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Abstract

Due to the limited context window, Large Lan-
guage Models (LLMs) struggle with processing
long contexts. Although fine-tuning can extend
the context window, it incurs substantial com-
putation costs. In contrast, recent tuning-free
approaches reallocate the attention mechanism
or incorporate temporary trainable parameters.
In this work, by jointly modeling instance-level
generation with a limited context window and
learning over sequential data, we rethink the
long context generation of LLMs from a contin-
ual learning perspective. In practice, we inspect
existing representative approaches and analyze
their synergy with continual learning strategies.
Moreover, we integrate these strategies into
current approaches to further boost LLMs’ ef-
ficiency in processing long contexts. Compre-
hensive experiments and analysis confirm the
feasibility of continual learning insights for im-
proving long-context processing.

1 Introduction

Large Language Models (LLMs) (Radford et al.,
2018; Touvron et al., 2023; Achiam et al., 2023)
serve as a crucial component across numerous
language-based applications, such as chatbots (Du
et al., 2022; Zeng et al., 2022), web agents (Xi et al.,
2023), and collaborative writing assistants (Lee
et al., 2022; Roziere et al., 2023). In practical
deployments, these tasks necessitate the process-
ing of long context sequences (Chen et al., 2023a;
Peng et al., 2023). However, the inherent Trans-
former (Vaswani et al., 2017) architecture of LLMs
incurs quadratically increasing memory and compu-
tation costs with longer input lengths (Wang et al.,
2020). Despite recent efforts on efficient structures
and hardware (Cai et al., 2022; Lin et al., 2023; Su
et al., 2024), LLMs struggle to process longer se-
quences beyond the limited context window during
pre-training (Tan et al., 2024).

* Corresponding authors: Peng Li and Yang Liu

Training on longer contexts (Tworkowski et al.,
2023; Xiong et al., 2023) presents a straightforward
method for enlarging the effective context window.
However, fine-tuning pre-trained LLMs remains
considerably expensive (Chen et al., 2023b) and
the extended window size remains limited. In-
stead, prompt compression (Jiang et al., 2023a;
Wingate et al., 2022) involves extra models to con-
dense the original prompt through successive gen-
erations, inherently resulting in the loss of rele-
vant information (Jiang et al., 2023b). Recent tech-
niques (Xiao et al., 2023; Han et al., 2023) fur-
ther adeptly design attention masks targeting selec-
tive value states. Alternatively, TempLoRA (Wang
et al., 2024c) introduces instance-level temporary
and trainable modules to consolidate the knowl-
edge of the most recent evicted tokens. Neverthe-
less, it remains a significant challenge for LLMs to
generate over infinite sequences during continuous
deployment (Xiao et al., 2023).

In this work, given the inherently limited con-
text window, we rethink the long context gener-
ation problem from a continual learning (Thrun
and Mitchell, 1995; McCloskey and Cohen, 1989)
perspective. As depicted in Fig. 1, the underlying
objective of both challenges is to globally optimize
output based on partially observed inputs. During
continuous deployment, window attention (Beltagy
et al., 2020) preserves a sliding window of the most
recent tokens, enabling LLMs to generate subse-
quent tokens despite the absence of evicted ones. In
parallel, continual learning endeavors to optimize
the model parameters across sequential data with-
out revisiting previous data (Chen and Liu, 2018).
Moreover, just as recent key-value states encode
historical information, the parameter initialization
for each new task incorporates the knowledge from
past tasks. Through comprehensive analysis, we
investigate the parallels and distinctions between
long context generation and continual learning.

In addition, we review representative ap-
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Figure 1: Comparison of long context generation and continual learning process. Visible and invisible inputs are
indicated in different colors. (a) Illustration of ideal scenarios, where the context window is infinite and all seen
tasks are accessible. (b) Illustration of real scenarios, where the context window is limited and only the current task
data is accessible for continual learning.

proaches (Kirkpatrick et al., 2017; Lopez-Paz and
Ranzato, 2017) in both fields, exploring their under-
lying analogies. To delve deeper into this compari-
son, we incorporate several well-established contin-
ual learning strategies into the existing TempLoRA
to facilitate knowledge consolidation. Comprehen-
sive experiments underline the effectiveness of our
methodology, thereby showcasing the potential of
applying continual learning principles to extend the
contextual window. We summarize our contribu-
tions as follows:

• By jointly modeling instance-level generation
with a limited context window and learning
over sequential data, we rethink the long con-
text generation from a continual learning per-
spective, revealing internal similarities.

• We inspect existing approaches and analyze
their synergy. Experiments demonstrate that
integrating continual learning strategies en-
hances knowledge consolidation in context
generation, showcasing the potential of lever-
aging continual learning insights.

2 Rethink Long Context Generation from
the Continual Learning Perspective

2.1 Preliminaries

During deployment, LLMs iteratively generate sub-
sequent tokens upon given prompts. To better

characterize this process, we first provide a sim-
plified general formulation of the sequential op-
timization problem. Given a sequence of inputs
{x1, x2, . . . , xt} at each time step t, the output yt
is computed as follows:

yt = f(x1, . . . , xt; θ), (1)

where θ represents the model parameters and f is
the optimization algorithm. Specifically, in sequen-
tial context generation, the model constructs tem-
porary memory to encode preceding tokens, rather
than repeatedly processing the entire sequence,
serving as inputs for subsequent steps. Assuming
frozen model parameters and an infinite context
window, the expected next token x

′∗
s+1 is computed

as:

x′∗s+1,Mems = fLLM(Mems−1, x̂s; θ), (2)

with memory Mems caching all preceding tokens
{x̂1, . . . , x̂s} and x̂s indicating the certain input
token, ground truth token xs for s ≤ t and gen-
erated token x′∗s otherwise. Recalling the atten-
tion mechanism within the transformer architecture,
in most cases, LLMs compute and cache the Key
and Value states (KV) as the temporary memory
Mems = {KV1, . . . ,KVs} for sequential genera-
tion, which fully encodes the generated token x′.

Similarly, in the context of continual learning,
where t tasks {Dt} = {(Xc

t , Y
c
t )} arrive as a se-

quence, the optimization objective is to minimize
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Evaluation Metrics Long Context Generation Continual Learning

Overall Performance Global generation quality Average accuracy
Learning Plasticity Inherent generation fluency Forward Transfer
Memory Stability Key information extraction Backward transfer

Table 1: Comparison of evaluation metrics for long context generation and continual learning.

the expected loss over all previously encountered
tasks. During learning task t, the optimal model
parameter θ∗t is thus expressed as:

θ∗t = argmin
θ

t∑
i=1

E [L(f c
t (X

c
i ; θ), Y

c
i )] , (3)

where f c
t denotes the network for task t. Besides,

task t learning extends optimization beyond θt−1.
In particular, assuming an ideal scenario, where
each task remains accessible, at each step t, the
learning process is formulated as:

θt = fCL(D1, . . . , Dt; θt−1), (4)

where θ0 represents parameters initialization and
fCL denotes the training strategy. In this manner,
this process parallels the general format in Eq. 1,
with θt as the objective yt. Moreover, akin to
the context generation in Eq. 2, the current out-
put serves as the input at the next step.

In essence, context generation with an unlimited
context window, as well as continual learning with
unrestricted task access, can both be conceptual-
ized as distinct variations of the sequential opti-
mization problem, where continual learning par-
ticularly incorporates external inputs at each time
step. We illustrate this process in Fig. 1-(a).

2.2 Problem Formulation

In this section, we explore the long context genera-
tion with a limited context window from the con-
tinual learning perspective and propose a unified
framework for analysis. To begin, we introduce the
formulation of continual learning. In contrast to
the ideal scenario depicted in Eq. 4, where all tasks
are fully visible, a continual learning model is re-
quired to learn the incoming task with restricted or
no access to prior task datasets, while maintaining
performance on their test sets. Formally, for each
task t, the model parameters are derived as:

θt = hCL(Dt; θt−1), (5)

where hCL denotes the optimizing strategy. Al-
though previous datasets are inaccessible, the opti-
mized model θt−1 retains the knowledge of previ-
ous tasks. Recall that, as depicted in Eq. 3, the op-
timization goal is minimizing expected loss. More-
over, by approximating the expected loss using
global optimal parameters θ∗t , we can estimate the
continual learning objective as follows:

h∗CL = argmin
h

t∑
i=1

E
[
L
(
f c
t (X

c
i ; \

hCL(Dt; θt−1)), Y
c
i

)]
≈ argmin

hCL
LCL

(
hCL(Dt; θt−1), θ

∗
t

)
,

(6)

where LCL indicates the loss function approxi-
mation, emphasizing the parameter optimization
towards the global optimum. Recalling that θ∗t is
the expected output y∗t of time step t, we can frame
this process as a specialized variant of restricted
optimization. At each time step t, inputs prior to tv
remain unobservable. Formally, this can be articu-
lated as: {

y′t = h(xtv , . . . , xt; yt−1)

h∗ = argmin
h

L(y′t, y
∗
t ),

(7)

where tv = t and yt = θt for the continual learn-
ing scenario. Under this framework, the process is
distinguished by two principal characteristics: (1)
It operates on an iterative basis, where at each step
t, the outputs of the prior step yt−1 become the
inputs for the following stage; (2) It is constrained
by partial observability of the input sequence. With
a fixed cache limit, as new inputs arrive, the earliest
inputs are evicted, yet their information is captured
in accessible outputs from previous steps. The chal-
lenge lies in developing an optimization approach
h that effectively leverages incomplete inputs to
produce the desired outputs.

Building upon the general constricted optimiza-
tion formulation, we rethink the long context gener-
ation process. In this work, we consider the preva-
lent sliding window attention mechanism (Beltagy
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Figure 2: Performance evaluation comparison: (a) Overall performance by BLEU scores and average accuracy;
(b) Learning plasticity by perplexity scores and new task accuracy; (c) Memory stability by information retrieval
success rates and final task accuracy. Detailed experimental settings are reported in the Appendix.

et al., 2020), where LLMs retain the most recent w
tokens’ keys and values, thus maintaining constant
memory usage and decoding speed across long se-
quences. Assuming static model parameters θ, the
generation process is formulated as:

{
x′s+1,Memw

s = hLLM(Memw
s−1, x̂s; θ),

h∗LLM = argmin
hLLM

L(x′s+1, x
∗
s+1),

(8)

where hLLM is the generation strategy and
Memw

s−1 = {KVs−w, . . . ,KVs−1} is the memory
of length w for token s. In this manner, this sequen-
tial process embodies a variant of the constrained
optimization in Eq. 7, where subsequent tokens are
generated by leveraging a subset of preceding KV
states within the context window. This token, in
turn, acts as the input for the next phase. Despite
the absence of evicted tokens, their information
is implicitly preserved and integrated into recent
caches. Hence, the underlying process of vanilla
long context comprehension and generation resem-
bles continual learning.

In general, from a continual learning perspective,
the long-context challenge represents an iterative
process of restricted optimization. An optimal strat-
egy seeks to exploit the knowledge within recent
tokens or parameters to simulate the generation or
optimization process as if all preceding inputs were
considered. We provide a comparison in Fig. 1-(b).

2.3 Evaluation

In this section, we further investigate the perfor-
mance metrics of long-context generation from a
continual learning perspective. Building upon the
analogous restricted optimization problem formu-
lation, their evaluation exhibits inherent similari-
ties. Predominantly, the most commonly utilized

metrics for context generation include BLEU (Pa-
pineni et al., 2002), ROUGE (Chin-Yew, 2004),
and perplexity-based scores. For instance, Han
et al. (2023) adopted these metrics to reflect in-
herent fluency and overall performance. Recent
metrics (Kamradt, 2023; Zhao et al., 2024) extract-
ing critical information from the long text extend
the evaluation to the capability of consolidating
knowledge from previously encountered contexts.
Intriguingly, we observe that these trending metrics
span three intertwined yet distinct aspects of con-
tinual learning: overall performance, memory sta-
bility, and learning plasticity (Wang et al., 2024a).
A brief comparison is illustrated in Tab. 1.

Overall Performance. In continual learning, the
foremost measure of performance is average ac-
curacy: AA = 1

t

∑t
j=1 at,j , where ai,j signifies

the evaluated performance on task j after learn-
ing task i. This metric reflects the system’s pro-
ficiency across all previously encountered tasks
at the current moment. In the context of context
generation, this metric translates to the quality of
generated output across the preceding sequence,
typically measured against reference texts via met-
rics like BLEU or ROUGE (Lin, 2004), indicating
the overall generation performance. We provide
a comparison in Fig. 2-(a). As the context length
increases, the overall generation quality initially
improves slightly due to the increased reference
text. However, with further increases in context
length, the quality gradually declines. Similarly, in
continual learning, initial tasks lead to better pa-
rameter initialization, and performance declines as
more tasks are encountered. This initial rise and
then decline trend demonstrates a certain similarity.

Learning Plasticity. Optimal performance neces-
sitates the effective assimilation of new knowledge.
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Figure 3: Comparison of representative methods. (a) Illustration of memory-based methods, which retains a
complementary replay buffer of previous tokens or samples to consolidate knowledge. (b) Illustration of parameter-
based methods, which restrictedly update model parameters to maintain performance.

Hence, the capability of acquiring new tasks is
critical for continual learning, usually assessed by
forward transfer (Lopez-Paz and Ranzato, 2017):
FWT = 1

t−1

∑t
j=2(aj,j−a∗j ), with a∗j representing

the accuracy of the model trained on task Dj . Con-
currently, streaming perplexity (PPL) (Han et al.,
2023) evaluates the inherent fluency within recent
contexts during continuous generation, thereby dis-
tinguishing itself from overall performance metrics
by emphasizing generative plasticity. According to
Fig. 2-(b), as the context length increases, the per-
plexity continues to rise. Similarly, here we adopt
GPM (Saha et al., 2020) for continual learning, and
as the number of tasks increases, the optimization
space becomes increasingly constrained, leading
to deteriorating performance, which is widely ob-
served in parameter-based methods.

Memory Stability. Recall the restricted optimiza-
tion formulation, the absence of prior information
underscores the importance of stable memory con-
solidation for superior overall performance. Back-
ward transfer (Lopez-Paz and Ranzato, 2017), com-
puted as BWT = 1

t−1

∑t−1
j=1(at,j − aj,j), is widely

adopted to measure the performance degrade dur-
ing the sequential process. For context generation,
the Needle in A Haystack test (Kamradt, 2023)
gauges whether LLMs can effectively extract the
randomly inserted key information. Assuming the
availability of relevant information allows LLMs
to produce accurate responses, these metrics (Zhao
et al., 2024) further emphasize the competency

in consolidating knowledge consolidation through
long context comprehension. As shown in Fig. 2-
(c), the final accuracy and the retrieval success rate
exhibit a highly correlated trend across the input
sequence, with a Pearson coefficient over 0.9.

Generally, effectively integrating emergent
knowledge alongside retaining prior information is
pivotal for achieving desired overall performance.
Tab. 1 demonstrates that long context generation
and continual learning are assessed across three
interrelated dimensions. Fig. 2 further reveals
their synergy. The principal challenge lies in
improving general performance and ensuring a
proper stability-plasticity trade-off (McNaughton
and O’Reilly, 1995; McCloskey and Cohen, 1989)
between learning plasticity and memory stability.

3 Representative Methods

In this section, we delve into representative ap-
proaches that augment long context generation
or mitigate catastrophic forgetting. Rather than
adhering to the conventional tripartite classifica-
tion (De Lange et al., 2021), we roughly catego-
rize continual learning methods into two groups
based on their mechanism for encoding historical
information. As depicted in Fig. 3, memory-based
methods adopt a strategic cache memory scheme
to consolidate previous knowledge. In contrast,
parameter-based methods facilitate the optimiza-
tion process hCL by integrating auxiliary explicit
constraints on parameters or implicit constraints on
gradients. Our analysis further reveals the inherent
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connections among the approaches.

3.1 Memory-based Methods

In continual learning, memory-based approaches
maintain a complementary memory buffer to retain
samples from previous tasks. While learning new
tasks, the cached samples are replayed to prevent
forgetting. In this context, the learning process is:

θt = h
replay
CL (Dt,M

replay
CL,t ; θt−1), (9)

where M
replay
t is the replay buffer for learning task

t. After learning each task, this buffer is then up-
dated to encapsulate key information.

M
replay
CL,t = UpdateCL(M

replay
CL,t−1, Dt, θt). (10)

Likewise, throughout processing a long sequence,
retaining the KV states of the evicted tokens facili-
tates the model’s generation while retaining critical
historical information, akin to the memory-based
methods. For simplification, the process is:

x′t+1,KVt = hLLM(M
replay
KV,t ,KVrecent

t , xt; θ),
(11)

where KVrecent
t = {KVt−w:t} represents the KV

states within the context window and M
replay
KV,t de-

notes the preserved replay buffer.
Recent research (Han et al., 2023) reveals that

language models assign large attention scores
to initial tokens in a sequence. Specifically,
StreamingLLM (Xiao et al., 2023) thus optimizes
generation by integrating the KV states of these
initial tokens. The replay buffer M

replay
KV,t here is

the static KV states of the initial c tokens {KV0:c},
which stores critical knowledge of the preceding se-
quences and facilitates subsequent generation. To
ensure constant memory usage, which is important
for deployment, the recent cache is thus marginally
reduced as {KVt−w+c:t}. From the continual learn-
ing perspective, this aligns with the Experience Re-
play (Rolnick et al., 2019) strategy, where the mem-
ory buffer retains selected samples from previous
tasks, reinforcing previously acquired knowledge.
Notably, in this instance, only the initial samples
are preserved. This stems from the unique dynam-
ics of the context generation process, which devi-
ates from the typical continual learning assumption
that each task’s data distribution and importance
are independent. As shown in Eq. 8, the KV states
are computed from those of preceding tokens, lead-
ing to an uneven attention distribution.

Similarly, by maintaining all previous KV states
and selectively resuing representative samples re-
garding recent tokens, InfLLM (Xiao et al., 2024)
captures long-distance dependencies among mas-
sive contexts. Considering replay c tokens, the
recent cache is thus {KVt−w+c:t} and the replay
buffer M replay

KV,t here is fr(KV0:t−w+c), where fr de-
notes the pre-defined retrieval strategy. The context
memory acts as a full buffer that stores all samples
from previous tasks in continual learning scenarios,
while for each new task, it selectively replays rel-
evant samples to improve learning. Consequently,
despite the variety of caching strategies, memory-
based techniques enhance performance in context
generation by effectively reusing old samples.

Moreover, Buzzega et al. (2020) indicate that
increasing the replay buffer size ensures better per-
formance in continual learning. Similar patterns
are observed in long context generation. As shown
in Fig. 4-(a), a larger buffer size improves perfor-
mance in both scenarios, further demonstrating this
similarity. However, despite the significant perfor-
mance improvements, particularly in retrieval tasks,
this approach faces challenges similar to continual
learning (Buzzega et al., 2020). Maintaining com-
plete KV states incurs increasing memory costs de-
spite constant computational costs, making lengthy
sequences in real-world applications inconvenient.

In summary, memory-based strategies, akin to
those in continual learning, effectively capture long-
term dependencies by retaining previous KV states.
A comparison is provided in Fig. 3-(a).

3.2 Parameter-based Methods
Continual learning can be facilitated not only with
an additional memory buffer but also by designing
specific constraints that manipulate the optimiza-
tion process during parameter updates, which we
refer to as parameter-based approaches (Wang et al.,
2024a). Examples include regularization-based ap-
proaches (Kirkpatrick et al., 2017; Zenke et al.,
2017), which incorporate explicit loss terms, and
optimization-based approaches (Farajtabar et al.,
2020; Saha et al., 2020), which guide the direction
of optimization. However, in long context gener-
ation scenarios, the token generation process re-
mains static considering frozen parameters, imped-
ing the application of parameter-based approaches.

Nevertheless, recent TempLoRA (Wang et al.,
2024c) enables dynamic parameter adjustments for
improved generation by introducing auxiliary, tem-
porarily trainable modules. Rather than sliding
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Figure 4: (a) Comparison of increasing the memory buffer of GEM on CIFAR-100 and the memory units of
InfLLM on PG19 datasets; (b) Comparison of performance boost and time consumption under different settings; (c)
Comparison of PPL results on PG19 datasets under different context window and recomputation chunk sizes.

the attention window for each token, TempLoRA
updates the LoRA module after processing each
chunk. Assuming a chunk size of c, xct and KVc

t

represent the t-th chunk’s tokens and KV states,
respectively. The forward process is thus:{

x′ct+1,Memc
t = hLLM(Memc

t−nc:t, , x
c
t ; θ,Θt)

Θt+1 = UpdateLoRA(x
c
t ,Θt),

(12)
where Θt denotes the LoRA module fine-tuned on
the t-th chunk, and nc = ⌊w/c⌋ is the number
of chunks within the context window. This dy-
namic module thus continuously encodes historical
information within auxiliary trainable parameters,
resembling the constrained parameter updates in
parameter-based approaches.

Building upon TempLoRA, both regularization-
based and gradient-based methods can be inte-
grated into the long context generation process.
To explore the inherent analogy further, we incor-
porate several well-established continual learning
approaches into TempLoRA, including EWC (Kirk-
patrick et al., 2017), LwF (Li and Hoiem, 2017),
and OGD (Farajtabar et al., 2020). We provide de-
tailed experimental results and analysis in Sec. 4.

4 Experiments and Analysis

4.1 Experimental Setup

Datasets. Following Wang et al. (2024c), we
evaluate our proposed methods on the PG19 (Rae
et al., 2019) and GuoFeng (Wang et al., 2023)
datasets, using PPL (Press et al., 2021) metrics
as the primary measure and BLEU (Papineni et al.,
2002) and COMET (Rei et al., 2020) scores for
comprehensive evaluation in translation tasks.

Baselines. For memory-based approaches, we
adopt StreamingLLM (Han et al., 2023) and In-

Method 300k+ 400k+ 500k+ Avg.

(Sliding Window)
Llama-2 368.04
Streaming. 10.11 8.64 4.94 7.90
InfLLM 9.54 9.21 4.89 7.88

(Chunk Recomputation)
Llama-2 9.57 9.28 4.99 9.25
TempLoRA 8.58 8.43 4.18 7.07

+ LwF 8.42 8.34 4.08 6.94
+ EWC 8.34 8.31 4.03 6.88
+ OGD 8.31 8.29 4.02 6.87

Table 2: Comparison of PPL results of Llama-2 7B on
PG19 datasets. Here we set the context window size to
2k and the recomputation chunk size to 1k.

fLLM (Xiao et al., 2024). For parameter-based ap-
proaches, we apply continual learning techniques
to TempLoRA (Wang et al., 2024c), enabling pa-
rameter updates. In practice, we use EWC (Kirk-
patrick et al., 2017) and LwF (Li and Hoiem, 2017)
for regularization-based methods and OGD (Fara-
jtabar et al., 2020) for gradient-based methods.

Setup. Unless otherwise stated, all experiments
were performed with the standard Llama2-7B 4K
model 1. For efficiency, we set the context win-
dow to 2k. For TempLoRA and its variants, the
chunk size is set to 1k. Implementation details are
provided in the Appendix.

4.2 Main Results

We present the comparative results on PG19 in
Tab. 2. In practice, parameter-based approaches
operate under the chunk recomputation setting
rather than the sliding window setting. This in-

1https://huggingface.co/meta-llama/Llama-2-7b
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Method PPL ↓ BLEU ↑ COMET ↑

Llama-2 5.89 14.54 76.60
TempLoRA 3.71 18.85 78.86

+ LwF 3.72 19.37 79.59
+ EWC 3.74 19.24 79.77
+ OGD 3.69 20.03 79.83

Table 3: Results of Llama-2 7B on GuoFeng datasets.

volves recomputing the KV states during the pro-
cessing of each chunk token, leading to better per-
formance at the cost of increased time consump-
tion. As shown in Tab. 2, both memory-based
and parameter-based approaches show significant
improvements over the base model. Compared
to TempLoRA, which serves as the baseline fine-
tuning setting in continual learning, all proposed ap-
proaches demonstrate general improvements across
different lengths. Similar patterns are observed in
the results on GouFeng, as reported in Tab. 3. Foun-
dational continual learning methods such as LwF
and EWC achieve modest progress, while the well-
established approach OGD shows the most signifi-
cant improvement, with gains of 0.2 and 1.2 BLEU
scores on two benchmarks, respectively. These
results confirm the potential of continual learning
insights for enhancing long-context processing.

To deepen the understanding of the interconnec-
tion between long context generation and continual
learning, we conducted a comparative analysis of
various approaches in both fields. The results are
presented in Fig. 4-(b) and Tab. 4 respectively. Our
observations indicate consistent patterns across the
adopted approaches in both fields. Specifically,
LwF demonstrated modest improvements with min-
imal time consumption, while OGD achieved the
most significant progress with less time consump-
tion than EWC. This alignment in performance
underscores the synergistic relationship between
long context generation and continual learning.

For computational efficiency, we set the context
window size to 2k instead of the full size of 4k.
However, we believe the findings remain consis-
tent. The PPL results of various methods under
different window sizes are presented in Fig. 4-(c).
As shown in Fig. 4-(c), as the context window size
increases, the generation performance improves
while maintaining the patterns within the proposed
methods. Integrating OGD consistently yields the
best performance. Therefore, despite the reduced

Method
CIFAR-100 MiniImageNet

Time Acc. (%) Time Acc. (%)

LwF 0.91 63.73 0.94 48.78
EWC 1.22 68.80 1.31 52.01
OGD 1.00 70.96 1.00 59.83

Table 4: Time and accuracy comparison on two bench-
marks. The time is normalized with respect to OGD.

window size, our experiments and analysis remain
valid for context-generation research.

5 Related Work

5.1 Long Context Generation

To improve long sequence inference during deploy-
ment (Kaddour et al., 2023; Anil et al., 2022), vari-
ous techniques (Ratner et al., 2023; Bertsch et al.,
2024) have been developed. One straightforward
method (Pal et al., 2023; Tworkowski et al., 2024)
is to fine-tune LLMs on longer sequences, though
requiring significant training resources (Wang et al.,
2024b). Instead of resource-intensive training, re-
cent methods craftily design position encoding
schemes (Su et al., 2024; Kazemnejad et al., 2024)
or selectively retain important tokens (Han et al.,
2023; Xiao et al., 2023). Additionally, some ap-
proaches (Xiao et al., 2024; Munkhdalai et al.,
2024) incorporate extra token memory to enhance
context generation. In this work, we focus on
training-free approaches that enable LLMs to pro-
cess longer sequences.

5.2 Continual Learning

To achieve continual learning, replay-based meth-
ods (Lopez-Paz and Ranzato, 2017; Shin et al.,
2017) store a portion of old samples in mem-
ory, while expansion-based methods (Rusu et al.,
2016; Yoon et al., 2018, 2019) increase the model
structure to incorporate new knowledge. These
strategies, however, demand additional memory
buffers (Parisi et al., 2019) or an expanding net-
work architecture (Kong et al., 2022), leading to
high computational costs (De Lange et al., 2021).
To promote performance within a fixed network ca-
pacity, regularization-based methods (Kirkpatrick
et al., 2017; Aljundi et al., 2018) design penal-
ties on parameter updates via regularization terms.
Moving beyond explicit neuron constraints, recent
gradient projection methods (Zeng et al., 2019;
Saha et al., 2020) restrict the gradient update direc-
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tions, achieving better performance. In this work,
we focus on leveraging continual learning strate-
gies to enhance context generation.

6 Conclusion

In this paper, we reexamine long context generation
from a continual learning perspective, revealing
the inherent synergy between these two challenges.
Our analysis highlights the relationship between
various approaches in both fields. Furthermore, by
applying continual learning techniques to long con-
text generation, our comprehensive experimental
results demonstrate the efficiency and scalability of
these strategies, underscoring the potential of con-
tinual learning insights for effectively processing
extended contexts.
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