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Abstract

Chain-of-thought (CoT) prompting has signif-
icantly enhanced the capability of large lan-
guage models (LLMs) by structuring their rea-
soning processes. However, existing methods
face critical limitations: handcrafted demon-
strations require extensive human expertise,
while trigger phrases are prone to inaccura-
cies. In this paper, we propose the Zero-shot
Uncertainty-based Selection (ZEUS) method, a
novel approach that improves CoT prompting
by utilizing uncertainty estimates to select ef-
fective demonstrations without needing access
to model parameters. Unlike traditional meth-
ods, ZEUS offers high sensitivity in distinguish-
ing between helpful and ineffective questions,
ensuring more precise and reliable selection.
Our extensive evaluation shows that ZEUS con-
sistently outperforms existing CoT strategies
across four challenging reasoning benchmarks,
demonstrating its robustness and scalability.

1 Introduction

Large Language Models (LLMs) have achieved
remarkable performance in a wide range of natu-
ral language processing tasks (Brown et al., 2020;
Touvron et al., 2023; Thoppilan et al., 2022). How-
ever, they often struggle with tasks that require
complex reasoning (Rae et al., 2021; Liang et al.,
2022). The "chain-of-thought" (CoT) prompting
technique (Wei et al., 2022; Feng et al., 2024) has
been proposed to address this limitation by generat-
ing intermediate rationales () along with the final
answer (a) for a given question (g). In this context,
few-shot in-context examples, referred to as demon-
strations D = (g, 75, aj);?:l, consist of k example
questions ¢;j, manually crafted rationales r;, and
answers a;. This approach, known as Manual-CoT,
relies on handcrafted rationales to guide the model.

Building on Manual-CoT, Zero-Shot-CoT (Ko-
jima et al., 2022) presents a novel prompting
method where LLLMs generate rationales using a

trigger phrase t (e.g., "Let’s think step by step")
appended to the input question ¢, without requiring
manually crafted demonstrations. While Zero-Shot-
CoT is cost-effective, its performance often falls
short compared to Manual-CoT due to the absence
of effective demonstrations.

Crafting rationales manually is typically labor-
intensive and time-consuming, particularly for
tasks demanding intricate reasoning. To mitigate
this, Auto-CoT (Zhang et al., 2022) combines
Manual-CoT and Zero-Shot-CoT, thereby reducing
the performance gap while minimizing manual ef-
fort. Auto-CoT employs self-supervised learning
on a set of unlabeled questions Q@ = {g;}7"; to
generate rationales and answers. Demonstrations
are created by clustering () into k groups and select-
ing a representative question, rationale, and answer
from each cluster. This clustering approach aims
to maintain diversity in the demonstrations, which
can help mitigate the impact of any errors in the
generated rationales.

In this work, we seek to enhance the creation
of demonstrations that improve LLM performance
solely using unlabeled questions () without any
rationale and answer. The selection process of
examples ¢; in demonstrations D has been to sig-
nificantly influence LLM performance (Wan et al.,
2023), and generating consistent rationales (Wang
et al., 2022) is crucial. Recent CoT prompting
methods (Diao et al., 2024; Bayer and Reuter,
2024) have utilized Active Learning (AL) (Fu et al.,
2013; Settles and Craven, 2008; Rotman and Re-
ichart, 2022; Kumar et al., 2022) to identify exam-
ples for human annotation, showing that annotating
the most uncertain examples yields the best perfor-
mance. Drawing on these principles, we propose
several selection strategies based on the uncertainty
of unlabeled questions.

To estimate uncertainty, we adopt perturbation-
based methods (Ribeiro et al., 2020; Kuhn et al.,
2023; Gao et al., 2024; Tomani et al., 2024), which
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operate on the principle that incorrect predictions
can be detected by resampling rationales through
perturbations, such as temperature adjustments. If
the LLLM is confident in its prediction, perturba-
tions are unlikely to affect the outcome. However,
if the LLM’s prediction is uncertain, different per-
turbations can lead to varied responses. Our initial
experiments reveal that while temperature-based
perturbation estimates are well-calibrated, they lack
sufficient sensitivity.! To address this, we propose
a robust method for estimating uncertainty that ex-
hibits near-ideal linearity with accuracy.

Our primary contributions are threefold: i) We
present ZEUS,? a method for estimating LLM un-
certainty that is both well-calibrated and sensitive.
ii) We leverage these uncertainty estimates to guide
the selection of most informative demonstrations
and show that these strategies outperform existing
prompting methods across four challenging reason-
ing tasks. iii) We demonstrate that the performance
of ZEUS correlates strongly with few-shot uncer-
tainty estimates on the unlabeled set, providing
actionable recommendations for creating effective
demonstrations.

2 Related Work

Chain-of-Thought (CoT) prompting has signifi-
cantly influenced various advanced techniques de-
signed to enhance reasoning capabilities. These
include Tree of Thoughts (Yao et al., 2023), Role
Play (Kong et al., 2024), and Collaborative Prompt-
ing (Zhu et al., 2023; Yin et al., 2023; Liang et al.,
2023; Wang et al., 2023), each building on the
CoT methodology to improve model performance
in complex reasoning tasks. Concurrently, Active
Learning (AL)-based methods have gained traction
in few-shot prompting scenarios. Diao et al. (2023)
enhance CoT prompting within an AL framework
by actively selecting questions based on an uncer-
tainty metric and manually constructing demonstra-
tions. Shum et al. (2023) work with labeled ques-
tions devoid of rationales, generating rationales
through pruning and using an AL-inspired variance-
reduced policy gradient strategy to select the most
informative examples. Similarly, Bayer and Reuter
(2024) apply uncertainty-based AL methods to
identify the most valuable questions for annota-
tion. Unlike these studies, our work addresses a

!Sensitivity is a measure of the degree of change in accu-
racy by a unit change in the confidence score.
2We have uploaded code and datasets for reproducibility.

more challenging scenario where neither human-
annotated labels nor rationales are available.

Our method relies on accurate uncertainty esti-
mation due to the lack of human supervision. Es-
timating uncertainty is a well-explored challenge,
with methods ranging from Bayesian approaches
and ensemble methods to more recent perturbation-
based techniques (Hendrycks and Gimpel, 2016;
Gal and Ghahramani, 2016; Lakshminarayanan
et al., 2017; Guo et al., 2017; Van Amersfoort
et al., 2020; Ovadia et al., 2019). Perturbation-
based methods, which include techniques like tem-
perature adjustments and question rephrasing, have
shown promise in recent studies (Gao et al., 2024).
These methods, while effective, may not be univer-
sally applicable to LLMs due to their generative na-
ture (Vashurin et al., 2024). Other recent work has
explored uncertainty estimation for specific tasks,
such as hallucination detection in LLMs (Kuhn
et al., 2023; Tomani et al., 2024). We extend these
perturbation techniques by enhancing their sensitiv-
ity to capture finer distinctions between questions,
thereby improving uncertainty estimation in LLMs.

3 ZEUS: Zero-shot Uncertainty-based
Selection

We propose the ZEUS method, which aims to
construct useful demonstrations containing a spe-
cific level of required uncertainty. It is com-
prised of three stages: (i) uncertainty estimation,
(ii) uncertainty-based question selection, and (iii)
demonstration construction. We have illustrated all
the stages of ZEUS in Figure 1.

3.1 Uncertainty Estimation (Stage 1)

In the ZEUS method, uncertainty estimation is a
critical step and is performed using perturbation.
We exploit three distinct types of perturbations to
estimate uncertainty for each unlabeled question in
the set (). These perturbations include temperature
adjustments, trigger phrase variations, and question
rephrasing.

Temperature Perturbation: This perturbation
technique is based on the principle that a ques-
tion can be answered in multiple ways, and these
variations can be explored by adjusting the tem-
perature parameter during decoding. Temperature
perturbation helps in simulating different reason-
ing paths within the LLM. When the temperature is
set to a higher value, the model’s outputs become
more diverse, while a lower temperature typically
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Figure 1: Overview of ZEUS: Uncertainty for a question g; is calculated using a pool of answers generated using
various prompts, including trigger phrases, non-zero temperature-based decoding, and rephrasing of ¢;. Subse-
quently, questions with uncertainty within a certain range are selected and used for constructing demonstrations.

results in more confident and consistent responses
(Koehn, 2009). According to Wang et al. (2022),
if an LLM is confident in its answer to a question
qj, the responses generated at various temperatures
should reach the same answer. In contrast, if the
LLM is uncertain, different temperatures will yield
a range of potentially inconsistent answers. To esti-
mate uncertainty using this property, we generate
n responses for a question g; by using the highest
temperature (=1). These responses {ré }, form
the basis for our temperature-based uncertainty es-
timation.

Trigger Phrase Perturbation: This factor lever-
ages the sensitivity of LLM performance to trigger
phrases. Kojima et al. (2022) demonstrated that
appending different trigger phrases to a question
can affect the LLM’s output. By introducing varia-
tions in trigger phrases, we can assess whether the
LLM'’s responses remain consistent. If the LLM
provides the same answer across different trigger
phrases, it suggests a high level of confidence in
its response. Conversely, varying answers across
trigger phrases indicate that the question g; is chal-
lenging or that the LLM is uncertain. To apply this
perturbation, we append a set of ¢ different trigger
phrases to the original question ¢; and generate a
corresponding set of responses {ré ’;:1.

Rephrasing Perturbation: The third technique
utilizes rephrasing of the input question to explore
the impact on the LL.M’s responses. We hypothe-
size that if the LLM is confident about its answer,
rephrasing the question should not significantly al-
ter the generated answer. On the other hand, if
the LLM’s answer is influenced by specific biases
or ambiguities in the original question, rephrasing
may lead to a different response. To estimate uncer-
tainty using rephrasing, we generate v rephrased

versions of the question ¢; and obtain the sets of
responses {ré»}lvzl.

By integrating these three types of perturba-
tions—temperature adjustment, trigger phrase vari-
ation, and question rephrasing, we generate a di-
verse set of responses for each question g;. Specif-
ically, we produce a total of n X ¢t X v responses.
This pool of answers reflects variations due to dif-
ferent decoding settings, trigger phrases, and ques-
tion rephrasing, serving as Monte Carlo samples
from the LLM’s likelihood distribution. From these
responses, we identify C' (< n) unique answers
y}, R y]C for the question g;. The confidence
score p(y¢|q;) for each unique answer y5 is com-
puted based on the consistency of responses across
the different perturbations. This score quantifies
the degree of certainty associated with each an-
swer and serves as a basis for selecting informa-
tive demonstrations in subsequent stages of the
ZEUS method. The confidence score p(y5|q;) for
a unique answer y; is defined as:

n

D1

=1

1
p(yile;) =

c l
Ui =9

) ey

where 1(+) is the indicator function that evaluates
to 1 if y; matches aé- and 0 otherwise.

To represent the uncertainty of the LLM regard-
ing the question g;, we use predictive entropy (PE)
(Kumar et al., 2022). PE is maximized when confi-
dence scores are uniformly distributed across many
unique answers and increases as the number of
unique answers grows. It reaches zero when all
answers are identical. The PE for the question g;
is computed as follows:
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Strategy Umin Umax
Trivial 0 w-o
Very Easy 0 n
Easy 0 uw+o
Moderate n-o v
Challenging n-o w+o
Hard wu-o 00
Very Hard " o]

Table 1: Selection Strategies used in ZEUS with their
minimum fy,i, and maximum i,y range.

c
uj ==Y p(yile) - log(p(ysle;)) @

c=1

where u; measures the degree of uncertainty by
quantifying the diversity of the answers.

3.2 Uncertainty-based Selection (Stage 2)

We define the LLM’s overall understanding of the
task using the mean uncertainty p and the stan-
dard deviation o of the uncertainty estimates from
the unlabeled set ). A higher mean p indicates a
more challenging task for the LLM, while a higher
standard deviation o reflects greater variability in
question difficulty within @). These two parameters
provide insight into the usefulness of a question for
improving the LLM’s performance.

For instance, we hypothesize that when the mean
uncertainty p is low (indicating the LLM is per-
forming well on the task), selecting questions with
uncertainties lower than p would not contribute
valuable information. On the other hand, when
the mean p is high (suggesting the LLM struggles
with the task), selecting questions with uncertain-
ties significantly higher than p may lead to less
informative or erroneous rationales.

Based on these assumptions, we propose select-
ing a subset of questions (), that fall within a spe-
cific uncertainty range, as defined by the following
condition:

Qs CQ= {Qj ’ Umin < u; < Umax} 3)

Here, umin and upyax represent the minimum
and maximum uncertainty thresholds used to select
questions. In the subsequent section, we will detail
the specific ranges (cf. Table 1) based on i and o
for constructing demonstrations.

3.3 Demonstration Construction (Stage 3)

We adopt the demonstration construction method-
ology from Auto-CoT, which emphasizes diversity
to mitigate the influence of incorrect rationales gen-
erated by the Zero-Shot-CoT method. The selected
questions () are first encoded into vector represen-
tations using Sentence Transformers (Reimers and
Gurevych, 2019). These vectors are then clustered
using k-Means++ (Arthur and Vassilvitskii, 2007),
forming k distinct clusters. From each cluster, the
question closest to the cluster centroid is selected.
The associated rationale and answer, generated by
the Zero-Shot-CoT method, are then combined to
form the demonstration set D. During inference,
a test question ¢ is appended to the constructed
demonstration D and passed to the LLM for final
predictions.

4 Experimental Setup

Datasets: We evaluate our proposed method on
four challenging reasoning datasets. GSMSK
(Cobbe et al., 2021) comprises arithmetic reason-
ing problems. StrategyQA (Geva et al., 2021) is a
question-answering benchmark requiring implicit
multi-hop reasoning. Logical Fallacy (referred to
as Fallacy) (Jin et al., 2022) involves reasoning
about arguments and detecting formal and infor-
mal fallacies. Epistemic Reasoning (EPR) (Sileo
and Lernould, 2023) is a natural language infer-
ence task that challenges LLMs to reason about
human mental states. For a fair comparison, we
split all datasets, except GSM8K, into two sets us-
ing stratified sampling: (i) an unlabeled set (70%)
for demonstration creation, and (ii) a test set (30%)
for zero-shot performance evaluation. GSM8K al-
ready contains train and test sets, so no further split
was needed.

Implementation: We conduct experiments using
five LLMs: GPT-40 (OpenAl, 2024), Mistral-7B-
Instruct-v0.2 (Mistral) (Jiang et al., 2023), Phi-
3-mini-4k-instruct (Phi3) (Abdin et al., 2024),
text-davinci-002 (GPT3-XL), and text-davinci-003
(GPT3.5) (Brown et al., 2020). Note that this mod-
els are including both open-source (Phi3, Mistral)
and proprietary models (GPT-40, GPT3.5, GPT3-
XL). To ensure consistency with prior work such
as Auto-CoT, we use k = 8 demonstrations for
all datasets, except for StrategyQA, where we use
k = 6. Additionally, during the evaluation of the
LLMs, we set the temperature to O to ensure de-
terministic outputs, and report the average perfor-
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Figure 2: Mean and standard deviation of uncertainty values as error graph -specific statistics across models.
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Figure 3: Probability density function of uncertainty
estimates of our method using GPT3.5 on GSM8K.
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mance across three runs to maintain consistency in
predictions.
Uncertainty Estimation in ZEUS: Uncertainty in
ZEUS is estimated using a combination of three
perturbation methods: (1) non-zero temperature
decoding, (2) trigger phrase variation, and (3) ques-
tion rephrasing. We use five trigger phrases: " "
(Empty), "Let’s think step by step." (SS), "Let’s
think about this logically step by step." (LSS), "Be-
fore we dive into the answer," (BDA), and "Before
answering the question, let’s understand the in-
put." (BQU). For each question, we generate two
rationale-answer pairs per trigger phrase at a tem-
perature of 1, producing 10 rationale-answer pairs.
Each question is also rephrased using the instruc-
tion "Rephrase the below passage" with GPT40.
We then generate five additional rationale-answer
pairs using these rephrased questions with trigger
phrases at a temperature of O to ensure precise re-
sponses. Thus, a total of 15 rationale-answer pairs
are generated for each question to estimate uncer-
tainty.
Selection Strategies in ZEUS: We define seven
selection strategies based on the mean y and stan-

3In general, rephrasing ensures that the intent of the ques-
tion does not change.

dard deviation o of uncertainty values across the
unlabeled set, detailed in Table 1. These strategies
include: Trivial, Very Easy, and Easy (selecting the
lowest uncertainty demonstrations), Challenging,
Hard, and Very Hard (focusing on high uncertainty
values), and Moderate (selecting demonstrations
from a range of uncertainty levels around p).

Baselines: We compare ZEUS against five base-
line methods: Zero-Shot, Few-Shot,* Zero-Shot-
CoT (Kojima et al., 2022), Manual-CoT (Few-Shot-
CoT) (Wei et al., 2022), and Auto-CoT.

S Results & Qualitative Analysis

5.1 Uncertainty Distribution Analysis

In this subsection, we present an analysis of the
mean () and standard deviation (o) of uncertainty
estimates for different LLMs across various reason-
ing datasets. In Figure 3, we illustrate the distri-
bution of uncertainty estimates for GPT-3.5 on the
GSMSK dataset. We have provided the comprehen-
sive plots of the distributions in the appendix (see
Figures 7 —11). The mean p and standard deviation
o of the uncertainty estimates using the unlabeled
set () has been shown through an error bar graph
in Figure 2. Notably, LLMs such as GPT3-XL
and Mistral show higher uncertainty in GSM8K,
particularly with a larger deviation, whereas for
tasks like StrategyQA and EPR, the uncertainty
is generally more consistent across models, with
GPT4o displaying the lowest variation. The trend
highlights that model uncertainty is highly task-
dependent, with complex reasoning tasks eliciting
higher variability in predictions.

4Zero-Shot and Few-Shot baselines do not use rationales or
trigger phrases, instead utilizing either zero or a few examples.
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Figure 4: Normalized values of accuracy for various selection strategies using multiple LLMs.
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Figure 5: Sensitivity coefficient of confidence score
wrt accuracy. Blue indicates ZEUS and Magenta for

Temp-Perb. Solid for GPT3-XL and Dashed for GPT3.5.

Coefficient using ZEUS is closest to ideal coefficient.

5.2 Sensitivity of Uncertainty Estimates

To assess the sensitivity of uncertainty estimates
in distinguishing between helpful and redundant
questions, we investigate the relationship between
confidence scores and accuracy. This is done by
fitting a linear regression (LR) model between the
confidence score of the most common answer and
its corresponding accuracy. In an ideally sensitive
model, the slope coefficient of the LR would be
one, indicating that a unit change in confidence

directly corresponds to a unit change in accuracy.

We compare our confidence scoring method against
a temperature-based perturbation approach (Wan
et al., 2023; Diao et al., 2023; Gao et al., 2024),

referred to as Temp-Perb. This comparison is car-
ried out using Zero-Shot-CoT prompting with 15
distinct temperature perturbations.

Figure 5 shows the slope coefficients for both
ZEUS and Temp-Perb. Our results demonstrate
that ZEUS consistently produces slope coefficients
closer to the ideal sensitivity compared to Temp-
Perb. Interestingly, Temp-Perb shows notably low
sensitivity in the Logical Fallacy and EPR datasets,
indicating a lack of reliability. In contrast, for
GSMBS8K, Temp-Perb exhibits a coefficient exceed-
ing 1, reflecting excessive sensitivity in this task.

5.3 Analysis of Selection Strategies

We present the normalized accuracy values for all
selection strategies, including AutoCoT, in Figure
4. Our analysis reveals that AutoCoT was consis-
tently outperformed by at least one other strategy
across all LLMs and datasets. This indicates that
leveraging uncertainty-based demonstration cre-
ation can more effectively identify valuable ques-
tions that enhance model performance. To pro-
vide a clearer perspective, Table 2 details the best
and worst selection strategies for each model and
dataset.

LLMs exhibit distinct performance patterns
across varying levels of question difficulty, which
allows us to categorize them into two broad groups:
advanced models (GPT-40, Phi3, GPT-3.5) and
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GSMS8K | Fallacy | StrategyQA | EPR
Model |  Best Worst | Best Worst | Best Worst | Best Worst
GPT4o0 Hard Trivial Moderate Easy Hard Trivial Very Hard Trivial
Phi3 Challenging Very Hard | Moderate Trivial | Challenging  Trivial Moderate Trivial
Mistral Easy Hard Challenging Very Hard | Challenging Very Hard Easy Moderate
GPT3.5 | Challenging  Trivial Very Hard Trivial Moderate Trivial Moderate ~ Very Hard
GPT3-XL Trivial Very Hard | Challenging  Trivial Easy Very Hard | Challenging Very Hard

Table 2: Best and worst-performing strategies across tasks for each model, indicating that GPT4o requires harder
strategies for optimal performance, while GPT3-XL shows improved results with easier strategies.
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Figure 6: Accuracy vs Temp-Perb Uncertainty trend across all selection strategies for GPT4o.

simpler models (Mistral, GPT-3 XL). This classi-
fication is based on observed performance trends
rather than model size or architecture alone. Ad-
vanced models excel in handling Hard and Very
Hard questions due to their superior reasoning ca-
pabilities, but they show limited gains when en-
gaging with Trivial or Very Easy strategies, where
their advanced abilities remain underutilized. On
the other hand, simpler models perform better with
Trivial and Easy strategies, as these align well with
their baseline capabilities. However, they struggle
considerably with Hard and Very Hard questions,
where errors and uninformative outputs become
more prevalent.

To capture general trends, we analyzed perfor-
mance across the best and worst strategies for each
model. Our findings highlight that while Trivial
and Very Easy strategies consistently yield the low-
est performance for advanced models, simpler mod-
els face significant challenges with Hard and Very
Hard strategies. Notably, our categorization fo-
cuses on overall performance trends rather than
model size, which places models like GPT-40 and
Phi3 in the same group.

Among the selection strategies, Trivial and Very
Hard tend to yield poorer performance across most
models. This suggests that extremes in task dif-
ficulty—whether too easy or too hard—are gen-
erally detrimental to model accuracy. The Hard

strategy generally improves performance for GPT-
40, whereas the Challenging strategy appears to
be optimal for Phi3, Mistral, and GPT-3.5. These
findings align with the overall performance trends
observed for these models.

However, performance variations still exist
across tasks and models. For instance, the Mis-
tral model’s performance declines with Moderate
and harder strategies on the EPR task, while it im-
proves with higher uncertainty estimates on other
tasks. This indicates that selecting the optimal
strategy can be complex and task-dependent. To
address this, the next subsection will explore meth-
ods for determining the most effective selection
strategy.

5.4 Choosing Optimal Selection Strategy

Upon constructing the demonstration for each strat-
egy, we need to identify the optimal strategy for
a given task and model. We calculate the average
uncertainty on the unlabelled set Q while keep-
ing the demonstration unchanged. The optimal
strategy is the one with the lowest entropy, as this
tends to strongly correlate with higher accuracy.
Temp-Perb provides well-calibrated uncertainty es-
timates, although it lacks the sensitivity required
to effectively differentiate between similar ques-
tions. Despite this limitation, its well calibration
makes Temp-Perb suitable for selecting the best-
performing strategy based on uncertainty estimates.
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GSMSK | Fallacy
Method ‘ GPT40 Phi3 Mistral GPT3.5 GPT3-XL ‘ GPT40 Phi3 Mistral GPT3.5 GPT3-XL
Zero-Shot 494 507 453 126 10.7 805 818 711 639 483
Few-Shot 84.0 50.7 453 16.5 14.4 925 904 629 76.9 79.8
Zero-Shot-CoT | 94.8 859 51.8 60.4 447 84.8 875 67.1 67.7 61.7
Manual-CoT 89.3 819 424 56.4 439 90.1 90.1 643 - -
Auto-CoT 942 87.6 472 58.5 44.6 97.0 85.6 744 76.9 66.7
ZEUS (LU) 958 899 573 62.9 51.9 98.0 940 785 79.4 76.4
ZEUS (HA) 958 899 57.6 62.9 51.9 98.0 94.0 78.5 79.4 76.4
StrategyQA | EPR
‘ GPT40 Phi3 Mistral GPT3.5 GPT3-XL ‘ GPT40 Phi3 Mistral GPT3.5 GPT3-XL
Zero-Shot 652 56.6 59.8 54.4 16.6 61.2 722 452 60.0 61.5
Few-Shot 776 658 61.1 66.2 64.8 83.0 640 552 75.6 58.2
Zero-Shot-CoT | 70.7 67.5 59.0 574 51.2 647 79.8 65.7 60.2 59.3
Manual-CoT 81.1 689 63.8 68.6 57.6 842 640 577 - -
Auto-CoT 80.1 645 579 64.9 64.1 682 753 525 52.5 59.5
ZEUS (LU) 81.1 67.7 598 66.8 66.5 728 762 68.5 65.3 66.2
ZEUS (HA) 822 67.7 59.8 66.8 66.5 72.8 77.0 68.5 65.3 66.2

Table 3: Accuracy on various datasets. ZEUS (HA) chooses the best performing strategy for each dataset while
ZEUS (LU) chooses the strategies having lowest Temp-Perb uncertainty estimates.

Therefore, we use Temp-Perb for uncertainty esti-
mation to determine the optimal selection strategy
for a given model and task.

In Figure 6, we illustrate the accuracy of vari-
ous selection strategies for GPT-40 in relation to
Temp-Perb based uncertainty estimates. The data
indicates that the accuracy is inversely correlated
with uncertainty across all four datasets. This in-
verse relationship allows us to identify the optimal
selection strategy as the one associated with the
lowest uncertainty. We have included similar anal-
yses for other models in the appendix (cf. Figures
12 - 16).

5.5 Comparison with Baselines

The selection strategy with the lowest uncertainty
is denoted as ZEUS (LU), while the strategy with
the highest accuracy is represented by ZEUS (HA).
Table 3 demonstrates that ZEUS (LU) and ZEUS
(HA) yield nearly identical performance, under-
scoring the robustness of the Temp-Perb uncer-
tainty estimates. In general, the optimally selected
ZEUS(LU) either outperforms all baseline meth-
ods or comes in a close second to in a few cases
across three datasets (GSMS8K, Fallacy, and Strat-
egy QA), with only a few exceptions. ZEUS meth-
ods consistently outperform all baseline strategies
on the GSMS8K and Fallacy datasets, with the ex-
ception of GPT-3 XL on the Fallacy dataset. For
the StrategyQA dataset, Manual-CoT achieves the
highest accuracy for most models, highlighting the

effectiveness of human-crafted demonstrations. On
the EPR dataset, ZEUS surpasses Zero-Shot, Zero-
Shot-CoT, and Auto-CoT methods across most
models. Overall, ZEUS methods either match or
exceed the accuracy of these baseline strategies
without requiring manual annotations.

6 Conclusion

This paper introduces the zero-shot uncertainty-
based ZEUS method for evaluating and select-
ing optimal strategies based on uncertainty esti-
mates. Our analysis reveals that ZEUS provides
highly sensitive and reliable uncertainty estimates,
outperforming temperature-based perturbation ap-
proaches (Temp-Perb) in distinguishing between
helpful and redundant questions.

Our findings classify models into two groups
based on their optimal strategies. Advanced models
like GPT-40, Phi3, and GPT3.5 perform best with
Hard and Challenging example selection strate-
gies, effectively leveraging their greater capabil-
ities to tackle complex queries. In contrast, sim-
pler models such as Mistral and GPT3-XL bene-
fit more from Trivial and Easy strategies, where
even low-uncertainty questions yield valuable in-
formation. By selecting the strategy with the
lowest uncertainty estimates, ZEUS(LU) (recom-
mended) achieves performance comparable to the
best-performing strategies ZEUS(HA), without re-
quiring manual annotations. Overall, ZEUS con-
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sistently matches or surpasses baseline accuracy,
demonstrating its robustness and sensitivity in im-
proving model performance.

7 Limitation

While our work demonstrates the effectiveness of
the ZEUS method, there are several limitations and
avenues for future research. First, the selection
strategies in our current approach require exhaus-
tive exploration to find the optimal strategy, which
can be time-consuming and computationally expen-
sive. This process could be automated by incorpo-
rating a greedy search algorithm based on uncer-
tainty estimates, allowing for more efficient strat-
egy selection. Another limitation is our reliance
on uncertainty estimates from unlabeled questions,
without examining the impact of dataset attributes
like diversity or size. These factors could affect
the estimates and lead to suboptimal strategy selec-
tion. Future work should explore these effects to
improve robustness.
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Figure 7: Probability density function of uncertainty estimates of our method using GPT4o.
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Figure 15: Accuracy vs Temp-Perb Uncertainty trend across all selection strategies forGPT3.5
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Figure 16: Accuracy vs Temp-Perb Uncertainty trend across all selection strategies forGPT3-XL
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GPT35 | GPT3-XL | GPT40 | Phi3 | Mistral

Datasetua‘u a‘,u a‘u a‘,ua

GSMSK 121 053|155 048|030 035|045 048 | 1.28 0.76
Fallacy 049 036|057 037026 026|037 023|041 025
EPR 0.55 0.18 | 022 0.21 | 0.39 0.27 | 046 0.22 | 042 0.25
StrategyQA | 043 0.35 | 0.83 0.22 | 032 031 | 039 029 | 028 0.30

Table 4: Mean and standard deviation of uncertainty values as error graph -specific statistics across models.

2025



	Introduction
	Related Work
	ZEUS: Zero-shot Uncertainty-based Selection
	Uncertainty Estimation (Stage 1)
	Uncertainty-based Selection (Stage 2)
	Demonstration Construction (Stage 3)

	Experimental Setup
	Results & Qualitative Analysis
	Uncertainty Distribution Analysis
	Sensitivity of Uncertainty Estimates
	Analysis of Selection Strategies
	Choosing Optimal Selection Strategy
	Comparison with Baselines

	Conclusion
	Limitation
	Appendix

