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Abstract

Fine-grained intent detection involves identify-
ing a large number of classes with subtle varia-
tions. Recently, generating pseudo samples via
large language models has attracted increasing
attention to alleviate the data scarcity caused
by emerging new intents. However, these meth-
ods generate samples for each class indepen-
dently and neglect the relationships between
classes, leading to ambiguity in pseudo sam-
ples, particularly for fine-grained labels. And,
they typically rely on one-time generation and
overlook feedback from pseudo samples. In
this paper, we propose an iterative differential
generation framework with contrastive feed-
back to generate high-quality pseudo samples
and accurately capture the crucial nuances in
target class distribution. Specifically, we pro-
pose differential guidelines that include poten-
tial ambiguous labels to reduce confusion for
similar labels. Then we conduct rubric-driven
refinement, ensuring the validity and diversity
of pseudo samples. Finally, despite one gener-
ation, we propose to iteratively generate new
samples with contrastive feedback to achieve
accurate identification and distillation of target
knowledge. Extensive experiments in zero/few-
shot and full-shot settings on three datasets ver-
ify the effectiveness of our method.

1 Introduction

Fine-grained intent detection is becoming a vital
task with the development of human-machine inter-
action through natural language. It has wide appli-
cations in various tasks including dialogue systems
(Louvan and Magnini, 2020), search engines (Shi
et al., 2023) and question answering systems (Li
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Figure 1: Illustration of different paradigms of LLM-
driven generation methods.

et al., 2023). Many works (Weld et al., 2023) lever-
age massive human-labeled samples to train intent
detection models for the correct recognition from
a large number of similar classes. In real-world
applications, new classes, particularly more fine-
grained ones emerge rapidly and constantly as data
volume grows. However, collecting large-scale
and high-quality samples via the crowdsourcing
is challenging and costly, inevitably resulting in
data scarcity. Thus, research on intent recognition
in low-resource scenarios has attracted increasing
attention (Zhang et al., 2021; Lin et al., 2023).

Recently, few-shot learning has been proposed
to solve the data scarcity issue. There are three
main groups of methods: fine-tuning methods (Liu
et al., 2023), meta-learning methods (Gharoun
et al., 2024), and data augmentation methods (Chen
et al., 2023b). The first two methods typically re-
quire complex algorithmic design and are hard to
be applied directly. On the contrary, data augmen-
tation provides an interpretable alternative to con-
trol the process of learning target patterns by inte-



2208

grating massive external knowledge. In this paper,
we focus on data augmentation methods. Some
traditional augmentation methods (Wei and Zou,
2019; Guo et al., 2022) rely on manipulation of the
original samples or use specific formats, such as
sketches, as proxies to create augmented samples,
which enhance model robustness. However, their
effectiveness in low-resource scenarios, where tar-
get knowledge is limited, remains unclear. With the
development of generative large language models
(LLMs) (Brown et al., 2020; OpenAI, 2023a; Tou-
vron et al., 2023a), some studies (Ye et al., 2022;
Lin et al., 2023) leverage the general extensive
knowledge in LLMs to generate pseudo samples,
and then fine-tune much smaller language models
(SLMs) to perform efficient inference, as shown in
Figure 1(a). However, these methods generate sam-
ples for each label independently without consider-
ing the target class distribution, thus causing con-
fusing and incorrect class boundaries, particularly
when dealing with a large number of fine-grained
classes. Additionally, they typically perform one-
way knowledge distillation from LLMs to SLMs
and neglect feedback from SLMs on potential pat-
tern bias in LLMs, failing to capture correct target
class distribution.

To alleviate these issues, we propose an iterative
differential generation framework with contrastive
feedback to generate high-quality pseudo samples
for fine-grained intent detection, as illustrated in
Figure 1(b). Firstly, to alleviate confusion caused
by similar classes, we design differential prompts
to guide the large language model to capture dif-
ferences among target classes, enabling the model
to further discern confusing classes. Then, we pro-
pose the rubric-driven refinement policy to improve
the validity and diversity of generated samples,
which is crucial for selecting useful pseudo samples
and reducing noise. Unlike one-time generation
methods, our approach incorporates iterative gen-
eration by integrating contrastive feedback. This
helps rectify biases in the large language model
and reduces repetition, thereby improving genera-
tion efficiency. We conduct extensive experiments,
comparing our method with 18 baseline approaches
across three intent datasets. Compared to special-
ized low-resource intent detection and traditional
data augmentation methods, our approach achieves
19%–26% improvements in the zero-shot setting.
Additionally, when compared to LLM-driven aug-
mentation methods, our method outperforms even
those that use generative models eight times larger.

The contributions of this paper are as follows:
(1) We propose differential guidelines to guide gen-
eration for fine-grained intents, clearing up con-
fusion caused by similar labels. And we design
rubric-driven refinement policy to improve sample
validity and diversity. (2) We introduce iterative
generation with contrastive feedback for integrating
dual-influence between LLMs and SLMs, which
helps distill target knowledge correctly. (3) To ver-
ify the effectiveness of our approach, we conduct a
series of experiments on three datasets. The empir-
ical study shows that our model can achieve better
performance than other strong baselines.

2 Related Work

2.1 Intent Detection

Intent detection (Weld et al., 2023) is an impor-
tant task of recognizing the underlying main pur-
pose or goal behind user utterances. Many stud-
ies (Qin et al., 2019; Zhang et al., 2019) have
achieved promising results through supervised fine-
tuning with abundant annotated high-quality utter-
ances. The increase in new intents, particularly
fine-grained ones, leads to data scarcity. To alle-
viate the heavy burden of labeling data, few-shot
learning methods (Song et al., 2023) are proposed.
Popular meta-learning methods are well studied
(Finn et al., 2017; Snell et al., 2017; Dopierre et al.,
2021; Zhang et al., 2023). However, the number
of labels in each episode is small, making it much
easier than in real scenarios where the label space
is large. Other works focus on pre-training general-
ized intent-aware encoders using a large dialogue
corpus (Yang et al., 2020b; Henderson et al., 2020;
Mehri et al., 2020). Additionally, some studies
transfer multi-classification into binary textual en-
tailment task (Zhang et al., 2020) and integrate
contrastive learning (Zhang et al., 2021).

2.2 Data Augmentation

Data augmentation is a direct approach for lim-
ited data scenarios by constructing new data sam-
ples (Chen et al., 2023b). Augmented samples can
be produced from limited labeled data using pre-
defined policies and then directly applied to super-
vised learning (Wei and Zou, 2019; Lin et al., 2023).
They can also be utilized in a semi-supervised set-
ting for unlabeled data through consistency training
(Xie et al., 2020; Chen et al., 2023a). We focus
on the former approach, as large amounts of un-
labeled samples are not always available. Based



2209

Intent Relationship

Labeled Samples

Ambiguous Intent Set

…

Consider the differences between the following two 
intents. Analyze and list their differences first. 
Then write…
{intent}:{exp}. Examples:…
{sim_intent}:{sim_exp}. Examples:…

Differential  Prompt

Differential Guidelines Clarify Ambiguity

Generated 
Samples

Contrastive 
Feedback

Rubric-Driven Refinement

Pseudo Data 𝒟!

(𝑥"#, 𝑦"#) (𝑥$#, 𝑦$#)…
𝑓!"#$%$&' = 1

A pseudo sample (𝑥"#, 𝑦"#), its intent candidate set 𝒮"

𝑥"#, 𝒮"
Large language model 𝑔%

)𝑦"# 𝑦"# 𝑓!"#$%$&' = 0

✓

✗
Validity Refinement

𝑓%$!()*$&' = 1
Pseudo samples 𝑥"#, 𝑦"# and 𝑥$#, 𝑦$#

𝑥"#, 𝑥$# 𝜏
𝑓%$!()*$&' = 0

✓

✗
Rouge-L

𝒟&𝒟'
paraphrase

Diversity Refinement

Generated Samples

Below are some examples of preferred and not
preferred utterances for…. Preferred samples are
more challenging, while not preferred samples are
repetitions from prior generated examples. Identify
key traits of preferred and not preferred utterances.
Then create ten examples of preferred utterances…
Preferred: {positive}…
Not preferred: {negative}…

Contrastive Feedback Improves Iterative Generation

LLM

Rouge-L

Negative Samples

Positive Samples

SLM

Iterative 
Generation

Figure 2: Illustration of our proposed method.

on the granularity of transformations, the meth-
ods are divided into token-level and sentence-level
augmentation. Token-level methods (Wei and Zou,
2019; Gao et al., 2019; Karimi et al., 2021) replace,
insert, swap or delete words randomly by leverag-
ing prior knowledge, like WordNet (Kolomiyets
et al., 2011). Sentence-level methods focus on con-
ditional generation (Yang et al., 2020a; Guo et al.,
2022) to generate sentences. However, they are of-
ten limited by external knowledge sources or addi-
tional training paradigms, restricting both the qual-
ity and quantity of synthetic samples, especially
in extreme low-resource scenarios like zero-shot
settings. Recently, the surge of powerful general-
ist large language models (Touvron et al., 2023a;
OpenAI, 2023b) has made it possible to synthesize
datasets from scratch. Some studies (Sahu et al.,
2023; Lin et al., 2023) involve prompting large
language models with well-crafted constraints to
generate pseudo samples.

2.3 Knowledge Distillation

Tuning a smaller target language model with re-
sponses generated by the leading large language
model can be viewed as knowledge distillation
(Hinton et al., 2015; Xu et al., 2024). The us-
age of smaller-sized models with comparable per-
formance not only allows low latency require-
ments but also achieves cost-effective deployments.
Knowledge distillation aims to enable the small
student model to simulate the behavior of large
teacher model by matching their output distribu-
tion. The common objective is to minimize the

Kullback-Leibler divergence between the teacher
and student distribution (Wen et al., 2023; Liang
et al., 2023). Unlike these methods, in addition to
distilling knowledge from the teacher to the student,
we use feedback from the student to guide the next
generation of the teacher. We focus on accurately
identifying and transferring relevant target domain
knowledge from the large teacher model into the
smaller student model.

3 Methodology

3.1 Problem Formulation
We study the low-resource fine-grained intent de-
tection problem, characterized by a large number
of classes with significant similarities and only a
handful of labeled samples per class. Specifically,
we use C to represent the set of classes, with each
class having a label name c. The limited labeled
sample set is denoted as Dt = {(xi, yi)}ni=1, where
xi is the user utterance, yi is its corresponding la-
bel, and n is the number of samples. The objective
is to predict the labels of test samples from the
test set Dtest = {xj}mj=1, where m ≫ n. For
the low-resource scenarios, we consider two practi-
cal scenarios. (1) In the zero-shot setting, starting
with only a given set of class names, there are no
labeled samples available during training. In our
experiments, we leverage the class names as la-
beled samples to construct Dt. (2) In the few-shot
setting, there are k annotated real samples for each
class, i.e., k-shot, thus n = |C| × k. To enhance
the performance on the target test set, we aim to
generate a set of diverse and high-quality utterance-
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intent pairs Dg = {(x′i, y′i)}li=1 with a powerful
large language model gs and then use Dg ∪ Dt to
fine-tune a smaller language model gt.

3.2 Differential Guidelines Clarify Ambiguity
Ambiguous Class Discovery Identifying the dif-
ferences among classes is crucial for model to al-
leviate confusion and distinguish similar intents.
For example, the model confidently distinguishes
between card arrival and card linking. How-
ever, it may struggle with ambiguity between card
arrival and card delivery estimate, generat-
ing similar utterances for both, which can result
in a failed class boundary. Therefore, we focus on
the set of potentially ambiguous intents that are
prone to misclassification. Determining ambiguous
neighbors in low-resource scenarios is challeng-
ing. Here, we define ambiguous classes from two
perspectives, as illustrated in Figure 2. First, they
arise from the true target data distribution, indicated
by the similarities among limited training samples.
Second, they come from the generated samples
by the large language model. If synthetic samples
from different classes are similar, it suggests that
the generation model is confused by these classes.
Therefore, we must focus on identifying their dif-
ferences to clearly distinguish them. Specifically,
we generate samples with vanilla prompts, and se-
lect potential ambiguous intents according to the
similarities of them. For an intent c, we define the
set of ambiguous classes Ac, as the k1 and k2 most
similar classes from first and second perspectives
respectively:

Ac= argmin
{c1,...,ck1}

d(pci ,pc)∪argmin
{c1,...,ck2}

d(p′
cj ,p

′
c) (1)

where pc represents the average sentence embed-
dings of labeled samples, p′

c represents the average
embeddings of generated samples for intent c, and
d(, ) is the Euclidean distance.
Differential Guideline Construction To aid
the model in differentiating between ambiguous
classes, we construct a set of differential class
guidelines for producing discriminative samples.
Specifically, for each class c ∈ C, we randomly
select a potentially confused class c′ ∈ Ac. For
each pair of ambiguous classes (c, c′), we force
the model to first explain the distinct characters
between them and then generate pseudo utterances.
As shown in Figure 2, we also include the defini-
tion of intents and provide several examples in the
prompts when labeled data is available. We use the

Dc′
c as the generated samples for the ambiguous

pair (c, c′). The class-differential samples for class
c is Dc = ∪c′∈AcDc′

c , which contains all the infor-
mation required to distinguish class c from other
ambiguous classes. Then we obtain the differential
pseudo data D0 = ∪c∈CDc.

3.3 Rubric-Driven Refinement

During the data generation process, we observe
that the generated sentences often exhibit signifi-
cant repetition in both vocabulary and syntax, as
shown in Appendix A. This redundancy not only
reduces generation efficiency but also introduces
shortcuts, causing the model to memorize biased
knowledge and produce skewed class boundaries.
To address this, we design two rubrics to refine
synthetic utterances, ensuring data validity and in-
creasing diversity, as depicted in Figure 2. Validity
ensures that generated examples accurately corre-
spond to target labels, while diversity helps the
model perform more robustly and generalize better.
Validity Refinement A faithful generated utter-
ance should preserve the semantics of its label with-
out hallucinating content about other similar intents.
Large language models are well-suited for this task,
as they have performed promising zero-shot capa-
bilities in various domains. Hence, we prompt the
large language model to verify the validity of gen-
erated samples. Specifically, for each generated
example (x′i, y

′
i), we use sentence encoders to re-

trieve the nearest kc labels to construct a candidate
set Si, and classify the sample accordingly. This
approach allows us to discard sentences where the
given label and the predicted label are inconsistent:

fvalidity(x
′
i, y

′
i) = 1

{
gs(x

′
i,Si) = y′i

}
, (2)

where x′i = gs(y
′
i) is the generated sample con-

ditioned by the target label y′i, and gs is the large
language model.
Diversity Refinement The high-quality corpus
involves more than just generating valid utterance-
label pairs and it is essential that the corpus en-
compasses a wide variety of styles. The diversifica-
tion of data directly associate with the robustness
and generalization of the trained model (Rebuffi
et al., 2021), particularly in tasks like intent detec-
tion, where user expressions exhibit considerable
variation (Liu et al., 2019a). To remove the dupli-
cate samples, which may lead the model to adopt
shortcut learning strategies, we employ the rubric
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Dataset #Classes Text Len. Vocab. Size #Train/Valid/Test Samples

BANKING77 (Casanueva et al., 2020) 77 11.8 2993 8622 / 1540 / 3080
HWU64 (Liu et al., 2019b) 64 6.6 5056 8954 / 1076 / 1076
CLINC150 (Larson et al., 2019) 150 8.3 6473 15000 / 3000 / 4500

Table 1: Dataset statistics. Text Len. denotes the average text length. Vocab. Size denotes the vocabulary size.

fdiversity to filter them:

fdiversity(x
′
i, x

′
j)=1

{
Rouge-L(x′i,x

′
j)<τ

}
, (3)

where Rouge-L (Lin, 2004) measures the overlap
between generated samples x′i and x′j , and τ is
the threshold. To further increase diversity, we
leverage the large language model as a rewriter to
paraphrase the valid and filtered samples. Then, we
obtain the enhanced dataset Dd = Df ∪Dp, where
Df is the filtered dataset consisting of samples from
D0 that simultaneously satisfy both fvalidity and
fdiversity, and Dp is the paraphrased dataset.

3.4 Contrastive Feedback Improves Iterative
Generation

Instead of one-time generation, we propose a bi-
directional iterative generation with contrastive
feedback, forming an effective loop to produce
correct and diverse target-related samples. The
contrastive feedback consists of positive and nega-
tive samples for each class generation. Specifically,
positive samples are those both representative and
confusing samples. Representative samples closely
match the target distribution, and confusing sam-
ples are those that the small language model strug-
gles to identify correctly. We select the limited
truly labeled samples, along with generated exam-
ples that are closest to these labeled samples, as
the pseudo test data, and use the remaining data to
train the small language model. Those samples that
are misclassified or have high entropy scores in the
pseudo test set are selected as positive samples, re-
flecting the incorrect patterns in the small language
model, thus guiding the large language model to
address such patterns. For the negative samples, we
select the samples with high Rouge-L score in Sec-
tion 3.3 to reduce duplication, thus enhancing the
generation effectiveness and diversity. The details
about feedback can be found in Appendix B.

3.5 Training and Inference
After iterative generation, we obtain diverse syn-
thetic samples and then fine-tune the small lan-
guage models using cross-entropy loss. During

training in few-shot and full-shot settings, we first
train the encoder and classifier using synthetic sam-
ples. Then, we re-initialize the classifier and fine-
tune the model with truly labeled target samples,
achieving better performance than direct training.
During inference, we select the label with the high-
est predicted score.

4 Experimental Setup

4.1 Datasets

We follow (Lin et al., 2023) to conduct experiments
on three intent classification datasets: BANK-
ING77, HWU64 and CLINC150. Table 1 reports
detailed statistics. Note that in the few-shot set-
ting, for each class, we randomly sample k samples
from the training split as the training data, and in
the zero-shot setting, k equals 0.
BANKING77 (Casanueva et al., 2020) is a fine-
grained intent dataset in the banking domain, con-
taining customer service queries spanning 77 fine-
grained intents. There are similar categories and
overlaps among them, like reverted top-up versus
failed top-up.
HWU64 (Liu et al., 2019b) consists of user utter-
ances from a real-world home robot covering 64
intents from 21 domains. There are similar intents
within each domain, such as set calendar versus
query calendar.
CLINC150 (Larson et al., 2019) comprises 22,500
samples labeled with 150 intents. The utterances
span 10 domains and are evenly distributed across
each intent.

4.2 Baselines

We compare our proposed method with 18
strong baselines, which consist of eight spe-
cialized low-resource intent detection methods,
six traditional data augmentation methods and
four latest LLM-driven augmentation methods.
Specialized low-resource intent detection meth-
ods include (1) RoBERTa-Base and RoBERTa-
Large (Liu et al., 2019c), (2) USE (Yang et al.,
2020b), (3) CONVERT(Henderson et al., 2020),
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Methods BANKING77 HWU64 CLINC150

0-shot 5-shot 10-shot 0-shot 5-shot 10-shot 0-shot 5-shot 10-shot

RoBERTa-Base 33.41 74.04 84.27 45.86 75.56 82.90 27.04 87.99 91.55
RoBERTa-Large 35.33 78.99 86.08 47.43 74.44 84.11 29.78 89.89 93.56
USE 42.79 76.29 84.23 46.43 77.79 83.75 44.51 87.82 90.85
CONVERT 37.23 75.32 83.32 43.95 76.95 82.65 43.53 89.22 92.62
USE+CONVERT 45.22 77.75 85.19 49.04 80.01 85.83 51.98 90.49 93.26
CONVBERT 30.64 74.27 83.63 44.67 77.70 83.77 49.25 90.07 92.10
CONVBERT+MLM 30.81 74.42 83.99 43.83 78.81 84.52 49.73 90.16 92.75
DNNC 48.15 80.40 86.71 54.73 80.46 84.72 52.44 91.02 93.76
CPFT 48.63 80.86 87.20 55.41 82.03 87.13 53.11 92.34 94.18

BackTrans 37.36 76.14 85.67 51.39 76.93 83.71 41.30 88.65 91.79
EDA 37.15 73.02 84.42 53.82 76.83 84.48 31.23 87.29 92.21
AEDA 41.77 76.89 85.54 54.92 78.28 84.30 48.64 88.28 91.85
AMR-DA 40.41 74.46 84.85 54.66 78.40 84.43 49.14 88.58 91.35
SSMBA 30.38 72.36 83.86 42.74 74.97 83.04 25.63 86.87 91.34
GENIUS 37.17 75.01 84.03 55.34 77.60 84.45 47.59 88.31 91.73

ZeroGen 48.41 74.52 84.81 47.84 77.69 84.76 53.36 88.46 91.56
CoDa 58.12 79.72 85.98 59.34 78.69 85.02 66.08 90.41 92.08
PromptMix 75.37 81.43 86.13 74.55 81.91 85.20 74.27 91.68 92.10
ICDA-L - 83.90 89.12 - 81.97 86.94 - 92.41 94.73

Ours 75.26 84.41 89.67 75.05 82.54 87.51 75.63 93.20 94.75

Table 2: Intent detection accuracy (%) in zero-shot and few-shot settings on three datasets.

(4) USE+CONVERT (Casanueva et al., 2020),
(5) CONVBERT (Mehri et al., 2020), (6) CON-
VBERT+MLM (Mehri et al., 2020), (7) DNNC
(Zhang et al., 2020), and (8) CPFT (Zhang et al.,
2021). Traditional data augmentation methods
consist of (9) BackTrans (Ng et al., 2019), (10)
EDA (Wei and Zou, 2019), (11) AEDA (Karimi
et al., 2021), (12) AMR-DA (Shou et al., 2022),
(13) SSMBA (Ng et al., 2020), and (14) GE-
NIUS (Guo et al., 2022). Recent LLM-driven
augmentation methods contain (15) ZeroGen (Ye
et al., 2022), (16) CoDa (Evuru et al., 2024), (17)
PromptMix (Sahu et al., 2023), and (18) ICDA-
L (Lin et al., 2023). Note that ZeroGen uti-
lize GPT2-XL (Radford et al., 2019), CoDa use
Llama2-13B (Touvron et al., 2023b), PromptMix
use gpt-3.5-turbo (OpenAI, 2023a), and ICDA-
L use OPT-66B (Zhang et al., 2022) as the large
language model. Details about the baseline meth-
ods can be found at Appendix C.

4.3 Experiment Details

Evaluation Metric We follow (Lin et al., 2023)
to use accuracy to evaluate the performance in the

zero-shot, few-shot and full-shot settings.
Implementation Details For ambiguous intent
discovery, we use all-MiniLM-L6-v2 (Reimers
and Gurevych, 2019) to obtain utterance embed-
dings. We set k1 = 2, k2 = 3, kc = 5 and
τ = 0.6. To ensure a fair comparison, we fine-
tune the roberta-base (Liu et al., 2019c) for
classification by adding a linear layer, and apply
the same-sized model to the baselines, except for
RoBERTa-Large and ICDA-L. For these two meth-
ods, roberta-large is utilized as the encoder.
We use AdamW (Loshchilov and Hutter, 2019)
as the optimizer with learning rate of 1 × 10−5,
batch size of 16, and epoch of 40. We employ
Llama-3-8B-Instruct (Meta, 2024) as the large
language model. For data augmentation methods,
we generate 100 pseudo utterances for each class
in all settings.

5 Results and Analysis

5.1 Main Results

Tables 2 and 3 report the results for zero-shot, few-
shot and full-shot intent detection on BANKING77,
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Methods BANK. HWU. CLINC.

RoBERTa-Base 92.81 91.87 96.35
RoBERTa-Large 93.70 92.13 96.80
USE 92.81 91.25 95.06
CONVERT 93.01 91.24 97.16
USE+CONVERT 93.36 92.62 97.16
CONVBERT 92.95 90.43 97.07
CONVBERT+MLM 93.44 92.38 97.11

BackTrans 93.49 92.32 96.47
EDA 93.70 92.12 96.22
AEDA 93.99 92.17 96.43
AMR-DA 93.96 92.30 96.78
SSMBA 93.95 92.39 96.56
GENIUS 93.77 92.15 96.31

ZeroGen 93.62 92.24 96.54
CoDa 93.87 92.51 96.63
ICDA-L 94.42 92.57 97.12

Ours 94.84 92.97 96.70

Table 3: Intent detection accuracy (%) in the full-shot
setting on three datasets.

HWU64 and CLINC150 datasets. Some baseline
results are taken from (Lin et al., 2023) and we also
reproduce some baseline results. The top 1 results
are highlighted in bold.
Zero-Shot Evaluation During the training pro-
cess, we use label names as the labeled samples.
From the results in Table 2, we can make the fol-
lowing observations. Compared with all strong
baselines, our proposed method achieves competi-
tive results. For specialized low-resource intent de-
tection and traditional data augmentation methods,
our approach achieves 19%–26% improvements in
the zero-shot setting, as these methods rely solely
on limited supervision from label names and can-
not incorporate additional useful target knowledge.
While LLM-driven augmentation methods achieve
significant improvements in zero-shot settings, this
further verifies that the general knowledge stored in
LLMs helps alleviate data scarcity issues. The size
of LLMs affects the quality of generated samples,
with gpt-3.5-turbo performing significantly bet-
ter than Llama2-13B. However, our method, using
an 8B-sized model, achieves competitive results
with larger LLMs, demonstrating the high quality
of our generated samples.
Few-Shot Evaluation As illustrated in Table 2, our
method achieves the best performance compared

Model BANKING77 HWU64 CLINC150

0 5 0 5 0 5

Vanilla 65.31 77.91 66.71 78.93 68.10 91.02
+ Diff. 67.82 80.20 69.13 80.14 69.29 91.17
+ Rubric 72.28 81.46 73.45 81.07 73.10 91.66
+ Feed. 75.26 82.79 75.05 81.69 75.63 92.37
Ours 75.26 84.41 75.05 82.54 75.63 93.20

Table 4: Ablation study results in the 0-shot and 5-shot
settings on three datasets.

with all baselines, even those using larger language
models. Compared with the vanilla roberta-base
classification model, our model achieves 5%-10%
and 3%-5% improvements on three datasets in 5-
shot and 10-shot settings respectively. Also, our
method performs better than baselines with larger-
sized generative models and much more generated
samples like ICDA-L, improving generation effi-
ciency and reducing computation load. Further-
more, as the number of labeled samples increases,
the improvements of augmentation-based methods
upon specialized few-shot methods, like DNNC
and CPFT, diminish. Specialized few-shot meth-
ods offer effective algorithms, while augmentation
methods generate powerful pseudo-data; combin-
ing these complementary approaches may yield
better performance. In this paper, we focus on aug-
mentation methods and propose an effective policy.
Full-Shot Evaluation Table 3 compares our
method with other baselines in the full-shot setting,
i.e., fully labeled samples. From the results, we can
see that our method achieves better performance.
Additionally, as shown in Table 3, simple tradi-
tional data augmentation methods achieve com-
petitive performance compared with LLM-driven
augmentation. This is because the fully labeled
samples have abundant target knowledge and these
methods enhance the model robustness via intro-
ducing perturbation. This offers an alternative for
researchers, depending on their efficiency require-
ments and computational constraints.

5.2 Ablation Study

We conduct several ablation studies in 0-shot and
5-shot settings on three datasets to study the im-
portance of different components in our method.
Table 4 reports the results. For the vanilla gener-
ation (Vanilla), we directly prompt the large lan-
guage model. Then we gradually add differential
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Methods BANKING77 HWU64 CLINC150

Voc.↑ D-2↑ BLEU↓ Fid.↑ Voc.↑ D-2↑ BLEU↓ Fid.↑ Voc.↑ D-2↑ BLEU↓ Fid.↑

Full-Shot 2604 0.24 0.60 - 4654 0.37 0.32 - 5424 0.24 0.56 -
AMR-DA 3639 0.16 0.82 84.3 3598 0.22 0.70 83.3 6072 0.17 0.78 86.5
CoDa 2859 0.22 0.74 79.8 5820 0.32 0.65 73.7 6274 0.23 0.75 82.2
PromptMix 1673 0.20 0.72 80.3 3200 0.28 0.61 80.1 5223 0.21 0.70 82.5

Vanilla 2123 0.15 0.82 85.8 3944 0.29 0.64 90.0 6073 0.22 0.74 92.6
One-Gen 3367 0.21 0.69 81.0 6279 0.40 0.39 82.3 7966 0.31 0.56 86.5
Ours 3676 0.23 0.68 81.2 6884 0.42 0.42 80.9 9273 0.32 0.53 87.6

Table 5: Quantitative evaluation of diversity and fidelity of real and synthetic utterances in the 5-shot setting. Voc.
demotes vocabulary size, D-2 donates the bi-gram diversity and Fid. means fidelity.

prompts (+ Diff.), diversity and fidelity rubrics (+
Rubric), iterative feedback (+ Feed.), and training
strategy (Ours). From the results, we can see that
the customized differential prompts bring better
performance, especially in the zero-shot setting.
Also, the proposed refinement achieve promising
performance, verifying the effectiveness of our pro-
posed fidelity and diversity rubrics. Additionally,
by integrating iterative contrastive feedback, the
performance further increases. The last two lines
also verify the effectiveness of our training strategy.

5.3 Data Quality Analysis

We evaluate the quality of generated samples from
the diversity and fidelity aspect by using vocabulary
size (Voc.), bi-gram diversity (D-2) (Ippolito et al.,
2019), BLEU (Papineni et al., 2002) and fidelity
(Fid.) metrics. The vocabulary size is the num-
ber of different tokens of generated samples. And
for fidelity, we calculate the prediction accuracy
of generated utterances by using a roberta-base
model tuned on the fully labeled original train set
of each benchmark dataset. Table 5 shows the re-
sults of our method and baselines in the 5-shot
setting. We also report the results of fully labeled
train set (Full-Shot). From Table 5, we can ob-
serve that our method obtains larger vocabulary
size and D-2 as well as lower BLEU, which means
we create more diverse synthetic samples. Also,
our method achieves higher accuracy than other
strong baselines, showing the validity of our gener-
ated samples. Additionally, the differential guide-
lines and refinement (One-Gen) enhance the diver-
sity of utterances, compared to the vanilla genera-
tion (Vanilla), so does the contrastive feedback. We
note that the fidelity of Vanilla is higher because its
created samples are relatively simple and repeated

(a) Baseline (b) Ours

Figure 3: Visualization of true utterances from the
HWU64 dataset.

as shown by vocabulary size, bi-gram diversity and
BLEU scores. The four metrics demonstrate that
our method generates more diverse and valid target-
related utterances.

5.4 Visualization

To evaluate the learned class boundaries, we visu-
alize the true utterances using the model trained
on synthetic data. Figure 3 shows the visualization
of true utterances from the HWU64 dataset using
the PromptMix baseline and our model. We se-
lect twenty similar classes and visualize their true
samples from the train split. As depicted in Figure
3, the baseline exhibits overlaps among different
classes, while our method learns more discrimina-
tive features, resulting in clearer class boundaries.

5.5 Error Analysis

To show the ambiguous classes, we visualize the
prediction distribution in the test set in Figure 4.
Specifically, the value at position (i, j) in the ma-
trix represents the number of samples with the i-th
label that are predicted as the j-th label. The x-axis
represents the predicted labels, while the y-axis
corresponds to the ground truth labels. For bet-
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(a) Baseline (b) Ours

Figure 4: The prediction distribution for both the baseline and our method in the 5-shot setting on the HWU64
dataset. Darker colors indicate higher values.

ter visualization, we normalize the values. Ideally,
higher values along the diagonal and lower val-
ues elsewhere indicate better performance. Figure
4 shows the results of the roberta-base baseline
and our method in the 5-shot setting on HWU64
dataset. We observe that the baseline model ex-
hibits a significant number of misclassifications.
In contrast, our method achieves more accurate
predictions and significantly reduces ambiguity by
generating high-quality utterances. Additionally,
we list the ambiguous classes in Table 8, where it
is evident that our method further alleviates ambi-
guity among similar classes. Also, we observe rela-
tively lower performance for the music settings
and query calendar intents. Upon reviewing the
utterances for these two intents and their similar
classes, we find overlapping examples that require
substantial domain knowledge to differentiate.

6 Conclusion

In this paper, we propose a novel framework for
fine-grained intent detection. First, we leverage dif-
ferential prompts to help the large language model
capture distinctions between similar intents and
generate utterances that better align with the target
distribution. Next, we introduce the rubric-driven
refinement to enhance the diversity and fidelity of
synthetic data. We then employ iterative generation
with contrastive feedback to address biases in the
large language model, ensuring accurate identifi-
cation and distillation of target knowledge. Exten-
sive experiments on three datasets and comparisons
with 18 strong baselines indicate the effectiveness
of our method. In the future, we will explore multi-
label generation for the practical multi-label task.

Limitations

Our approach achieves good performance for fine-
grained intent detection in low-resource scenarios
by generating high-quality samples through the
large language model, while this work still has lim-
itations. As shown in Figure 4, although most class
errors are reduced, certain ambiguous classes con-
tinue to pose challenges, which require substantial
domain knowledge to differentiate. Moreover, dur-
ing the generation process, we generate an equal
number of pseudo samples for each class, as done
in many previous studies. However, this could be
a flawed assumption, and generating more sam-
ples for harder classes might improve generation
efficiency. Additionally, our method focuses on
single-label generation, without considering the
more practical multi-label classification. We leave
these limitations for further exploration and believe
that future work could compensate for them.
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Matthew Henderson, and Ivan Vulić. 2020. Efficient
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A Data Validity and Diversity

During the data generation process, we observe
that the generated sentences often exhibit signifi-
cant repetition in both vocabulary and syntax, while
human expressions in real-life conversations are di-
verse and rich. Table 6 shows the pseudo generated
samples in the 5-shot setting only with differential
prompts for the HWU64 dataset. We can obtain
that for the label remove alarm and hue light
dim iot, the repetition is serious. Additionally,
there are some noisy pseudo samples, such as the
last one for hue light dim iot in the Table 6.
To address these issues, we propose two rubrics to
refine them in Section 3.3. The refined data can be
found in Table 7. It is easy to find that our policy
significantly reduce the noises and increase diver-
sity of words and syntax structure, which ensures
the quality of the crafted dataset.

B Contrastive Feedback Construction

To guide the large language model in generating
preferable samples while avoiding errors and repe-
tition, we propose to construct contrastive feedback
that includes both positive and negative samples.
Positive samples are those that are both representa-
tive and confusing: representative samples closely
match the target distribution, while confusing sam-
ples are those that the small language model strug-
gles to identify correctly. We select limited true
labeled samples and the top 10 generated examples
closest to these labeled samples for each class as
the pseudo test data. In the zero-shot setting, we
use only the generated utterances. Then, we use
the remaining synthetic samples to fine-tune the
small language model. Note that in this process,
for true samples, we only have access to a hand-
ful of labeled training samples. After training and
inference, we identify the misclassified samples
and the top 10% with high entropy scores from
the correctly classified ones as positive examples.
Given an utterance xi, the entropy are calculated
as following:

h(xi) = −
|C|∑
j=1

pji log p
j
i , (4)

where |C| denotes the total number of intents, and
pji represents the probability that xi belongs to
the j-th intent, as predicted by the small language
model. For negative examples, we select samples
with Rouge-L score greater than 0.6 in Section 3.3.

C Detailed Baselines

We compare our proposed method with 18 strong
baselines, including 8 specialized low-resource in-
tent detection methods, 6 traditional data augmen-
tation methods and 4 latest LLM-driven augmenta-
tion methods. Here are detailed baseline methods.
(1) RoBERTa-Base uses roberta-base (Liu et al.,
2019c) as the encoder and adds a linear classifier
on top of it. RoBERTa-Large employs the same
method but uses roberta-large as the backbone.
(2) USE (Yang et al., 2020b), as a Universal Sen-
tence Encoder, is pre-trained on text from 16 lan-
guages and achieves promising performance in
many downstream tasks.
(3) CONVERT (Henderson et al., 2020) contains
dual sentence encoders pre-trained on conversa-
tional corpora. It can generate transferable features
for intent classification.
(4) USE+CONVERT (Casanueva et al., 2020) con-
catenates the frozen sentence representations from
both USE and CONVERT, then fine-tunes a multi-
layer perceptron on the combined features.
(5) CONVBERT (Mehri et al., 2020) is a BERT-
based model fine-tuned on a large open-domain
dialogue corpus that includes around 700 million
conversations.
(6) CONVBERT+MLM (Mehri et al., 2020) per-
forms additional self-supervised training using the
masked language modeling objective for each tar-
get dataset.
(7) DNNC (Zhang et al., 2020) is a discriminative
nearest neighbor classification model with a binary
classifier to find the best-matched training example
for a user query. It also leverages natural language
inference pre-training to further boost performance.
(8) CPFT (Zhang et al., 2021) is first pre-trained
on multiple intent datasets with the self-supervised
contrastive objective and then tuned on target sam-
ples with supervised contrastive learning.
(9) BackTrans (Ng et al., 2019) aims to augment
data by translating the original text into a second
language and then translating it back into English.
(10) EDA (Wei and Zou, 2019) includes four aug-
mentation operations: synonym replacement, ran-
dom insertion, random swap, and random deletion.
(11) AEDA (Karimi et al., 2021) involves only the
random insertion of punctuation marks into the
original sentences.
(12) AMR-DA (Shou et al., 2022) leverages the
Abstract Meaning Representation (AMR) graph of
text for data augmentation.
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Label: remove alarm Label: hue light dim iot

Cancel all alarms for tomorrow. Can you dim the lights a bit?
cancel all my alarms for the rest of the day Can you dim the lights in my entire house?
cancel all my weekend alarms Can you dim the lights in my house?
Cancel my 10 am alarm for tomorrow. Can you dim the lights in my living room?
Cancel my 9 pm alarm for tonight. Can you dim the lights in the dining room?
Cancel my alarm for the next 2 weeks. Can you dim the lights in the family room?
Cancel my alarm for the rest of the weekend. Can you dim the lights in the office?
Cancel my alarm for today. I’d like to adjust the light level in the dining room.

Table 6: Duplicated and noisy synthetic samples in the 5-shot setting on the HWU64 dataset.

Label: remove alarm

Cancel all my alarm notifications for the remainder of the day.
Don’t wake me up at 4:30 AM on weekends.
Remove my 7 am alarm.
Stop my alarm from ringing.
Take away the alarm for my daily meditation.
Discontinue the 7 am alarm notification.
Silence my early morning wake-up call.
Leave me undisturbed for the next day and a night.

Label: hue light dim iot

Tone down the brightness of the light to a more gentle ambiance.
Could you adjust the luminosity of the lights to a more subdued level?
Tone down the brightness of the light to a more gentle ambiance.
Dim the porch lights to a lower intensity.
Could you adjust the reading lamp’s intensity to a lower setting?
I’d prefer to decrease the light level in the bathroom to minimize reflections.
Lower the brightness in the study.
How do I dim the light in my bedroom?

Table 7: Refined synthetic samples in the 5-shot setting on the HWU64 dataset.

(13) SSMBA (Ng et al., 2020) first corrupts the
original sentence stochastically and then recon-
structs the perturbed example to obtain augmented
samples.
(14) GENIUS (Guo et al., 2022) uses sketches as
conditional input to fill in missing contexts for a
given sketch, thereby generating synthetic samples.
(15) ZeroGen (Ye et al., 2022) is among the pio-
neering studies that utilize the superior knowledge
embedded in large language models to create a
dataset from scratch.
(16) CoDa (Evuru et al., 2024), a constrained gen-
eration based data augmentation method, aims to
prompt an LLM with explicit constraints for syn-
thesizing novel and diverse instances.
(17) PromptMix (Sahu et al., 2023) instructs a

large language model to create new training sam-
ples by mixing information from various categories,
and prompts the LLM to relabel generated exam-
ples to enhance their accuracy. The model utilized
for this process is gpt-3.5-turbo.
(18) ICDA-L (Lin et al., 2023) intends to filter gen-
erated samples produced by large language models
using pointwise V-information to obtain helpful
and diverse synthetic samples. OPT-66B (Zhang
et al., 2022) is used as the language model to gener-
ate samples. The number of generated samples in
ICDA-L is significantly higher than in our method,
specifically 3x, 6x, and 2x more for the 5-shot,
10-shot, and full-shot settings, respectively. Since
the filtering process requires labeled data, ICDA-L
cannot be applied to the zero-shot setting.
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Baseline Ours

Ground Truth Top2 Wrong Pred. Ground Truth Top2 Wrong Pred.

affirm general (0.15)
praise general (0.73)
negate general (0.10)

affirm general (1.00) -

hue light on iot (0.33) hue light off iot (0.67) hue light on iot (1.00) -

music settings (0.28)
play music (0.57)

music likeness (0.14)
music settings (0.59) play music (0.41)

explain general (0.21)
confirm general (0.37)
repeat general (0.37)

explain general (0.79)
confirm general (0.11)
repeat general (0.10)

volume up audio (0.38)
volume down audio(0.46)

music settings (0.08)
volume up audio (0.85)

volume down audio(0.08)
music settings (0.07)

query calendar (0.16)
events recommend. (0.21)

query datetime (0.16)
query calendar (0.58)

query lists (0.16)
query datetime(0.11)

Table 8: Examples of misclassified classes in the HWU64 dataset.
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