flexibility compared
to other supervised approaches, enabling rapid and
unsupervised adaptation to other target domains.
Furthermore, the experiments show that our frame-
work is more adept at identifying compliance con-
flicts that require global reasoning, a task that even

the latest LLMs struggle to accomplish.

2 Related works

There are currently two primary text-based compli-
ance checking methods: logic-based reasoning and
semantic embedding-based methods (Hashmi et al.,
2018; Ly et al., 2015).

A logic-based reasoning approach first formal-
izes the semantics of business processes and regu-
latory requirements, then performs explicit reason-
ing on this formalization to assess the compliance
of business processes. For instance, some stud-
ies focus on converting natural language texts into
first-order predicate logic expressions, followed
by explicit logical reasoning using tools like Pro-
log or CLIPS (Governatori et al., 2006; Zhang and
El-Gohary, 2017). Additionally, some research em-
ploys Petri nets—a widely used formal modeling
language—to model business processes, enabling
reasoning and verification of compliance by exam-
ining the transitions and states within the Petri net
models (Rojas et al., 2016; Rozinat and Van der
Aalst, 2008). There are also industry-specific for-
mal modeling and reasoning methods, such as
Building Information Modeling (BIM) for check-
ing architectural compliance (Guo et al., 2021;
Zheng et al., 2024) and Formal Contract Language
(FCL) for verifying contract consistency.
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The method based on semantic embeddings first
employs low-dimensional continuous embedding
vectors to represent the semantics of business pro-
cesses and regulatory requirements, and then infers
compliance implicitly through vector calculations
(Saeidi et al., 2021). For instance, (Aires et al.,
2018) embedded texts using sent2vec and then cal-
culated their semantic compliance relationships
using offset. (Aires and Meneguzzi, 2021) used
convolutional networks to extract key semantic fea-
tures from business process texts and regulatory
texts, and determined the compliance of a business
process through a classification head. (Huang et al.,
2024) applied multi-task deep learning to simulta-
neously focus on both global and local semantic
information in texts, thereby accurately capturing
the compliance relationships between texts.

The advantage of logic-based methods is their
ability to accurately capture structured relation-
ships between business processes and regulations,
with good interpretability. However, they lack scal-
ability and rely heavily on domain experts, limiting
adaptability to evolving regulatory requirement. In
contrast, semantic embedding-based methods are
flexible and less dependent on experts, but they lose
structured process information and global context,
reducing accuracy and interpretability. Our frame-
work combines the strengths of both approaches.
Unlike previous studies (Guo et al., 2021; Zheng
et al., 2022), we integrate eventic graphs with
LLMs using the RAG paradigm, a novel approach
in compliance checking.

3 Framework

We design a static layer and a dynamic layer for
store information. Additionally, we use a compu-
tational layer to retrieve knowledge and drive the
reasoning process for compliance checking within
the LLM. Therefore, our framework consists of
three layers, as illustrated in Figure 2: the static
layer for storing factual knowledge, the dynamic
layer for storing regulatory information and busi-
ness process information, and the computational
layer responsible for global scheduling and exe-
cuting compliance reasoning. The construction or
computation process of each layer will be intro-
duced in detail below.

3.1 Static layer

While entities, actions, states, and deontic propo-
sitions plays a central role in compliance check-

ing tasks, static factual knowledge is equally indis-
pensable. For instance, a simple factual statement
like “Huawei Technologies Co., Ltd. is located in
Guangdong Province” provides crucial information
that allows us to infer that the information technol-
ogy regulations in Guangdong Province are binding
on Huawei Technologies Co., Ltd.

We store three types of factual knowledge in
the static layer: entity-centric, concept-centric,
and term definition-centric knowledge. Given
the widespread use of entity- and concept-centric
knowledge graphs in the industry, we opt for exist-
ing open-source resources. We select CN-Dbpedia
(an entity-centric knowledge graph) and OpenCon-
cepts (a concept-centric knowledge graph) for the
Chinese datasets. Besides, we chose Dbpedia (an
entity-centric knowledge graph) and ConceptNet (a
concept-centric knowledge graph) for the English
datasets.

To obtain the definitions of terms, we trained a
model for joint extraction of terms and their defi-
nitions. This model employs BigBird as the back-
bone, with a CRF layer appended to capture global
label dependencies within the sequence. BigBird
was chosen because most terms and their defini-
tions are not confined to a single sentence but span
across entire paragraphs. Therefore, we used para-
graphs as input units and leveraged the BigBird
model, which supports long text inputs. We an-
notated 5,500 term-definition pairs to serve as the
training and development sets. The trained model,
denoted as the function Mexp, is used to extract
terms and their definitions from domain-specific
regulatory documentsR =

{
r1, r2, . . . , r|R|

}
and

business process documents B =
{
b, b2, . . . , b|B|

}
,

as shown in Equation 1.

Mexp : (R =
{
r1, r2, . . . , r|R|

}
,

B =
{
b, b2, . . . , b|B|

}
) 7→ ExpKnow

(1)

The extracted terms and their corresponding def-
initions are stored in an knowledge base referred
to as TDKnow. Ultimately, we integrate TDKnow
with CN-DBpedia and OpenConcepts to form a
comprehensive static factual knowledge graph for
compliance checking, denoted as Gstatic. The struc-
tural diagram of model Mexp, specific training
details, and the annotation process of the term-
definition pairs can be found in Appendix A.

3.2 Dynamic layer
The dynamic layer is utilized for storing business
process information and regulatory information.
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CN-DBpedia OpenConcepts

Entity KG Concept KG 

TDKnow

Definition
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Domain-Specific documents

Static layer

Dynamic layer

Chunk vector Eventic graph 
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Dynamic updates

Dynamic updates
𝒞

𝑢𝑗

Shot node in 𝒢𝑒𝑣𝑒𝑛𝑡𝑖𝑐

𝒢𝑠𝑢𝑏
Fusion with 𝒢𝑠𝑡𝑎𝑡𝑖𝑐

𝒢𝑓𝑢𝑠

𝑇𝑒𝑚𝑝𝑡(⋅)𝑐𝑖

𝑐𝑖 = “We may share your location information with partners to help us provide services, which you have agreed to 

during registration.”

The chunk to be 

detected is 𝑐𝑖 𝑥𝑖

ො𝑦𝑖

ChatGLM

Figure 2: RAG-based compliance checking framework. This framework comprises three layers: the upper static
layer (blue) stores static factual knowledge; the middle dynamic layer (purple) holds changing regulatory and
business process information; the lower computing layer (yellow) retrieves pertinent knowledge to infer compliance
outcomes.

We employ an eventic graph to describe regulatory
information, as such information pertains not to
entities and their relationships, but rather to knowl-
edge regarding agents, actions, states, and deontic
propositions. In addition, we use chunk vectors to
represent business process information to facilitate
vectorized computations. The following sections
provide an introduction to these two components
respectively.

Part 1: Eventic graph for regulatory informa-
tion. The eventic knowledge graph focuses on de-
scribing the relationships between subjects, actions,
states, and events, which aligns with the perspec-
tive used in regulatory information descriptions.
Therefore, we construct an eventic graph capable
of describing regulatory information, referred to as
Geventic. Based on the characteristics of regulatory
information and theories related to deontic propo-
sitions, we define the ontology for Geventic, which
includes six entity types and seven relationship
types, as detailed in Appendix B. Unlike conven-
tional knowledge graphs where nodes are predom-
inantly entity names, the nodes in Geventic mainly
describe actions and states, resulting in longer node
texts. Consequently, standard named entity recog-
nition and event extraction methods are ineffective
in extracting the structured knowledge required for
constructing Geventic. To address this issue, we
propose an information extraction algorithm cen-

tered on deontic propositions, utilizing the API of a
commercial LLM, as illustrated in Algorithm 1. To
avoid the need for labor-intensive data annotation,
Algorithm 1 is entirely unsupervised.

The core objective of Algorithm 1 is to extract
regulatory information centered around deontic
propositions from regulatory documents. The in-
put to this algorithm is a collection of regulatory
documents within a specific domain, denoted as
R =

{
r1, r2, . . . , r|R|

}
, and the output is a set of

triples E . In line 3, the algorithm aims to extract all
agents subject to deontic constraints from the entire
set of regulatory documents. Lines 4 through 8 are
designed to extract deontic words from each para-
graph based on the identified agents. According to
our observations, nearly all actions or states under
deontic constraints follow immediately after deon-
tic words. Consequently, lines 8 through 11 of the
algorithm extract these actions and states directly
based on the predefined rules. The instruction tem-
plates for lines 3 and 8, Tempt1 and Tempt2, are
provided in Appendix C. Finally, the triples cen-
tered on deontic propositions are stored in the set
E .

Part 2: Chunck vectors for business process
information. To facilitate the computation of se-
mantic vectors, we segment the business process
into chunks and embed them as semantic vectors
using the SBERT model proposed by (Zhao et al.,
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Algorithm 1 Deontic Proposition-centered Infor-
mation Extraction Algorithm based on LLM

INPUT: Regulatory document set R ={
r1, r2, . . . , r|R|

}
OUTPUT: Set of triples E

1: Initialize an empty set E = {}
2: for each ri inR do
3: Aagent ← LLM(Tempt1(ri)) // Extract

all agents from ri via the LLM
4: Divide ri to obtain sequence Pi of para-

graphs.
5: for each pj in Pi do
6: Match each agent in Aagent
7: if agent in pj then
8: dword← LLM(Tempt2(agent, pk))

// Extract deontic word
9: s← End index of string dword

10: e← End index of string pj
11: action← pk[s : e]
12: Add (agent, dword, action) into E
13: end if
14: end for
15: end for
16: return E

2019), storing these vectors in the Faiss (Qin et al.,
2020) vector database. This process is illustrated
in Equations 2-3.

chunk : B =
{
b1, b2, . . . , b|B|

}
7→ C =

{
c1, c2, . . . , c|C|

} (2)

SBERT : C 7→ C = [⃗c1, c⃗2, . . . , c⃗|C|] (3)

where C represents the set of chunks, and C is the
matrix composed of the semantic vectors of these
chunks.

3.3 Computing layer
The purpose of this layer is to retrieve knowledge
from both the static and dynamic layers, thereby
guiding the LLM to generate accurate and reliable
compliance checking results. Initially, we allow the
vectors in C to sequentially match the knowledge
graph Geventic. Specifically, for each vector c⃗i, we
calculate its semantic similarity with each node uj
in Geventic. If the semantic similarity exceeds the
threshold λ, the node uj is considered a hit. This
process is illustrated in Equation 4.

f (uj) =

hit, if cos(c⃗i, u⃗j) ≥ λ

miss, else
(4)

where u⃗j represents the embedding vector of node
uj (using SBERT for semantic embedding). All hit
nodes in Geventic are denoted as Gsub, with Gsub ⊂
Geventic.

Next, nodes from Gsub are matched with those
in Gstatic to obtain the intersection set P , as shown
in Equation 5.

P = {p ∈ VGstatic |p = s ∈ VGsub
} (5)

where VGstatic represents the set of nodes in Gstatic,
and VGsub

represents the set of nodes in Gsub.
Subsequently, the set of neighbor nodes N of

the set P is obtained, as shown in Equation 6.

N = ∪p∈PN(p) (6)

where p represents a node in P , and N (p) =
{n ∈ VGstatic | (p, n) ∈ EPstatic}. Besides, EGstatic

denotes the edge set of Gstatic. Ultimately, the
largest connected graph with N as its nodes is ob-
tained, denoted as Gfus. Gfus is a heterogeneous
knowledge graph related to c⃗i, encompassing both
static and dynamic knowledge.

We wrap the current chunk ci and its associ-
ated knowledge graph Gfus using the instruction
template Tempt3(·) to obtain the input xi. The
instruction template is illustrated in Appendix D.

Finally, the input xi is provided to ChatGLM-
3-6b, guiding it to generate compliance checking
results with explanations, as shown in Equation 7.
For the datasets in English, we employ the LLaMa-
2 model.

ChatGLM : Tempt3(ci, Gfus) 7−→ ŷi (7)

where ŷi represents the compliance checking re-
sults with explanations generated by the LLM.

4 Experimental settings

4.1 Datasets
To evaluate the effectiveness of our framework,
we conducted experiments on the following four
datasets: 1) EU2UK is a dataset proposed by
(Chalkidis et al., 2021) aimed at checking whether
UK legislation complies with EU directives. This
dataset is designed for document-level compliance
checking , where the unit of compliance conflict
is the entire document rather than individual sen-
tences. 2) GDPR-13 is a dataset introduced by
Liu et al. (Liu et al., 2021) used to analyze the
compliance of privacy policies of applications with
Chapter 13 of the GDPR. 3) CONTRACT is a
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dataset developed by (Aires et al., 2019) intended
to assess contract consistency. 4) CSSCD is a Chi-
nese dataset proposed by (Huang et al., 2024) for
analyzing compliance in social security operations.
This is the only Chinese dataset among the four;
the other three datasets are in English.

4.2 Baselines

We compare our framwork with the following base-
lines: 1) Doc2Doc, an information retrieval-based
method focused on document-level compliance
checking, which achived the best performance on
the EU2UK dataset (Chalkidis et al., 2021). 2) CLS
represents the semantic classification-based com-
pliance checking method proposed by (Liu et al.,
2021), where business sentences are categorized
into predefined violation classes using machine
learning or neural network classifiers. 3) Offsets,
originally proposed by (Aires et al., 2018) as a con-
tract consistency method based on semantic embed-
dings, is also applicable to compliance checking
tasks. 4) NeuralConflict is a multi-task learning-
based compliance checking method designed to
analyze both local and global semantic compliance
simultaneously (Huang et al., 2024).

Additionally, considering the similarity in ob-
jectives between compliance checking and textual
entailment tasks, we also included the following
baselines: 5) TER-PLM, a method for textual en-
tailment recognition that directly concatenates two
sentences (with [SEP] as a separator) as input to
language models (Wehnert et al., 2022). 6) TER-
Inner, an interaction attention-based textual entail-
ment recognition method, which has demonstrated
effectiveness across multiple datasets (Sun et al.,
2017). 7) TER-GraphAtt, a textual entailment
recognition method based on graph attention net-
works, which has achieved state-of-the-art results
on several datasets (Chen et al., 2019).

5 Results and analysis

5.1 Performance comparison with baselines

We first analyze the performance of the aforemen-
tioned baselines and our framework across four
datasets. The compliance checking task is char-
acterized by a severe imbalance in the number
of positive and negative samples, with the major-
ity of business processes being compliant, while
non-compliant cases are relatively few. In light of
this, we use the Matthews Correlation Coefficient
(MCC) as the evaluation metric. MCC is a measure

for assessing the performance of binary classifiers,
particularly effective in handling datasets with im-
balanced sample distributions.

The experimental results are presented in Table
1. Upon examining the table, it is evident that
our proposed framework demonstrates outstand-
ing performance in compliance checking, which
strongly attests to the framework’s effectiveness
and advancement. Notably, on the document-level
compliance checking dataset EU2UK, our frame-
work exhibits a particularly significant performance
advantage, surpassing the second-place method by
0.048. This indicates that our framework possesses
a remarkable capability for conducting global com-
pliance analysis and checking.

In the tests conducted on the non-document-level
datasets GDPR-13, CONTRACT, and CSSCD, the
performance of the text entailment recognition
baselines surpassed that of the compliance check-
ing baselines. This suggests that compliance check-
ing methods based on semantic embeddings may
potentially be replaced by other deep learning mod-
els with similar task objectives. However, our
approach consistently outperformed all baselines
across the four datasets. This is attributed to our
framework’s reasoning process not only focuses
on the semantic consistency between current busi-
ness process sentences and regulatory statements
but also emphasizes the comprehensive analysis of
global regulatory information. Furthermore, the
static and dynamic knowledge layers demonstrated
unique and irreplaceable advantages, as further ver-
ified and analyzed in the experiments discussed in
Section 5.2 and 5.3.

Table 1: Performance of our proposed framework and
baselines on the four datasets. The evaluation metric
used is the Matthews Correlation Coefficient (MCC).

Method English Chinese
EU2UK GDPR-13 CONTRACT CSSCD

Doc2Doc 0.724 0.601 0.674 0.628
CLS / 0.602 0.672 0.633

Offsets / 0.584 0.648 0.611
NeuralConflict / 0.610 0.661 0.643

TER-PLM / 0.617 0.694 0.645
TER-Inner / 0.620 0.712 0.650

TER-GraphAtt 0.730 0.619 0.713 0.648
Our framework 0.778 0.652 0.730 0.680

5.2 Ablation study
This section analyzes the contributions of each
module within our framework. We sequentially
remove the three knowledge graphs from the static
layer until the entire static layer is eliminated. As
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shown in Figure 3, the performance of our frame-
work on all four datasets consistently declines with
the successive removal of the knowledge graphs.
This indicates that each knowledge graph within
the static layer—namely, the entity graph, the con-
cept graph, and the term definition graph—is in-
dispensable for compliance checking within the
framework.
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Figure 3: Results of the ablation study.

Furthermore, we observe that when all the
knowledge graphs, i.e., the entire static layer, are
removed, the compliance checking performance of
our framework falls below that of other baselines.
This suggests that factual knowledge is essential in
compliance checking tasks.

5.3 Domain adaptability

We can apply the designed framework in a domain-
independent manner, with only the term defini-
tion extraction module requiring domain-specific
labeled data. To overcome this limitation, we lever-
age the In-Contextual Learning (ICL) capabilities
of LLMs to reduce the dependence on domain-
specific data. Specifically, after demonstrating the
annotation patterns of terms and definitions from
the source domain to the LLM, the model is then
directed to perform unsupervised annotation on the
target domain. The instruction template used to
guide the LLM’s annotation is shown in Appendix
E.

We use the CSSCD dataset as the source domain
and the other three datasets as the target domains.
The experimental results in Table 2 demonstrate
that our framework maintains effective compliance
checking performance even in cross-domain sce-
narios.

Table 2: The effectiveness of the term and explanation
extraction in the domain transfer scenario.

Source domain CSSCD MCC

Target domains
EU2UK 0.743
GDPR-13 0.603
CONTRACT 0.714

5.4 Global information perception

To evaluate the framework’s capability in check-
ing global compliance, we analyzed a specific case,
as illustrated in Figure 4. In the figure, the busi-
ness process sentence is “We will share your per-
sonal data with third parties as necessary,” while
a regulatory requirement states, “The processing
of personal data requires lawful basis.” Analyzing
these two sentences alone reveals no compliance
conflict. However, considering an additional reg-
ulatory requirement, “A user’s explicit consent is
the only lawful basis for sharing data,” it becomes
evident that there is a conflict between the business
process and the regulatory requirements when both
regulations are considered together.

We tested whether the baseline methods could
identify this compliance conflict, several open-
source LLMs were also included in the experiments.
All traditional baseline methods failed to identify
this compliance conflict. Among the LLM base-
lines, only MoonShot-v1-128k and GPT-4 correctly
identified this conflict. We hypothesize that this is
because the pre-training data for these two LLMs
included the General Data Protection Regulation
and the business process of this APP.

5.5 Analysis of influencing factors

This section analyzes the factors that may influ-
ence the performance of our framework. First, we
examine the impact of the sole hyperparameter, λ,
which requires manual configuration. As illustrated
in Figure 5(a), our framework performs optimally
when λ is set to 0.7 or 0.8. When λ is set to 0.9, the
compliance checking capability of the framework
declines sharply. We attribute this to the exces-
sively high threshold prevents ci from connecting
to a sufficient number of nodes, thereby limiting the
structured knowledge available for LLM reasoning.

Subsequently, we replaced the language model
SBERT in Section 3.2 with BERT, RoBERTa, XL-
Net, ELECTRA, and DistilBERT, respectively. As
shown in Figure 5(b), substituting different lan-
guage models had minimal impact on the frame-



2610

Typical semantic embedding-based methods cannot
determine whether there is a compliance violation.

From a global perspective, we can identify a
compliance violation in this context.

We will share your personal data with third 

parties as necessary.

Business process sentence

The processing of personal data requires 

lawful basis.

Regulatory requirement

A user’s explicit consent is the only lawful 

basis for sharing the user’s data.

Another requirement

Figure 4: The business process statement in the diagram
does not conflict with the first regulatory requirement.
However, when both regulatory requirements are consid-
ered simultaneously, the business process is in violation
of the regulations.

work’s performance.
Finally, we replaced ChatGLM-3-6b with other

LLMs. As depicted in Figure 5(c), ChatGLM
demonstrates the best performance on the Chinese
dataset, while LLaMa-2 achieved the best results
on the English datasets.

6 Conclusion

We proposed a compliance checking framework
based on Retrieval-Augmented Generation (RAG),
which leverages the strengths of both embedding-
based and logic-based compliance checking meth-
ods. The framework consists of three layers: a
static layer that stores factual knowledge, a dy-
namic layer that holds regulatory information and
business process data, and a computational layer
responsible for knowledge retrieval and guiding
the reasoning of Large Language Models (LLMs).
Experimental results demonstrate that our frame-
work achieves state-of-the-art performance across
four compliance checking datasets. Moreover, our
framework exhibits superior do-main adaptability
and is capable of detecting potential compliance
conflicts from a global perspective.

7 Limitations and potential solutions

Our framework relies on the retrieval of knowledge
from both the static and dynamic layers. Despite
carefully designing retrieval strategies and setting
retrieval thresholds, the thresholds originally set
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0 . 2
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0 . 6
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0 . 8
0 . 9
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Figure 5: Subfigure (a) illustrates the impact of the hy-
perparameter λ on the framework, subfigure (b) demon-
strates the influence of different encoder models on the
framework, and subfigure (c) presents the effects of var-
ious LLMs on the framework.

may become invalid once the knowledge in the
static and dynamic layers is updated, potentially
interfering with the reasoning of the LLM. A po-
tential future solution could involve designing an
LLM agent-based knowledge retrieval mechanism,
where agents with autonomous decision-making
capabilities dynamically and intelligently retrieve
the knowledge needed for LLM reasoning.
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A BigBird-based jointly extraction model
for terms and explanations

Figure 6 illustrates the structure of the joint extrac-
tion model for terms and explanations. This is a
typical model structure used for sequence label-
ing, where a CRF layer is added after BigBird to
model dependencies between labels, thereby im-
proving the global prediction accuracy of the label
sequence. As shown in the figure, terms and their
explanations are extracted simultaneously, ensur-
ing the sharing of task information. BigBird allows
for input of up to 8,000 tokens, making it capable
of accepting input text in whole paragraph units.

We annotated 5,500 samples for the training and
development validation of the model, with 4,000
used for training and 1,500 for development val-
idation. First, we divided business process and
regulatory documents from specific domains into
paragraphs. Then, three junior annotators each
annotated 2,000 samples, resulting in a total of
6,000 annotated samples. These 6,000 samples
were then reviewed by two senior annotators, who
removed 500 poorly annotated samples, leaving
us with 5,500 high-quality annotated samples. We
used Fleiss’ Kappa to evaluate the consistency be-
tween the two senior annotators during the review
process. The formula for calculating Fleiss’ Kappa
is as follows:

Kappa = 1− P0 − Pe

1− Pe
(8)

In this formula, Po represents the observed propor-
tion of agreement between the reviewers, while Pe

represents the expected proportion of agreement
based on random chance. We collected the anno-
tation results of the two senior annotators for the
500 samples that were removed and calculated their
consistency. By comparing their annotations, we
obtained a Kappa value of 0.78, which indicates
a high level of agreement between the two senior
annotators during the review process.

During the model training process, we set the
maximum input length to 5,000, the batch size to
4, and the learning rate to 2e-5. We used AdamW
as the optimizer, with the maximum number of
optimization epochs set to 20. Additionally, we
implemented early stopping to prevent overfitting.

B Ontology of deontic
proposition-centered eventic graph

We have defined the entity types and relation-
ship types included in the ontology for the event
graph Geventic. Table 3 presents the entity types
along with corresponding examples, while Table 4
presents the relationship types and their examples.

C Templates for deontic
proposition-centered information
extraction

In line 3 of Algorithm 1, template Tempt1 is used
to guide the large model in extracting all agents
from the given regulatory document. The template
is as shown in Figure 7.
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Table 3: Predefined entity types for eventic graph.

Entity type Example
Organization Huawei Technologies Co., Ltd
Person Ren Zhengfei
Regulatory document “Regulation on the Internet Protection of Minors”
Category Data Security, Protection of minors
Action Share user’s data with third parties
State Stored on an isolated server

Table 4: Predefined relation types for eventic graph.

Relation type Example

Publish
“Internet Information Office of China”,

Publish,
“Regulations on Ecological Governance of Network Information Content”

WorkFor
“Ren Zhengfei”

WorkFor
“Huawei Technologies Co., Ltd”

Duty
“Information technology companies”

Duty
“Ensure uesers’ personal data is limited only to the minimal extent necessary to provide the service”

Prohibited
“APP service provider”

Prohibited
“Share user’s data with third parties”

Right
“Shenzhen Market Supervision and Administration Bureau”

HaveRight
“Penalties for violating companies”

ClassifiedTo
“Regulation on the Internet Protection of Minors”

ClassifiedTo
“Information security”

Cite
“Regulation on the Internet Protection of Minors”

Cite
“Minors Protection Act”

In line 8 of Algorithm 1, template Tempt2 is
used to guide the large model in predicting the
moral words based on the current paragraph and
the subject it contains. The template is as shown in
Figure 8.

D Template for wrapping chunks and
their related knowledge

Template for wrapping chunks and their related
knowledge is as shown in Figure 9.

E The instruction template used to guide
the LLM’s annotation

The instruction template used to guide the LLM’s
annotation is shown in Figure 10.
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为了确保客户信息的安全性和保密性，我们实施数据最小化策略…这一策略要求企业在收集、处理、
存储和传输个人数据时，只收集实现特定目的所必需的最少量的个人数据。
(To ensure the security and confidentiality of customer information, we implemente the strategy of data 

minimization… This strategy requires companies to collect, process, store, and transmit only the minimum 

amount of personal data necessary to achieve specific purposes.)

𝑡1 𝑡2 𝑡3 𝑡4 𝑡5 … 𝑡𝑁−9 𝑡𝑁−8 𝑡𝑁−7 𝑡𝑁−6 𝑡𝑁−5 𝑡𝑁−4 𝑡𝑁−3 𝑡𝑁−2 𝑡𝑁−1 𝑡𝑁

0 1 2 3 4 … 8 9 10 11 12 13 14 15 16 17

Ԧ𝑒1 Ԧ𝑒2 Ԧ𝑒3 Ԧ𝑒4 Ԧ𝑒5 … Ԧ𝑒𝑁−9 Ԧ𝑒𝑁−8 Ԧ𝑒𝑁−7 Ԧ𝑒𝑁−6 Ԧ𝑒𝑁−5 Ԧ𝑒𝑁−4 Ԧ𝑒𝑁−3 Ԧ𝑒𝑁−2 Ԧ𝑒𝑁−1 Ԧ𝑒𝑁

Transformer

Transformer

CRF

Tokens

Position embeddings

Token embeddings

Input

Transformer layers
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Begin of a term End of a term Begin of the interpretation End of the interpretation

output

… BigBird

Figure 6: Structure of the jointly extraction model for terms and explanations.

请仔细阅读附件中的监管文件，并从中识别出所有受道义约束的主体。这些主体可能包括但不限于组织、公司、政府部门、非营利组织以

及个人等。注意寻找文档中使用的词汇，如“必须遵守”、“有义务”、“应当”等，这些通常指示了某种形式的约束或责任。请将识别

出的主体及其相关的道义约束以清晰的列表形式返回。准确性和完整性非常重要，请确保不遗漏任何相关的信息。

例如，如果文档中有句子“公司必须保护客户的个人信息”，那么“公司”就是一个受约束的主体，其道义约束是“保护客户的个人信

息”。

[Regulatory document attachment]

请仔细阅读附件中的监管文件，并从中识别出所有受道义约束的主体。这些主体可能包括但不限于组织、公司、政府部门、非营利组织以

及个人等。注意寻找文档中使用的词汇，如“必须遵守”、“有义务”、“应当”等，这些通常指示了某种形式的约束或责任。请将识别

出的主体及其相关的道义约束以清晰的列表形式返回。准确性和完整性非常重要，请确保不遗漏任何相关的信息。

例如，如果文档中有句子“公司必须保护客户的个人信息”，那么“公司”就是一个受约束的主体，其道义约束是“保护客户的个人信

息”。

[Regulatory document attachment]

任务：请仔细阅读以下段落，识别出与受道义约束的主体相关的道义词，并为每个预测的道义词提供简短的解释。道义词是指表达某种道

德或法律义务、责任或规范的词汇，如“必须”、“应当”、“禁止”、“责任”等。

段落：

[Insert paragraph text]

受道义约束的主体：

[Insert agent name]

示例：段落文本：“医疗机构必须保护患者的隐私。”主体：“医疗机构”预测道义词：“必须”解释：在这个段落中，“必须”表达了

医疗机构有法律和道德上的义务来保护患者的隐私。

[Provide your prediction and explanation here]

任务：请仔细阅读以下段落，识别出与受道义约束的主体相关的道义词，并为每个预测的道义词提供简短的解释。道义词是指表达某种道

德或法律义务、责任或规范的词汇，如“必须”、“应当”、“禁止”、“责任”等。

段落：

[Insert paragraph text]

受道义约束的主体：

[Insert agent name]

示例：段落文本：“医疗机构必须保护患者的隐私。”主体：“医疗机构”预测道义词：“必须”解释：在这个段落中，“必须”表达了

医疗机构有法律和道德上的义务来保护患者的隐私。

[Provide your prediction and explanation here]

Figure 7: Template Tempt1 is used to guide the large model in extracting all agents from the given regulatory
document.

请仔细阅读附件中的监管文件，并从中识别出所有受道义约束的主体。这些主体可能包括但不限于组织、公司、政府部门、非营利组织以

及个人等。注意寻找文档中使用的词汇，如“必须遵守”、“有义务”、“应当”等，这些通常指示了某种形式的约束或责任。请将识别

出的主体及其相关的道义约束以清晰的列表形式返回。准确性和完整性非常重要，请确保不遗漏任何相关的信息。

例如，如果文档中有句子“公司必须保护客户的个人信息”，那么“公司”就是一个受约束的主体，其道义约束是“保护客户的个人信

息”。

[Regulatory document attachment]

请仔细阅读附件中的监管文件，并从中识别出所有受道义约束的主体。这些主体可能包括但不限于组织、公司、政府部门、非营利组织以

及个人等。注意寻找文档中使用的词汇，如“必须遵守”、“有义务”、“应当”等，这些通常指示了某种形式的约束或责任。请将识别

出的主体及其相关的道义约束以清晰的列表形式返回。准确性和完整性非常重要，请确保不遗漏任何相关的信息。

例如，如果文档中有句子“公司必须保护客户的个人信息”，那么“公司”就是一个受约束的主体，其道义约束是“保护客户的个人信

息”。

[Regulatory document attachment]

任务：请仔细阅读以下段落，识别出与受道义约束的主体相关的道义词，并为每个预测的道义词提供简短的解释。道义词是指表达某种道

德或法律义务、责任或规范的词汇，如“必须”、“应当”、“禁止”、“责任”等。

段落：

[Insert paragraph text]

受道义约束的主体：

[Insert agent name]

示例：段落文本：“医疗机构必须保护患者的隐私。”主体：“医疗机构”预测道义词：“必须”解释：在这个段落中，“必须”表达了

医疗机构有法律和道德上的义务来保护患者的隐私。

[Provide your prediction and explanation here]

任务：请仔细阅读以下段落，识别出与受道义约束的主体相关的道义词，并为每个预测的道义词提供简短的解释。道义词是指表达某种道

德或法律义务、责任或规范的词汇，如“必须”、“应当”、“禁止”、“责任”等。

段落：

[Insert paragraph text]

受道义约束的主体：

[Insert agent name]

示例：段落文本：“医疗机构必须保护患者的隐私。”主体：“医疗机构”预测道义词：“必须”解释：在这个段落中，“必须”表达了

医疗机构有法律和道德上的义务来保护患者的隐私。

[Provide your prediction and explanation here]

Figure 8: Template Tempt2 is used to guide the large model in predicting the moral words based on the current
paragraph and the subject it contains.
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给定文本(Given text)：[𝑐𝑖]

请判断以下知识片段中是存在与[𝑐𝑖]的语义相互矛盾的情况：

(Please evaluate whether there is a semantic contradiction between the following knowledge fragments and 𝑐𝑖:)

[Head_Entity_1] [Relation_1]  [Tail_Entity_1]

[Head_Entity_2] [Relation_2]  [Tail_Entity_2]

...

[Head_Entity_n] [Relation_n]  [Tail_Entity_n]

请依次分析每个知识片段与𝑐𝑖之间是否矛盾，并给出理由。

(Analyze each knowledge fragment in sequence to determine whether it contradicts 𝑐𝑖, and provide the reasoning.)

如果不存在任何知识片段与𝑐𝑖矛盾，则返回给我<合规性检测通过>

(If no knowledge fragment contradicts 𝑐𝑖, return <Compliance Check Passed>.)

如果存在知识片段与𝑐𝑖矛盾的情况，则返回给我<合规性检测不通过>，并在{}中返回产生矛盾的知识片段以及理由。

(If any knowledge fragment contradicts 𝑐𝑖, return <Compliance Check Failed>, and include the conflicting knowledge fragment 

and the reasoning within {}.)

给定文本(Given text)：[𝑐𝑖]

请判断以下知识片段中是存在与[𝑐𝑖]的语义相互矛盾的情况：

(Please evaluate whether there is a semantic contradiction between the following knowledge fragments and 𝑐𝑖:)

[Head_Entity_1] [Relation_1]  [Tail_Entity_1]

[Head_Entity_2] [Relation_2]  [Tail_Entity_2]

...

[Head_Entity_n] [Relation_n]  [Tail_Entity_n]

请依次分析每个知识片段与𝑐𝑖之间是否矛盾，并给出理由。

(Analyze each knowledge fragment in sequence to determine whether it contradicts 𝑐𝑖, and provide the reasoning.)

如果不存在任何知识片段与𝑐𝑖矛盾，则返回给我<合规性检测通过>

(If no knowledge fragment contradicts 𝑐𝑖, return <Compliance Check Passed>.)

如果存在知识片段与𝑐𝑖矛盾的情况，则返回给我<合规性检测不通过>，并在{}中返回产生矛盾的知识片段以及理由。

(If any knowledge fragment contradicts 𝑐𝑖, return <Compliance Check Failed>, and include the conflicting knowledge fragment 

and the reasoning within {}.)

Figure 9: Template for wrapping chunks and their related knowledge.

你将参与一个术语及其解释的标注任务，该任务旨在帮助我们理解和抽取特定领域的知识。

(You will participate in an annotation task involving terms and their definitions. This task aims to assist us in understanding and extracting knowledge specific to a particular domain.)

在开始之前，我将向你展示一些来自源域的示例，这些示例包含了术语及其解释。请仔细阅读并理解这些标注模式。

(Before you begin, I will show you some examples from the source domain, which include terms and their definitions. Please read and understand these annotation patterns carefully.)

[Example]

{文本(Text)：[Paragraph_1]，

  术语(Term)：社会保险，

定义(Definition)：社会保险是一种由政府主导的社会保障制度，旨在为个人提供养老、医疗、失业、工伤和生育等方面的保障。}

{文本(Text)：[Pragraph_2]，

术语(Term)：个人养老金账户，

解释(Definition)：个人养老金账户中的资金来源于个人和单位的定期缴费，这些资金将用于参保人员退休后的养老金发放。}

[Target Domain Task]

现在，我需要你将这种理解应用到目标域上。请在没有直接标注数据的情况下，自动识别和标注目标域中的术语及其解释。

(Now, I need you to apply this understanding to the target domain. Please automatically identify and annotate the terms and their explanations in the target domain without directly annotated 

data.)

[Task Instructions]

1. 仔细阅读目标域中的文本。(Carefully read the text in the target domain.)

2. 识别出文本中的专业术语。(Identify the specialized terms in the text.)

3. 每个识别出的术语都对应一个清晰、准确的解释。(Each identified term should correspond to a clear and accurate definition.)

你将参与一个术语及其解释的标注任务，该任务旨在帮助我们理解和抽取特定领域的知识。

(You will participate in an annotation task involving terms and their definitions. This task aims to assist us in understanding and extracting knowledge specific to a particular domain.)

在开始之前，我将向你展示一些来自源域的示例，这些示例包含了术语及其解释。请仔细阅读并理解这些标注模式。

(Before you begin, I will show you some examples from the source domain, which include terms and their definitions. Please read and understand these annotation patterns carefully.)

[Example]

{文本(Text)：[Paragraph_1]，

  术语(Term)：社会保险，

定义(Definition)：社会保险是一种由政府主导的社会保障制度，旨在为个人提供养老、医疗、失业、工伤和生育等方面的保障。}

{文本(Text)：[Pragraph_2]，

术语(Term)：个人养老金账户，

解释(Definition)：个人养老金账户中的资金来源于个人和单位的定期缴费，这些资金将用于参保人员退休后的养老金发放。}

[Target Domain Task]

现在，我需要你将这种理解应用到目标域上。请在没有直接标注数据的情况下，自动识别和标注目标域中的术语及其解释。

(Now, I need you to apply this understanding to the target domain. Please automatically identify and annotate the terms and their explanations in the target domain without directly annotated 

data.)

[Task Instructions]

1. 仔细阅读目标域中的文本。(Carefully read the text in the target domain.)

2. 识别出文本中的专业术语。(Identify the specialized terms in the text.)

3. 每个识别出的术语都对应一个清晰、准确的解释。(Each identified term should correspond to a clear and accurate definition.)

Figure 10: The instruction template used to guide the LLM’s annotation.
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