
Proceedings of the 31st International Conference on Computational Linguistics, pages 2401–2416
January 19–24, 2025. ©2025 Association for Computational Linguistics

2401

Chain-of-Specificity: Enhancing Task-Specific Constraint Adherence
in Large Language Models

Kaiwen Wei1, Jiang Zhong1,†, Hongzhi Zhang2, Di Zhang2, Li Jin3, Yue Yu2, Jingyuan Zhang2,†

1College of Computer Science, Chongqing University, China
2Kuaishou Inc., China

3Key Laboratory of Network Information System Technology,
Aerospace Information Research Institute, Chinese Academy of Sciences, China

{weikaiwen,zhongjiang}@cqu.edu.cn

Abstract
Large Language Models (LLMs) exhibit re-
markable generative capabilities, enabling the
generation of valuable information. Despite
these advancements, previous research found
that LLMs sometimes struggle with adhering
to specific constraints (e.g., in specific place
or at specific time), at times even overlooking
them, which leads to responses that are either
too generic or not fully satisfactory. Existing
approaches attempted to address this issue by
decomposing, rewriting input instructions, or
reflecting on prior failings, yet they fall short
in adequately emphasizing specific constraints
and in unlocking the underlying knowledge
(e.g., programming within the context of soft-
ware development). In response, this paper pro-
poses a simple yet effective method Chain-of-
Specificity (CoS). Specifically, CoS iteratively
emphasizes the specific constraints in the input
instructions, unlocks knowledge within LLMs,
and refines responses. Experiments conducted
on publicly available and self-build complex
datasets demonstrate that CoS outperforms ex-
isting methods in enhancing generated content
especially for the specificity. Besides, as the
number of specific constraints increase, other
baselines falter, while CoS still performs well.
Moreover, we show that distilling responses
generated by CoS effectively enhances the abil-
ity of smaller models to follow the constrained
instructions.

1 Introduction

The Large Language Models (LLMs) have ex-
hibited remarkable generative capabilities, which
could generate meaningful information that was
previously unattainable by earlier models (Devlin
et al., 2019; Lian et al., 2024b; Xiong et al., 2025).
They could be utilized in various fields, such as
question answering (Kovalchuk et al., 2021; Lian
et al., 2024a) and problem-solving reasoning sys-
tems (Wang et al., 2023b; Xiong et al., 2024).

†Corresponding author.

Feed to LLM via CoS

How can a group of colleagues in a software development

team collaborate effectively in a brainstorming session?

• Plan and prepare: Set a clear agenda and goals for

the brainstorming session.

• Create a conducive environment: Choose a

comfortable location with minimal distractions.

• Establish ground rules: set some ground rules to

ensure smooth cooperation.

• Encourage participation: Create an inclusive

atmosphere by involving all team members.

Direct Prompt to LLM

Feed to LLM via CoS

• Understand technical expertise: Identify and utilize

the unique technical expertise of each team member.

• Use pair programming or code reviews: Organize

pair programming or code review sessions to

encourage software developers to work together

• Address specific challenges: Focus the

brainstorming session on specific challenges

 related to the software development process.

...

...

Input Instruction

Figure 1: The GPT-4 generation comparison between
direct prompt method and Chain-of-Specificity (CoS).
The direct prompt generate many generic responses,
which could be broadly utilized in many other domain.
In comparison, CoS generates more responses related
to the specific constraint "software development team".

Recent studies (Huang et al., 2022; Sakaguchi
et al., 2021) primarily concentrate on devising
plans for general goals, which akin to stereotypi-
cal activities described in Abelson (2014), such as
"How can colleagues collaborate". Those methods
have illustrated the proficiency of LLMs in gener-
ating a sequence of responses that align with the
given instructions. However, Yuan et al. (2023)
found that LLMs sometimes fail to adhere strictly
to specific constraints, which is defined as the
multi-faceted and reasonable restrictions to the gen-
eral goal. For example, as depicted in Fig. 1, even
the strong LLM GPT-4 (OpenAI, 2023) still strug-
gle to grasp the specific constraint "software devel-

1

2402

opment team". As a result, its responses are genetic
and could be broadly utilized in many other do-
mains, which dose not meet the requirement of the
specific constraint. This ability to adhere to the con-
strains or details of the input instruction is crucial
for many topics such as long-context LLMs (Chen
et al., 2024) and retrieval augmented generation
systems (Sachan et al., 2023).

However, how to address the issue of limited
capacity in LLMs to capture specific constraints
is under-exploit. There are methods such as
decomposing input instructions into multiple
sub-questions (Zhou et al., 2023; Wang et al.,
2023a), rewriting the input instructions to improve
understanding (Cheng et al., 2023; Deng et al.,
2023), and reflecting on prior failings (Shinn
et al., 2023; Yao et al., 2023). However, they fail
to directly guide the model in comprehending
the nuances of specific constraints. Furthermore,
they overlook the exploration of the underlying
knowledge within these constraints. For instance,
the domain of programming is intricately linked
to the context of software development.

Motivated by the findings in Yu et al. (2023) that
LLMs contain enough knowledge for knowledge-
intensive tasks, we introduce the Chain-of-
Specificity (CoS) method to elicit the knowledge
in LLMs and strengthen the ability of LLMs to
follow the specific constraints. Specifically, it first
identify the general goal and all the specific con-
straints in the input instruction. After that, it takes
the specific constraints as the reasoning chain and
iteratively emphasises on the specific constraints
to elicit the knowledge embedded in LLMs, and
then revises the responses. As illustrated in Fig. 1,
with the CoS method, the responses contains more
information (e.g., code review) about the specific
constraint "software development team".

In the experiment, we evaluate the methods
on the CoScript (Yuan et al., 2023) dataset and
the brainstorming domain of the EXPLORE-
INSTRUCT dataset (Wan et al., 2023) to vali-
date the effectiveness of the proposed CoS method.
Considering the limited quantity of specific con-
straints in those datasets, we further developed a
new dataset named ConstrainSPEC. Both machine
evaluation and human assessment have corrobo-
rated that CoS achieves superior performance in
specific constraint environments. Notably, CoS still
perform well as the number of specific constraint
increases. In addition, we also conduct experiments
on distilling the responses from different methods

in ConstrainSPEC to smaller models, where the
beat rate between those with CoS and those with-
out distilling has reached 90.0. In summary, the
contributions of this paper are:

1) We propose the Chain-of-Specificity (CoS)
method by iteratively eliciting the knowledge em-
bedded in LLMs and refining the output responses
for the specific constraints from the instructions.

2) To stimulate the sophisticated constraint situ-
ation, we develop a new dataset named Constrain-
SPEC, which contains more and complex specific
constraints than other datasets.

3) We conduct experiments on the the relevant
datasets. Both human and automatic evaluation
illustrates the effectiveness of the CoS method. By
leveraging the responses of different methods on
LLMs, we endow the smaller models with better
constrained instruction following ability.

2 Related Work

2.1 LLMs under Constrained Situations

Previous work (Huang et al., 2022) has shown
that large language models (LLMs), such as GPT-
3 (Brown et al., 2020), PaLM (Chowdhery et al.,
2023), and GPT-4 (OpenAI, 2023) can effectively
generate the answers based on the input instructions
in a zero/few-shot manner. Meanwhile, a wide
range of works (Huang et al., 2022; Yang et al.,
2021) focus on generating results for stereotypi-
cal activities toward general goals. There is only
few work focus on discussing the ability of LLMs
under constrained situations. Yuan et al. (2023) col-
lected a dataset named CoScript via overgenerate-
then-filter, and then distill it to a smaller model.
However, there are still some limitations: first, the
specific constraint number in CoScript is limited,
which is not quite suit for simulate the complex con-
strained instruction situations. Additionally, they
only evaluated on the scripts domain, while our
work expand to brainstorming aspect with more
specific constraints. This shift is driven by the
intuition that brainstorming tasks involve broader
knowledge, and are more difficult and realistic.

2.2 Methods under Constrained Situations

Yuan et al. (2023) observed that LLMs sometimes
do not adhere to the specific constraints. Some
methods (Zhou et al., 2023; Xu et al., 2023; Wang
et al., 2023a) focus on breaking down the chain
from the input instructions and then solving the
sub-problems. Besides, some methods (Cheng

2

2403

Figure 2: The overview of the proposed Chain-of-Specificity (CoS).

et al., 2023; Deng et al., 2023) seek to rewrite
the input instructions to promote the understand-
ing. And some methods (Shinn et al., 2023; Yao
et al., 2023) modifies responses based on prior fail-
ings. However, those methods did not explicitly
direct the LLMs to follow the specific constraints
in the input instructions, or unlock their underlying
knowledge. Based on the observation from Yu et al.
(2023) that LLMs contain enough knowledge for
knowledge-intensive tasks, we proposed Chain-of-
Specificity (CoS). It takes the specific constraints
as the chain’s clue and elicits the knowledge em-
bedded in LLMs by iteratively emphasising on the
specific constraints.
3 Method
3.1 Preliminary
In this section, we clarify several key terminolo-
gies introduced by Yuan et al. (2023). A general
goal refers to common activities, such as "How can
colleagues collaborate". A specific goal is more
nuanced, often incorporating additional constraints,
such as "How can colleagues in a software develop-
ment team collaborate." We diverge slightly from
the original terminology by replacing ’specific goal’
with ’specific constraint’, as our experiments re-
vealed that LLMs encounter difficulties in interpret-
ing ’specific goals’.

3.2 Chain of Specificity (CoS)
To tackle the challenge that LLMs sometimes ne-
glect the specific constraints within input instruc-
tions and respond with general or even wrong re-

sults, we introduce a simple yet effective method
Chain-of-Specificity (CoS). As shown in Fig. 2,
CoS encompasses two stages: (1) General goal
and specific constraint identification, which aims
at identifying the general goal and specific con-
straints within the input instruction, and (2) Itera-
tive refining the responses from previous chat histo-
ries, which starts by generating a standard answer
targeting the general goal, and then iteratively in-
corporates the underlying knowledge from specific
constraints into the answers.

General Goal and Specific Constraint Identifica-
tion Prompt Template

You are asked to find the “General Goal” and the “Specific
Constraints” based on the input Prompt.
Definition:
- A “General Goal” refers to stereotypical activities ...
- A “Specific Constraint” is derived from the corresponding
general goal with various constraints ...
Example:
Prompt: Brainstorm 3 innovative advertising ideas for a
new product launch targeting college students.
- The “General Goal” is ...
- The “Specific Constraints” are ...
Input Prompt:
{<input>}

Table 1: The prompt template for identifying general
goal and specific constraints, where <input> is the place-
holder for the input prompt.

In the first stage, CoS scrutinizes the input in-
struction to discern the general goal and the specific
constraints. Take the example in Fig. 2 as an exam-
ple, given the input instruction, CoS initially iden-

3

2404

tifies the general goal as "Collaborate effectively
in a brainstorming session", while the specific con-
straints are recognized as "a group of colleagues"
and "in a software development team". The whole
process is processed by asking the LLMs (e.g.,
GPT-4) and the example key structure prompt tem-
plate is shown in Table 1.

Prompt Template for General Goal Answers

Please generate detailed answers for your found "General
Goal". The output should be as much elaborate as possible
and in raw text format. Please provide a point by point
description.

Table 2: The prompt template for generating answers
for general goal.

Prompt Template for Adding Specific Constraint

Based on your answers, I want to further emphasize on
the "<Specific_constrain>". Please regenerate the detailed
answer based on the former answers in text format. Please
provide a detailed point by point description and do not
respond any other content.

Table 3: The prompt template for appending the specific
constraints to the answers, where <Specific_constrain>
is the placeholder for the identified specific constraint
in the first stage.

In the second stage, the process begins with the
LLMs generating a set of diverse, general answers
that align with the identified general goal. This
ensures a broad coverage of potential answers. The
prompt template for generating answers for the
identified general goal is shown in Table 2. Sub-
sequently, the method involves iteratively refining
these answers by integrating one specific constraint
at a time. The prompt for incorporating various spe-
cific constraints could be found in Table 3. Each
round of CoS will further add emphasis on a spe-
cific constraint, while retaining the previous gener-
ation answers. This iteration will be stopped until
all the specific constraints have been emphasised.

In CoS, we could ask the LLMs to generate
intermediate results at once through a single round
of dialogue, or we can gradually let the LLMs

Dataset Methods General Scores

CoScript
Direct prompt 4.86
CoS-multi-step 4.84

EXPLORE
INSTRUCT

Direct prompt 4.68
CoS-multi-step 4.75

Table 4: The automatic evaluation results of general
scores on two public datasets via GPT-4.

Dataset Average Specific
Constraint Num

CoScript 1.00
EXPLORE-INSTRUCT 1.34

ConstrainSPEC 2.32

Table 5: The specific constraint number comparison be-
tween different datasets, where ConstrainSPEC contains
more specific constraints.

emphasize specific constraint through multiple
rounds of dialogue. Please find the whole prompt
from CoS in Appendix A.1 and A.2.

4 ConstrainSPEC with More Specific
Constraints

4.1 Pilot Experiment

To assess the models’ comprehension of specific
constraints, we initially select the CoScript (Yuan
et al., 2023) and the brainstorming domain in
EXPLORE-INSTRUCT (Wan et al., 2023) as our
evaluation datasets. The experimental results pre-
sented in Table 4 reveal that inputting the raw
prompt (direct prompt) into GPT-4 without any
additional mechanisms, yields impressive results.
This suggests that these two datasets are not partic-
ularly challenging, and GPT-4 is able to accurately
interpret the specific constraints in their instruc-
tions. To delve deeper into the nature of these
specific constraints, we quantify the average num-
ber of specific constraints present in both datasets.
Specifically, we employ the prompt template shown
in Table 1 to determine the number of specific
constraints in each instruction, eventually calcu-
lating the average per instruction. The experiment
is shown in Table 5, which indicates that both Co-
Script and EXPLORE-INSTRUCT contain aver-
agely only about one specific constraint. All those
findings demonstrate existing datasets lack of a
substantial number of specific constraints, render-
ing them inadequate for simulating scenarios with
complex and multiple specific constraints.

4.2 Dataset Construction

To address the limitations identified earlier and
more rigorously test the methods in intricate sce-
narios, particularly those involving numerous spe-
cific constraints, we develop a new dataset named
ConstrainSPEC. The dataset was constructed as fol-
lows: we first randomly selected 1,000 instructions
from the brainstorming section of the EXPLORE-
INSTRUCT dataset. We then prompted large lan-

4

2405

guage models (LLMs) to enrich these instructions,
adding greater complexity and incorporating more
specific constraints. The example template used for
dataset construction is presented in Table 6, and the
detailed prompt can be found in Appendix A.3. The
resulting 1,000 samples constitute the Constrain-
SPEC test set. To ensure data quality, we recruited
three Chinese annotators who had passed the CET-
6 exam, ensuring their ability to comprehend the
English instructions. And then we randomly se-
lected 300 samples for manual review, where the
annotators assessed fluency, coherence, and logical
consistency. The data quality validation process
continued until all factors met satisfactory criteria.

Prompt Template for Dataset Construction

You are asked to add certain reasonable constraints to the
input prompt. The modified prompt requires the models
to pay attention to relevant details after retrieving certain
background knowledge.
Guidelines
- You should create an appropriate and logical modified
prompt based on the input prompt.
- The response you generated should conform in json for-
mat.
Examples:
<Example1>
- Input: Render a 3D model of a house.
- Modified: Render a 3D model of a house for a senior
citizen.
- Reason: I append a constraint “for a senior citizen”. The
reasons are as follows: because when designing a house,
compared with normal young people, the elderly need ex-
tra care, such as designing electric stairs.
...
Input prompt
{<input_sentence>}
List one modified prompt examples of the above input
prompt.

Table 6: Dataset construction template, where <in-
put_sentence> means the raw input instruction.

4.3 Dataset Analyse

As shown in Table 5, the averaged specific con-
straint number of ConstrainSPEC is higher than the
other two datasets. To better showcase its statistics,
we conduct a detailed analysis. Specifically, fol-
lowing Yuan et al. (2023), we visualized the data
by plotting the initial word of the top 20 added
specific constraints. As shown in Fig. 3, we could
find a significant portion of the added specific con-
straints pertains to intent (e.g., for) or method (e.g.,
in or with) categories according to the taxonomy
in Probase (Wu et al., 2012). Moreover, there is
a notable prevalence of subordinate clauses, as in-
dicated by the frequent use of commas, the word
"that", and other similar linguistic markers. This

Figure 3: The initial words of the added specific con-
straints in ConstrainSPEC test set.

Methods Win:Tie:Lose Beat Rate
CoS-one-step vs
Direct prompt 287:567:146 66.3

CoS-multi-step vs
Direct prompt 333:524:143 69.5

Table 7: The pairwise automatic evaluation results on
the EXPLORE-INSTRUCT dataset.

suggests that constraints are semantically specific
and syntactically complex.

5 Distilling to Smaller Models

As demonstrated in Fig.1, the advanced GPT-4
model still faces challenges in adhering to spe-
cific constraints, a problem that is accentuated in
smaller-scale models. This issue is further evi-
denced by the experiments shown in Table 8, which
reveals the struggles of smaller LLMs like Vicuna-
13b (Zheng et al., 2023) and Llama2-Chat-13b
(Touvron et al., 2023) in grasping specific con-
straints. In this section, we aim to augment these
smaller LLMs’ capabilities to respect such con-
straints more effectively.

To this end, we generate 5,000 samples using
the dataset construction template outlined in Ta-
ble 6 on the EXPLORE-INSTRUCT dataset, and
set them as the training set of ConstrainSPEC.
Please note that there is no overlap between these
5,000 samples and the generated test set. We
then feed the ConstrainSPEC training dataset to
larger LLMs (e.g., GPT-4) and let them generate
responses through two prompt methods: (1) CoS-
multi-step prompt, employing the proposed CoS
method with multiple reasoning steps; (2) direct
prompt, directly inputting the instructions. After
that, the responses of larger LLMs generated from

5

2406

these methods are subsequently used for training
smaller LLMs via supervised fine-tuning.

6 Experiment
6.1 Baseline

In the experiment, we leverage GPT-4 (OpenAI,
2023) with the gpt-4-1106-preview version as the
base LLM. We compare with the strong baselines
and utilize their official prompt templates for rea-
soning: (1) Direct prompt: Naive prompting to
generate the responses; (2) CoT (Wei et al., 2022):
Automatic generation of series of intermediate rea-
soning steps from LLMs with prompt "let’s think
step by step"; (3) Take-a-breath (Yang et al.,
2023): Enhanced CoT by prompting "Take a deep
breath"; (4) Least-to-Most (Zhou et al., 2023):
First automatically decomposing the inhand prob-
lems into series of simpler sub-problems, and then
each one sequentially; (5) Plan-and-Solve (Wang
et al., 2023a): Enhanced CoT by guiding LLMs
to devise the plan before solving the problems; (6)
Re-Reading (Xu et al., 2023): Entails revisiting
the question information embedded within input
prompts; (7) RaR-one-step (Deng et al., 2023):
Rephrase and expand questions posed by humans
and provide responses in a single prompt in a single
response; (8) RaR-multi-step (Deng et al., 2023):
Rephrase the question and respond the rephrased
question in multiple steps; (9) BPO (Cheng et al.,
2023): Rewrite user prompts to suit LLMs’ input
understanding; (10) Reflexion (Shinn et al., 2023):
Reinforce language agents through linguistic feed-
back with CoT; (11) ReAct (Yao et al., 2023): Ask
LLMs to make task-specific actions in an inter-
leaved manner; (12) CoS-one-step: The proposed
CoS method that combines identifying general goal,
specific constraints, and adding the specific con-
straints to the answers in a single response; (13)
CoS-multi-step: The proposed CoS method itera-
tively adds the specific constraints to the answers
in different steps at different stages.

6.2 Automatic Evaluation

To evaluate the performance of the methods, we
follow Chen et al. (2023) and Wan et al. (2023)
to conduct an automatic evaluation with GPT-4.
Specifically, we adopt (1) general scores evalu-
ation (1 for the worst and 5 for the best), which
aims to capture the qualities of the generated re-
sults. Please refer to Appendix A.4 for the prompts
and the standards used to solicit scores. (2) pair-
wise evaluation, where given an instruction and

Methods Automatic Human
Vicuna-13b

Direct prompt 3.82 3.51
Llama2-Chat-13b

Direct prompt 4.23 4.09
GPT-4

Direct prompt 4.47 4.34
CoT 4.54 4.26

Take-a-breath 4.55 4.38
Re-Reading 4.51 4.37

Plan-and-Solve 4.59 4.36
Least-to-Most 4.57 4.50

BPO 4.63 4.55
Reflexion 4.66 4.61

ReAct 4.65 4.56
RaR-one-step 4.52 4.52
CoS-one-step 4.59 4.57

RaR-multi-step 4.66 4.59
CoS-multi-step 4.80 4.69

Table 8: The automatic and human evaluation results of
general scores on the ConstrainSPEC dataset.

two responses from different methods, we request
GPT-4 to determine which response is better based
on their understanding of the general goal and spe-
cific constraints. Refer to Appendix A.5 for the
prompt for pairwise evaluation. Moreover, to cal-
culate the beat rate of a particular model, we divide
the number of times the model wins by the sum
of the number of times the model wins and loses.
Please refer to Appendix A.7 for more details about
the automatic evaluation settings.
Experiments on EXPLORE-INSTRUCT. We
conduct the experiments on the EXPLORE-
INSTRUCT to exam the generalization of CoS.
The experiment results are shown in Table 4 and
Table 7. We could find that both the direct prompt
and CoS method show great performance on the
EXPLORE-INSTRUCT dataset. Meanwhile, com-
pared to the experiment results on ConstrainSPEC
in Table 8 that containing more specific constraints,
the general score of direct prompt on EXPLORE-
INSTRUCT is much higher. Those findings sup-
ports our hypothesis that the original datasets, with
its limited number of specific constraints, may not
adequately simulate more complex scenarios. Fur-
thermore, the experimental results also indicate
that the CoS method outperforms the direct prompt
approach. This underscores CoS’s robustness and
adaptability in scenarios where the number of spe-
cific constraints is inherently limited.
Experiments on ConstrainSPEC. We conduct ex-
periments on the test set of ConstrainSPEC dataset,
which is more complex and has more specific con-
straints. From the experiment results in Table 8,

6

2407

Figure 4: The pairwise automatic evaluation results on ConstrainSPEC test set.

Methods Win:Tie:Lose Beat Rate
Vicuna-13b

CoS-multi-step vs
Direct prompt 402:280:318 55.8

CoS-multi-step vs
w/o distill 659:268:73 90.0

Direct prompt vs
w/o distill 668:205:127 84.0

Llama2-Chat-13b
CoS-multi-step vs

Direct prompt 373:310:317 54.0

CoS-multi-step vs
w/o distill 437:332:231 65.4

Direct prompt vs
w/o distill 405:331:264 60.5

Table 9: The pairwise automatic evaluation results on
distilling for two smaller LLMs.

Figure 5: The automatic evaluated general scores under
different specific constraint number situations.

we could observe that (1) CoS outperforms other
strong methods, indicating its superiority in com-
plex specific constraint situations; (2) The promo-
tion of those methods such as CoT is not significant.
This is possibly because that it tents to generate in-
termediate results while skimming over specific
responses; (3) Those methods utilizing the multi-
step (such as Reflexion) for generating answering
typically have greater general scores. A key rea-
son is that they could consider the history informa-
tion during generation. In addition, the results in
Fig. 4 also reveal that most baselines outperform
the direct prompt, and the proposed CoS method

Methods P R F1
CoS-one-step 95.3 96.1 95.7

CoS-multi-step 96.5 97.8 97.1

Table 10: The manually check performance of identify-
ing the specific constrains across different models.

has greater beat rate other strong methods. For
example, the beat rate of CoS-multi-step vs direct
prompt is 65.4%, showing the superiority of CoS
in the complex specific constraint situations.
Experiments with Different Specific Constraint
Number. As shown in Fig. 5, we explored the
model’s performance across various numbers of
specific constraints on the ConstrainSPEC test set.
It can be observed that while the direct prompt ap-
proach achieved commendable performance when
the number of specific constraints was limited to
one, its performance significantly deteriorated with
the increase in the number of specific constraints.
However, the CoS-multi-step approach maintained
a relatively stable performance across different spe-
cific constraint settings, demonstrating the effec-
tiveness of the CoS under complex specific con-
straint situations.
Experiments on Distilling to Smaller Models.
We conduct experiments on distilling knowledge
from larger LLMs to the smaller LLMs. We select
Vicuna-13b (Zheng et al., 2023) and Llama2-Chat-
13b (Touvron et al., 2023) since they are typical
smaller LLMs. We employ two prompt strategies
on GPT-4 to generate the responses: (1) CoS-multi-
step, (2) direct prompt, and we also provide (3) w/o
distill, where the smaller LLMs are tested directly
without distillation. The detailed distillation exper-
iment settings are shown in Appendix A.8. The
results in Table 9 on the ConstrainSPEC test set in-
dicate: compared to w/o distill, other methods have
marked promotion in the smaller models’ capabili-
ties to adhere to constrained instructions, validating
the effectiveness of the distillation strategy and the

7

2408

Figure 6: The pairwise human evaluation results on ConstrainSPEC test set.

responses quality from different prompt methods.
Moreover, the data shows a beat rate of 55.8% fa-
voring the CoS-multi-step over direct prompting,
signifying the superiority of the CoS methods’ re-
sponses in guiding smaller models toward more
accurate compliance with specific instructions.

6.3 Human Evaluation

For a thorough and unbiased evaluation, we ran-
domly selected 100 ConstrainSPEC samples for
human evaluation. Specifically, we invite three
Chinese annotators who have passed the CET-6 to
(1) Give a general score for each responses based
on the same standard as automatic evaluation; (2)
Compare responses from two methods to the same
instruction, judging which model performed better
(win, tie, or lose). Please refer to Appendix A.9 for
the details of human evaluation process.

Tabel 8 and Fig. 6 show the results of the hu-
man evaluation. The comparison between the hu-
man and automatic evaluations demonstrates a gen-
eral consistency, where the Fleiss’s K (Fleiss et al.,
1981) is 0.73. It indicates that the automatic evalu-
ation is also qualitatively well-regarded by humans,
illustrating the reliability of the automatic evalu-
ation. The results demonstrate that CoS demon-
strates superiority over other baselines, and notably,
direct prompts exceed Reflexion in the brainstorm-
ing task. After manually checking the generated
results, we find Reflexion sometimes tends to re-
ward generic answers, which dose not contributes
to increase the comprehension of input instructions.
Specific Constraint Identification. To explore the
performance of CoS on finding the specific con-
strains, we further ask the annotators to manually
check the selected 100 samples from the Constrain-
SPEC. Specifically, we regard each specific con-
strain as a whole and evaluate the results in Preci-
sion (P), Recall (R), and F1 metrics. As shown in
Table 10, we could find that both CoS-one-step and
CoS-multi-step could effectively find the specific

Input
Instruction CoS-multi-step

Brainstorm
ways to
improve

employee
morale in a
healthcare

setting.

1. Address staffing issues: Ensure ap-
propriate staff-to-patient ratios to re-
duce stress and burnout. ... 3. Cross-
training opportunities: Encourage and
offer cross-training opportunities for
healthcare employees to learn new skills,
etc. ...

Table 11: Case study experiment. The specific con-
straints are in red, the relevant responses are in green.

constrains, and the latter outperforms the former. A
possible reason is that CoS-one-step needs to simul-
taneously identify specific constrains and generate
answers, which may affect performance.
Case Study. As shown in Table 11, we select sev-
eral typical cases to illustrate the effectiveness of
the proposed CoS method. For example, when the
input instruction contains specific constraint "in a
healthcare setting", the proposed CoS-multi-step
successfully elicits the background knowledge in
LLMs, and the contents such as "staff-to-patient
ratios" in the response are more in line with the
specific constraint "healthcare". Please refer to
Appendix A.6 for the full results.

7 Conclusion
To increase LLMs’ ability to follow the specific
constraints in the input instructions, we propose
Chain-of-Specificity (CoS) by iteratively empha-
sising on the specific constraints, eliciting knowl-
edge in LLMs, and refining the responses. To bet-
ter stimulate the complex constraint situations, we
further propose a new dataset named Constrain-
SPEC, containing more and complex specific con-
straints. Experiments on the public and self-build
datasets illustrate the effectiveness of CoS to direct
LLMs to adhere to specific constraints. Moreover,
the smaller models are equipped with better con-
strained instruction following ability by distilling
the responses from CoS.

8

2409

Acknowledgments

The work is supported by the National Natu-
ral Science Foundation of China (62206267 and
62176029), China Postdoctoral Science Founda-
tion Funded Project (2024M763867), Chongqing
Key Project of Technological Innovation and Appli-
cation Development (CSTB2023TIAD-KPX0064).

Limitation

In the automatic evaluation experiments, we em-
ployed GPT-4 as the evaluator to assign general
scores and perform pair-wise comparisons. How-
ever, this approach may introduce bias due to the
hallucination problem inherent in LLMs. To mit-
igate this, we also conducted human evaluations,
though this process proved to be time-consuming.
In the future, we plan to explore more effective
methods that combine the strengths of both auto-
matic and human evaluations while minimizing
their respective limitations.

Ethics Statement

Understanding the paramount importance of in-
formation security in the development and appli-
cation of LLMs, our study prioritizes the ethical
sourcing and handling of data. The source data for
our research is derived exclusively from the open-
source dataset EXPLORE-INSTRUCT, which is
publicly available and does not contain any per-
sonally identifiable information or sensitive data.
This approach ensures that our research adheres to
privacy and data protection standards, minimizing
risks associated with data misuse.

The potential for LLMs to generate content that
could be considered toxic or harmful has been doc-
umented in previous studies. Acknowledging this
risk, we have taken proactive measures to mitigate
the possibility of such outcomes in our work. It is
important to clarify that our dataset, while compre-
hensive, is not designed for use in safety-critical
applications or as a substitute for specialized, ex-
pert advice in sensitive domains. The purpose of
our dataset is to facilitate research and development
in specific, non-critical areas of natural language
processing.

To further ensure the integrity and safety of the
data used in our study, annotators were given ex-
plicit instructions to identify and exclude any con-
tent that could be deemed offensive, harmful, or
otherwise inappropriate during the review process

of the test set in ConstrainSPEC. This careful cura-
tion process is part of our commitment to responsi-
ble research practices and contributes to the overall
quality and reliability of our dataset.

Moreover, we explicitly state that any research
outcomes or applications derived from this study
are intended strictly for academic and research pur-
poses. We do not authorize the use of our findings
or the ConstrainSPEC dataset for commercial pur-
poses without proper oversight and ethical consid-
erations.

References
Robert P Abelson. 2014. Script processing in attitude

formation and decision making. In Cognition and
social behavior, pages 33–45. Psychology Press.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss,
Gretchen Krueger, Tom Henighan, Rewon Child,
Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu,
Clemens Winter, Christopher Hesse, Mark Chen, Eric
Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess,
Jack Clark, Christopher Berner, Sam McCandlish,
Alec Radford, Ilya Sutskever, and Dario Amodei.
2020. Language models are few-shot learners. In Ad-
vances in Neural Information Processing Systems 33:
Annual Conference on Neural Information Process-
ing Systems 2020, NeurIPS 2020, December 6-12,
2020, virtual.

Yukang Chen, Shengju Qian, Haotian Tang, Xin Lai,
Zhijian Liu, Song Han, and Jiaya Jia. 2024. Longlora:
Efficient fine-tuning of long-context large language
models. In The Twelfth International Conference
on Learning Representations, ICLR 2024, Vienna,
Austria, May 7-11, 2024. OpenReview.net.

Zhihong Chen, Feng Jiang, Junying Chen, Tiannan
Wang, Fei Yu, Guiming Chen, Hongbo Zhang, Juhao
Liang, Chen Zhang, Zhiyi Zhang, Jianquan Li, Xiang
Wan, Benyou Wang, and Haizhou Li. 2023. Phoenix:
Democratizing chatgpt across languages. CoRR,
abs/2304.10453.

Jiale Cheng, Xiao Liu, Kehan Zheng, Pei Ke, Hongning
Wang, Yuxiao Dong, Jie Tang, and Minlie Huang.
2023. Black-box prompt optimization: Align-
ing large language models without model training.
CoRR, abs/2311.04155.

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin,
Maarten Bosma, Gaurav Mishra, Adam Roberts, Paul
Barham, Hyung Won Chung, Charles Sutton, Sebas-
tian Gehrmann, et al. 2023. Palm: Scaling language
modeling with pathways. Journal of Machine Learn-
ing Research, 24(240):1–113.

9

https://proceedings.neurips.cc/paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html
https://openreview.net/forum?id=6PmJoRfdaK
https://openreview.net/forum?id=6PmJoRfdaK
https://openreview.net/forum?id=6PmJoRfdaK
https://doi.org/10.48550/ARXIV.2304.10453
https://doi.org/10.48550/ARXIV.2304.10453
https://doi.org/10.48550/ARXIV.2311.04155
https://doi.org/10.48550/ARXIV.2311.04155

2410

Yihe Deng, Weitong Zhang, Zixiang Chen, and Quan-
quan Gu. 2023. Rephrase and respond: Let large
language models ask better questions for themselves.
CoRR, abs/2311.04205.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, NAACL-HLT 2019, Minneapolis, MN, USA,
June 2-7, 2019, Volume 1 (Long and Short Papers),
pages 4171–4186. Association for Computational
Linguistics.

Joseph L Fleiss, Bruce Levin, Myunghee Cho Paik,
et al. 1981. The measurement of interrater agreement.
Statistical methods for rates and proportions, 2(212-
236):22–23.

Wenlong Huang, Pieter Abbeel, Deepak Pathak, and
Igor Mordatch. 2022. Language models as zero-shot
planners: Extracting actionable knowledge for em-
bodied agents. In International Conference on Ma-
chine Learning, ICML 2022, 17-23 July 2022, Balti-
more, Maryland, USA, volume 162 of Proceedings
of Machine Learning Research, pages 9118–9147.
PMLR.

Alexander Kovalchuk, Shashank Shekhar, and Ronen I.
Brafman. 2021. Verifying plans and scripts for
robotics tasks using performance level profiles. In
Proceedings of the Thirty-First International Confer-
ence on Automated Planning and Scheduling, ICAPS
2021, Guangzhou, China (virtual), August 2-13,
2021, pages 673–681. AAAI Press.

Haoran Lian, Yizhe Xiong, Zijia Lin, Jianwei Niu,
Shasha Mo, Hui Chen, Peng Liu, and Guiguang
Ding. 2024a. Lbpe: Long-token-first tokenization
to improve large language models. arXiv preprint
arXiv:2411.05504.

Haoran Lian, Yizhe Xiong, Jianwei Niu, Shasha Mo,
Zhenpeng Su, Zijia Lin, Peng Liu, Hui Chen, and
Guiguang Ding. 2024b. Scaffold-bpe: Enhancing
byte pair encoding with simple and effective scaffold
token removal. CoRR, abs/2404.17808.

OpenAI. 2023. Gpt-4 technical report. ArXiv,
abs/2303.08774.

Jeff Rasley, Samyam Rajbhandari, Olatunji Ruwase,
and Yuxiong He. 2020. Deepspeed: System opti-
mizations enable training deep learning models with
over 100 billion parameters. In KDD ’20: The 26th
ACM SIGKDD Conference on Knowledge Discovery
and Data Mining, Virtual Event, CA, USA, August
23-27, 2020, pages 3505–3506. ACM.

Devendra Singh Sachan, Mike Lewis, Dani Yogatama,
Luke Zettlemoyer, Joelle Pineau, and Manzil Zaheer.
2023. Questions are all you need to train a dense
passage retriever. Trans. Assoc. Comput. Linguistics,
11:600–616.

Keisuke Sakaguchi, Chandra Bhagavatula, Ronan Le
Bras, Niket Tandon, Peter Clark, and Yejin Choi.
2021. proscript: Partially ordered scripts generation.
In Findings of the Association for Computational
Linguistics: EMNLP 2021, Virtual Event / Punta
Cana, Dominican Republic, 16-20 November, 2021,
pages 2138–2149. Association for Computational
Linguistics.

Noah Shinn, Federico Cassano, Ashwin Gopinath,
Karthik Narasimhan, and Shunyu Yao. 2023. Re-
flexion: language agents with verbal reinforcement
learning. In Advances in Neural Information Pro-
cessing Systems 36: Annual Conference on Neural
Information Processing Systems 2023, NeurIPS 2023,
New Orleans, LA, USA, December 10 - 16, 2023.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al-
bert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti
Bhosale, Dan Bikel, Lukas Blecher, Cristian Canton-
Ferrer, Moya Chen, Guillem Cucurull, David Esiobu,
Jude Fernandes, Jeremy Fu, Wenyin Fu, Brian Fuller,
Cynthia Gao, Vedanuj Goswami, Naman Goyal, An-
thony Hartshorn, Saghar Hosseini, Rui Hou, Hakan
Inan, Marcin Kardas, Viktor Kerkez, Madian Khabsa,
Isabel Kloumann, Artem Korenev, Punit Singh Koura,
Marie-Anne Lachaux, Thibaut Lavril, Jenya Lee, Di-
ana Liskovich, Yinghai Lu, Yuning Mao, Xavier Mar-
tinet, Todor Mihaylov, Pushkar Mishra, Igor Moly-
bog, Yixin Nie, Andrew Poulton, Jeremy Reizen-
stein, Rashi Rungta, Kalyan Saladi, Alan Schelten,
Ruan Silva, Eric Michael Smith, Ranjan Subrama-
nian, Xiaoqing Ellen Tan, Binh Tang, Ross Tay-
lor, Adina Williams, Jian Xiang Kuan, Puxin Xu,
Zheng Yan, Iliyan Zarov, Yuchen Zhang, Angela Fan,
Melanie Kambadur, Sharan Narang, Aurélien Ro-
driguez, Robert Stojnic, Sergey Edunov, and Thomas
Scialom. 2023. Llama 2: Open foundation and fine-
tuned chat models. CoRR, abs/2307.09288.

Fanqi Wan, Xinting Huang, Tao Yang, Xiaojun Quan,
Wei Bi, and Shuming Shi. 2023. Explore-instruct:
Enhancing domain-specific instruction coverage
through active exploration. In Proceedings of the
2023 Conference on Empirical Methods in Natural
Language Processing, EMNLP 2023, Singapore, De-
cember 6-10, 2023, pages 9435–9454. Association
for Computational Linguistics.

Lei Wang, Wanyu Xu, Yihuai Lan, Zhiqiang Hu,
Yunshi Lan, Roy Ka-Wei Lee, and Ee-Peng Lim.
2023a. Plan-and-solve prompting: Improving zero-
shot chain-of-thought reasoning by large language
models. arXiv preprint arXiv:2305.04091.

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc V.
Le, Ed H. Chi, Sharan Narang, Aakanksha Chowd-
hery, and Denny Zhou. 2023b. Self-consistency
improves chain of thought reasoning in language
models. In The Eleventh International Conference
on Learning Representations, ICLR 2023, Kigali,
Rwanda, May 1-5, 2023. OpenReview.net.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, Brian Ichter, Fei Xia, Ed H. Chi, Quoc V. Le,

10

https://doi.org/10.48550/ARXIV.2311.04205
https://doi.org/10.48550/ARXIV.2311.04205
https://doi.org/10.18653/V1/N19-1423
https://doi.org/10.18653/V1/N19-1423
https://doi.org/10.18653/V1/N19-1423
https://proceedings.mlr.press/v162/huang22a.html
https://proceedings.mlr.press/v162/huang22a.html
https://proceedings.mlr.press/v162/huang22a.html
https://ojs.aaai.org/index.php/ICAPS/article/view/16016
https://ojs.aaai.org/index.php/ICAPS/article/view/16016
https://doi.org/10.48550/ARXIV.2404.17808
https://doi.org/10.48550/ARXIV.2404.17808
https://doi.org/10.48550/ARXIV.2404.17808
https://doi.org/10.1145/3394486.3406703
https://doi.org/10.1145/3394486.3406703
https://doi.org/10.1145/3394486.3406703
https://doi.org/10.1162/TACL_A_00564
https://doi.org/10.1162/TACL_A_00564
https://doi.org/10.18653/V1/2021.FINDINGS-EMNLP.184
http://papers.nips.cc/paper_files/paper/2023/hash/1b44b878bb782e6954cd888628510e90-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/1b44b878bb782e6954cd888628510e90-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/1b44b878bb782e6954cd888628510e90-Abstract-Conference.html
https://doi.org/10.48550/ARXIV.2307.09288
https://doi.org/10.48550/ARXIV.2307.09288
https://aclanthology.org/2023.emnlp-main.587
https://aclanthology.org/2023.emnlp-main.587
https://aclanthology.org/2023.emnlp-main.587
https://openreview.net/pdf?id=1PL1NIMMrw
https://openreview.net/pdf?id=1PL1NIMMrw
https://openreview.net/pdf?id=1PL1NIMMrw

2411

and Denny Zhou. 2022. Chain-of-thought prompt-
ing elicits reasoning in large language models. In
NeurIPS.

Wentao Wu, Hongsong Li, Haixun Wang, and
Kenny Qili Zhu. 2012. Probase: a probabilistic tax-
onomy for text understanding. In Proceedings of the
ACM SIGMOD International Conference on Manage-
ment of Data, SIGMOD 2012, Scottsdale, AZ, USA,
May 20-24, 2012, pages 481–492. ACM.

Yizhe Xiong, Hui Chen, Tianxiang Hao, Zijia Lin, Jun-
gong Han, Yuesong Zhang, Guoxin Wang, Yongjun
Bao, and Guiguang Ding. 2025. Pyra: Parallel yield-
ing re-activation for training-inference efficient task
adaptation. In European Conference on Computer
Vision, pages 455–473. Springer.

Yizhe Xiong, Xiansheng Chen, Xin Ye, Hui Chen, Zijia
Lin, Haoran Lian, Zhenpeng Su, Jianwei Niu, and
Guiguang Ding. 2024. Temporal scaling law for large
language models. arXiv preprint arXiv:2404.17785.

Xiaohan Xu, Chongyang Tao, Tao Shen, Can Xu,
Hongbo Xu, Guodong Long, and Jianguang Lou.
2023. Re-reading improves reasoning in language
models. CoRR, abs/2309.06275.

Chengrun Yang, Xuezhi Wang, Yifeng Lu, Hanxiao
Liu, Quoc V. Le, Denny Zhou, and Xinyun Chen.
2023. Large language models as optimizers. CoRR,
abs/2309.03409.

Yue Yang, Joongwon Kim, Artemis Panagopoulou,
Mark Yatskar, and Chris Callison-Burch. 2021. In-
duce, edit, retrieve: Language grounded multimodal
schema for instructional video retrieval. CoRR,
abs/2111.09276.

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak
Shafran, Karthik R. Narasimhan, and Yuan Cao. 2023.
React: Synergizing reasoning and acting in language
models. In The Eleventh International Conference
on Learning Representations, ICLR 2023, Kigali,
Rwanda, May 1-5, 2023. OpenReview.net.

Wenhao Yu, Dan Iter, Shuohang Wang, Yichong Xu,
Mingxuan Ju, Soumya Sanyal, Chenguang Zhu,
Michael Zeng, and Meng Jiang. 2023. Generate
rather than retrieve: Large language models are
strong context generators. In The Eleventh Inter-
national Conference on Learning Representations,
ICLR 2023, Kigali, Rwanda, May 1-5, 2023. Open-
Review.net.

Siyu Yuan, Jiangjie Chen, Ziquan Fu, Xuyang Ge, So-
ham Shah, Charles Robert Jankowski, Yanghua Xiao,
and Deqing Yang. 2023. Distilling script knowledge
from large language models for constrained language
planning. In Proceedings of the 61st Annual Meeting
of the Association for Computational Linguistics (Vol-
ume 1: Long Papers), ACL 2023, Toronto, Canada,
July 9-14, 2023, pages 4303–4325. Association for
Computational Linguistics.

Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan
Zhuang, Zhanghao Wu, Yonghao Zhuang, Zi Lin,
Zhuohan Li, Dacheng Li, Eric P. Xing, Hao Zhang,
Joseph E. Gonzalez, and Ion Stoica. 2023. Judg-
ing llm-as-a-judge with mt-bench and chatbot arena.
CoRR, abs/2306.05685.

Denny Zhou, Nathanael Schärli, Le Hou, Jason Wei,
Nathan Scales, Xuezhi Wang, Dale Schuurmans,
Claire Cui, Olivier Bousquet, Quoc V. Le, and Ed H.
Chi. 2023. Least-to-most prompting enables com-
plex reasoning in large language models. In The
Eleventh International Conference on Learning Rep-
resentations, ICLR 2023, Kigali, Rwanda, May 1-5,
2023. OpenReview.net.

11

http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html
https://doi.org/10.1145/2213836.2213891
https://doi.org/10.1145/2213836.2213891
https://doi.org/10.48550/ARXIV.2309.06275
https://doi.org/10.48550/ARXIV.2309.06275
https://doi.org/10.48550/ARXIV.2309.03409
https://arxiv.org/abs/2111.09276
https://arxiv.org/abs/2111.09276
https://arxiv.org/abs/2111.09276
https://openreview.net/forum?id=WE_vluYUL-X
https://openreview.net/forum?id=WE_vluYUL-X
https://openreview.net/pdf?id=fB0hRu9GZUS
https://openreview.net/pdf?id=fB0hRu9GZUS
https://openreview.net/pdf?id=fB0hRu9GZUS
https://doi.org/10.18653/V1/2023.ACL-LONG.236
https://doi.org/10.18653/V1/2023.ACL-LONG.236
https://doi.org/10.18653/V1/2023.ACL-LONG.236
https://doi.org/10.48550/ARXIV.2306.05685
https://doi.org/10.48550/ARXIV.2306.05685
https://openreview.net/pdf?id=WZH7099tgfM
https://openreview.net/pdf?id=WZH7099tgfM

2412

A Appendix

A.1 Prompt Template for Chain of Specificity
One Step

Prompt Template for Chain of Specificity One
Step

Definition:
- A “General Goal” refers to stereotypical activities, e.g.,
“make a cake”.
- A “specific constraint” is derived from the corresponding
general goal with various constraints, e.g., “make a
chocolate cake”.

Example:
- Input Prompt: {Brainstorm 3 innovative advertising ideas
for a new product launch targeting college students.}
- The “General Goal” is to "Brainstorm ideas for a product
launch", the “specific constraint” are "3 innovative
advertising ideas", "new product launch", and "targeting
college students".

Note:
- The "General Goal" and "specific constraint" MUST be
found from the raw prompt.
- The "General Goal" is a short sentence that highly covers
the main information required for input prompts.
- The "specific constraint" needs to be as detailed as
possible, and it must be found from the input prompt text.

Input Prompt:
{<input>}

Task:
- You will first generate as many answers as possible
based on the “General Goal” of the above Prompt. Then
generate specific, compatible with “specific constraint”
answers based the above Prompt.
- Repeat the following 2 steps several times.
Step 1. Identify 1 specific constraint from the Prompt
which is semantically missing from the previously
generated answer.
Step 2. Write a new answer which covers the new
identified specific constraint.
If you can’t find any other specific constraint, stop this
iteration.
- Based on all the previously contents generated for
the General Goal and specific constraints, you need to
generate the answer from the Input Prompt item by item.
Expand each item and introduce it in detail.

Guidelines:
- The first answer should semantically cover the General
Goal yet be highly non-specific. Generate as many an-
swers as possible by sub-pointing.
- Give specific and compatible answer that is suitable for
each specific constraints.
- The written answer should be well-structured, with a log-
ical flow of ideas and clearly defined sections or headings
for different components of the answer.

Prompt Template for Chain of Specificity One
Step

Output Format
Answer in JSON. The format is as follow:
{
"General Goal": _____,
"specific constraint1": _____,
"specific constraint2": _____,
...
"Answer": _____,
}

Contents in the _____ are all the raw text rather
than other formats. The value for the first key "General
Goal" is the answer for the general goal, and the values in
the middle are answers for different "specific constraints",
the final value for the key "Answer" is the answer
that generates results based on all previously contents
generated for the General Goal and specific constraints. In
the last element, "Answer" should be raw text separated
by numbers, each separated by a newline.

Table 12: The prompt template for chain-of-specificity-
one-step, where <input> are placeholder for the raw
input prompt.

A.2 Prompt Template for Chain of Specificity
multi Step

General Goal and Specific Constraints

STEP1:

Definition:
- The "General Goal" and "Specific Constraint" MUST
come from the Prompt content.
- A “General Goal” refers to stereotypical activities, e.g.,
“make a cake”. It is highly non-specific and does not
include any details.
- A “Specific Constraint” is derived from the corresponding
general goal with various constraints, e.g., “make a
chocolate cake”.
- Please find the specific constraints as detail as possible.

Example:
Prompt: {Brainstorm 3 innovative advertising ideas for a
new product launch targeting college students.}
- The “General Goal” is "Brainstorm ideas for a product
launch".
- The “Specific Constraints” are "3 innovative advertising
ideas", "new product launch", and "targeting college
students".

Input Prompt:
{<input>}

Answer in JSON. The keys of the json are "General Goal"
and "Specific Constraints". The value of "Specific Con-
straints" is a list that includes all the "Specific Constraints"
that you find from the Prompt content. Make sure the
"General Goal" and "Specific Constraints" are from the
Prompt content.

12

2413

General Goal and Specific Constraints

STEP2:

Please generate detailed answers for your found "General
Goal". The output should be as much elaborate as possible
and in raw text format. Please provide a point by point
description.

STEP3:

Based on your answers, I want to further emphasize on
the "<Specific_constrain>". Please regenerate the detailed
answer based on the former answers in text format. Please
provide a detailed point by point description and do not
respond any other content.

Table 13: The prompt template for chain-of-specificity-
multi-step, where <input> are placeholder for the raw
input prompt and <Specific_constrain>are the specific
constraints that detected in STEP1.

A.3 Prompt Template for Dataset
Construction

Prompt Modification and Reasoning

Guidelines
- You should create an appropriate and logical modified
prompt based on the input prompt.
- The response you generated should conform to the
following json format:
{
"Output1": {
"Input": ____,
"Modified": ____,
"Reason": ____,
},
"Output2": {
"Input": ____,
"Modified": ____,
"Reason": _____,
}
...
}
where "Input" is the input prompt, "Modified" is the
prompt after modification, and the "Reason" is the detailed
reason for why appending the constraints and what
background knowledge is behind the constraints.

Examples:
<Example1>
- Input: Render a 3D model of a house.
- Modified: Render a 3D model of a house for a senior
citizen.
- Reason: I append a constraint “for a senior citizen”. The
reasons are as follows: because when designing a house,
compared with normal young people, the elderly need
extra care, such as designing electric stairs.

Table 14: The prompt template for dataset construction.

Prompt Modification and Reasoning

<Example2>
- Input: Come up with possible solutions for improving
office productivity.
- Modified: Come up with possible solutions for improving
office productivity for a small startup.
- Reason: I append a constraint “for a small startup”. The
reasons are as follows: because the small startup doesn’t
have sufficient financial strength, so compared to large
companies, more CoSt-effective methods are needed to
improve office productivity.
<Example3>
- Input: Identify methods to decrease absenteeism and
improve employee engagement.
- Modified: Identify methods to decrease absenteeism
and improve employee engagement in a manufacturing
environment.
- Reason: I append a constraint “in a manufacturing
environment”. The reasons are as follows: Compared
with other industries, the manufacturing industry needs to
ensure the safety of employees and can use machines to
decrease absenteeism and improve employee engagement.

Input prompt
{<input_sentence>}

List one modified prompt examples of the above input
prompt. Please return the modified prompt examples
strictly in json format and do not output any other con-
tent.

Table 15: The prompt template for dataset construction.

A.4 Overall Scores Evaluation Prompt
Template

Model Output Evaluation and Rating

Definition
- The "General Goal" and "Specific Constraint" MUST
come from the Prompt content.
- A “General Goal” refers to stereotypical activities, e.g.,
“make a cake”. It is highly non-specific and does not
include any details.
- A “Specific Constraint” Is derived from the corresponding
general goal with various constraints, e.g., “make a
chocolate cake”.

Example
- Input Prompt: {Brainstorm innovative advertising ideas
for a new product launch targeting college students.}
- The “General Goal” is "Brainstorm ideas for a product
launch",
- The “Specific constraints” are "innovative advertising
ideas", "new product launch", and "targeting college
students".

Table 16: Model Output Evaluation and Rating Tem-
plate.

13

2414

Model Output Evaluation and Rating

Scoring rules
- 1 point: The output result does not understand the general
goal, or contains overt factual inaccuracies or errors.
- 2 points: The output result understands the general goal.
If there is specific constraint in the input prompt, it does
not understand any specific constraint.
- 3 points: The output result understands the general goal
and addresses some aspects of the specific constraints. But
it still misses some specific constraints, or the generation
content are general and can be applied into many other
domains. For example, for specific constraint “college
students”, the answers doesn’t mention characteristics
about college students, such as “campus”, “energetic”.
- 4 points: The output result understands the general goal
and all the specific constraints. The level of understanding
is thorough, but the response might not demonstrate deep,
comprehensive background knowledge or context for
each specific constraint. The response is practical and
aligned with the constraints but lacks in-depth insight or
innovative suggestions.
- 5 points: The response understands the general and spe-
cific constraints, demonstrating an in-depth understanding
of the background knowledge related to each constraint.
It showcases a deep, comprehensive understanding and
seamlessly incorporates the background knowledge into
context, ensuring solutions are practical and perfectly
aligned with any constraints or challenges.
- If there is no specific constraint in the input prompt, only
need to evaluate whether the output result contains more
semantically information about the general goal. The
more semantically related, the larger score should be given.

Input
The input prompt is:
{<input>}
The output of a model is:
{<output>}

Please output in the JSON format, the keys of the json are
“General goal”, “Specific constraints”, “Reason”, “Score”,
where the “General goal” and “Specific constraints” are
“General goal” and “Specific constraints” that you find
from the raw input prompt. "Reason" is the detailed reason
why you think the model understands the “General goal”
and “Specific constraints” to the extent that it does. "Score"
is the score that you rate the level of model understanding
based on the reasons.

Table 17: Model Output Evaluation and Rating Tem-
plate.

A.5 Pairwise Evaluation Prompt Template

AI Assistants Performance Feedback on Specific
Constraints

Definition
- The "General Goal" and "Specific Constraint" MUST
come from the Prompt content.
- A “General Goal” refers to stereotypical activities, e.g.,
“make a cake”. It is highly non-specific and does not
include any details.
- A “Specific Constraint” Is derived from the corresponding
general goal with various constraints, e.g., “make a
chocolate cake”.
- Please find the specific constraints as detail as possible.

Example
- Input Prompt: {Brainstorm innovative advertising ideas
for a new product launch targeting college students.}
- The “General Goal” is "Brainstorm ideas for a product
launch",
- The “Specific constraints” are "innovative advertising
ideas", "new product launch", and "targeting college
students".

Input
- The input prompt is:
{<input_prompt>}
- The response of Assistant 1 is:
{<output1>}
- The response of Assistant 2 is:
{<output2>}

Guideline
- Please evaluate the level of understanding all the
"Specific constraints" in the input prompt. A higher level
of understanding indicates the response covers more
background knowledge about every "Specific constraint"
in the input prompt. For example, when the input prompt
contains Specific constraint "small businesses", if the
response contains background knowledge such as "spend
less money", this AI assistant has a higher level of
understanding.
- Please first find the "General goal" and "Specific
constraints" in the input prompt.
- Then, provide a comparison of the level of understanding
of all the "Specific constraints" in the input prompt
between Assistant 1 and Assistant 2, and you need to
clarify which one is better than or equal to another.
- In the last line, order the two assistants. Please output a
single line ordering Assistant 1 and Assistant 2, where ‘>’
means ‘is better than’ and ‘=’ means ‘is equal to’. The
order should be consistent with your comparison. If there
is no comparison that one is better, it is assumed they
have equivalent (‘=’) understanding of all the "Specific
constraints". Please make sure there can only be ’>’ or ’=’
between two assistants, and other results such as ’<’ or
’>=’ are not allowed.

Note
- Avoid any potential bias.
- Ensure that the length or the number of ideas in which the
responses were presented does not affect your judgment.

Table 18: AI Assistants Performance Feedback on Un-
derstanding Specific Constraints.

14

2415

AI Assistants Performance Feedback on Specific
Constraints

Note
- Pay attention to the understanding of the background
knowledge from the "Specific constraints".

Table 19: AI Assistants Performance Feedback on Un-
derstanding Specific Constraints.

A.6 Case Study

Please refer to Table 20 for several typical cases.
We could observe that the proposed CoS could
respond with more underlying knowledge about
the mentioned specific constraints.

A.7 The Details About the Automatic
Evaluation

In order to avoid the bias from the order of inputs
in the evaluation prompt, we switch the order of
the two responses and request GPT-4 to generate
results twice, and then average the two experimen-
tal results. For instance, if a response results are
win and lose on two assessments, respectively, the
average result of this response is tie.

A.8 The Details About the Distilling
Experiment

We used the publicly available checkpoints of
Vicuna-13b (Zheng et al., 2023) and Llama2-Chat-
13b (Touvron et al., 2023) on Huggingface. We
also use Deepspeed ZeRO stage 2 (Rasley et al.,
2020) and BFloat16 mixed precision techniques
to optimize memory usage and accelerate training.
The training was conducted with a batch size of
32, a learning rate of 1e-5, and a maximum length
setting of 2,048 tokens. All models were trained
on 8 Tesla A100-80G GPUs.

A.9 The Details About the Human Evaluation
Process

To ensure a comprehensive and unbiased evalua-
tion, we randomly selected 100 ConstrainSPEC
samples for human assessment. We recruited three
professional, full-time Chinese annotators for this
task. Prior to the evaluation, we provided detailed
guidelines outlining the concepts of "general goal"
and "specific constraint" and conducted central-
ized training for the annotators. The annotators
were instructed to: (1) assign a general score to
each response using the same criteria as the auto-
matic evaluation; and (2) compare responses from

two methods for the same instruction, determin-
ing which model performed better (win, tie, or
lose). To eliminate bias, the model identities were
anonymized, and the annotators were kept unaware
of the source of each response. All annotators had
passed the CET-6 exam. Additionally, they were
instructed to use Google Translate to convert the
English responses into Chinese to double-check
their judgments.

15

2416

Input Instruction Direct Prompt CoS-multi-step

Brainstorm ways to
improve employee

morale in a healthcare
setting.

1. Recognize and reward employees: Implement
a system to acknowledge and reward employees
for their hard work and dedication. ... 2. Offer
professional development opportunities: Provide
ongoing opportunities for employees to develop
and improve their skills. ... 3. Create a positive
work environment: Ensure that the workplace
is a comfortable and happy space by providing
ergonomic furniture, etc. ..

1. Address staffing issues: Ensure appropri-
ate staff-to-patient ratios to reduce stress and
burnout. ... 2. Safe work environment: Em-
phasize the importance of safety protocols and
equipment. ... 3. Cross-training opportunities:
Encourage and offer cross-training opportunities
for healthcare employees to learn new skills, etc.
...

Provide three examples
of creative

brainstorming
techniques to employ
when ideating new

product concepts for a
sustainable energy

startup.

1. Mind Mapping: This technique involves cre-
ating a visual representation of ideas, themes,
and connections related to sustainable energy
products. ... 2. SCAMPER Method: SCAM-
PER is an acronym for Substitute, Combine,
Adapt, Modify, Put to another use, Eliminate,
and Reverse. ... 3. Brainwriting: Instead of
traditional verbal brainstorming, the brainwrit-
ing technique allows for more introverted team
members to contribute and ensures everyone’s
ideas are heard. ...

1. Brainwriting for a sustainable energy startup:
Participants think of new product ideas that cater
to sustainability and renewable energy technol-
ogy. ... 2. Mind Mapping for a sustainable
energy startup: With the sustainable energy prob-
lem as the central circle, participants outline
subtopics that relate explicitly to the challenges
and opportunities faced by such startups. ... 3.
Rolestorming for a sustainable energy startup:
Assign roles to participants that directly relate to
the eCoSystem of a sustainable energy startup.
...

Table 20: The case study experiment. The specific constraints are in red and the relevant responses are in green.

16

	Introduction
	Related Work
	LLMs under Constrained Situations
	Methods under Constrained Situations

	Method
	Preliminary
	Chain of Specificity (CoS)

	ConstrainSPEC with More Specific Constraints
	Pilot Experiment
	Dataset Construction
	Dataset Analyse

	Distilling to Smaller Models
	Experiment
	Baseline
	Automatic Evaluation
	Human Evaluation

	Conclusion
	Appendix
	Prompt Template for Chain of Specificity One Step
	Prompt Template for Chain of Specificity multi Step
	Prompt Template for Dataset Construction
	Overall Scores Evaluation Prompt Template
	Pairwise Evaluation Prompt Template
	Case Study
	The Details About the Automatic Evaluation
	The Details About the Distilling Experiment
	The Details About the Human Evaluation Process

