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Abstract

In humans, cognitive biases are systematic de-
viations from rationality in judgment that sim-
plify complex decisions. They typically mani-
fest as a consequence of learned behaviors or
limitations on information processing capabili-
ties. Recent work has shown that these biases
can percolate through training data and ulti-
mately be learned by language models. We
examine different groups of models, factor-
ing in model size and type (base or instructed)
for four kinds of cognitive bias: primacy, re-
cency, common token, and majority class bias.
We evaluate the performance of each model
for each type of bias in different settings us-
ing simple and complex variants of datasets.
Our results show that some biases have much
stronger effects than others, and that task com-
plexity plays a part in eliciting stronger effects
for some of these biases as measured by effect
size. We show that some cognitive biases such
as common token and majority class bias are
not straightforward to evaluate, and that, con-
trary to some of the previous literature, some
effects that have been previously classified as
common token bias in the literature are actually
due to primacy and recency bias.

1 Introduction

A cognitive bias is a systematic deviation in judg-
ment that arises in humans. These deviations typi-
cally occur because they simplify a given problem,
and consequently enable faster decision-making. A
rapidly accumulating amount of evidence shows
that Large Language Models (LLMs) exhibit sim-
ilar biases due to their percolation through the
datasets used to train them. As a consequence,
some model responses can be conditioned by fre-
quent words, classes, and general formatting in the
prompt (Petroni et al., 2019; Jiang et al., 2020; Shin
et al., 2020; Gao et al., 2021; Zhao et al., 2021; Lu
et al., 2022; Mishra et al., 2022; Weber et al., 2023).

*Equal contribution, corresponding authors.

George wants to warm his 
hands quickly by rubbing 
them. Which skin surface 
will produce the most heat?

a) wet hands
b) dry hands
c) hands with lotion
d) hands with palm oil

Input: Subpar acting
Sentiment: negative

Input: Beautiful film
Sentiment: positive

Input: Amazing soundtrack
Sentiment: positive

Input: Not nice
Sentiment:

Which topic is 
the following text 
about?

Halaiba is a 
genus of fly in 
the family 
Dolichopodidae.

Primacy and Recency Majority Class Common Token

Figure 1: An example of each type of cognitive bias
we examine and its effect on model output probabilities:
primacy and recency (left), majority class (center), and
common token (left). We highlight the correct answer
in each case in green.

More recently, Dubey et al. (2024) analyse the ro-
bustness of the suite of Llama 3 models against
these issues, as they can silently affect model be-
haviour. For instance, these biases can make model
responses inconsistent, aggravating an already criti-
cal issue regarding question answering in NLP (Ko
et al., 2020; Robinson et al., 2023; Alzahrani et al.,
2024; Gupta et al., 2024; Zheng et al., 2024). Ad-
ditionally, these cognitive biases can make LLMs
susceptible to specific cues, making them more
easily manipulated into giving a specific answer.

Previous works have put forth contributions that
demonstrate the presence of cognitive biases in
LLMs. We attempt to reproduce some of their
analyses. Our own findings show that, despite prov-
ing that cognitive biases are present in LLMs, these
works do not take into account several relevant
aspects:

• Task complexity. Shrawgi et al. (2024)
demonstrate that social biases tend to be more
evident in LLMs when task complexity in-
creases. To the best of our knowledge, this
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has not been considered for cognitive biases
(Zhao et al., 2021; Zheng et al., 2024; Dubey
et al., 2024).

• The interplay between different types of
cognitive bias. Most works (Zhao et al., 2021;
Lu et al., 2022; Wang et al., 2023) consider
specific cognitive biases in isolation. How-
ever, we have found that, depending on the
evaluation format, effects from different types
of bias can be found, making the quantifica-
tion of their effects more difficult.

• Model type. Most studies examine base (or
pretrained) and instructed models indiscrimi-
nately, while their behaviour can be quite dif-
ferent due to effect of supervised instruction
tuning (Alzahrani et al., 2024; Gupta et al.,
2024; Zheng et al., 2024).

Following Zhao et al. (2021), we examine differ-
ent model families for four different types of cog-
nitive bias: primacy bias, recency bias, common
token bias, and majority class bias. We addition-
ally take task complexity into account, following
Shrawgi et al. (2024). We place specific focus on
model size and type. Our results show increasing
model capacity either by increasing the number
of parameters or performing instruction tuning im-
proves model performance and makes the models
more robust against cognitive biases. Similarly,
reducing task complexity decreases the reliance
of the models on these biases. Furthermore, we
observe that a given bias can interfere with the
quantification of another one in some cases.

2 Related Work

2.1 Cognitive biases

The biases we examine in this paper arise from
their presence in pretraining or instruction datasets
(Malaviya et al., 2022). Others, in contrast, may
emerge in LLMs as a result of a combination of
these artifacts in the training data and their autore-
gressive generative processes (Nathan et al., 2023).
We will describe them in detail below.

Primacy bias Primacy bias refers to a tendency
to attribute greater significance to the first item
in a list of options, often resulting in its selection
more frequently than other items (Matthews, 1927;
Cronbach, 1950).

Recency bias Recency denotes a tendency to
give more importance to items appearing towards
the end of a series (Baddeley and Hitch, 1993).
Note that recency bias is occasionally discussed in
the context of language modeling and other appli-
cations of computer science to describe a tendency
to assign a higher importance to more recent events
(e.g. valuing more recent instances of data in an
LLM pretraining scenario, or more recent entries
in recommendation systems). We highlight that
throughout this paper we use it in the former sense
and not the latter.

Majority class bias This type of cognitive bias
manifests as the tendency to give the majority class
as an answer in a few-shot scenario. For consis-
tency, we draw the parallel between majority class
bias and availability bias in psychology research
(Tversky and Kahneman, 1973; Malaviya et al.,
2022). Availability bias in humans is a mental
shortcut that relies on recent examples, operating
on the notion that if something can be recalled, it
must be important. We argue that majority class
in few-shot contexts can bias a given model into
"believing" that a class is more likely than the other,
based on what it has seen in the few-shot examples.
We further highlight that this bias is more likely a
result of learning mechanisms in the model, and
not of an artifact in the data.

Common token bias Common token bias is es-
sentially an extension of the word-frequency effect
(Broadbent, 1967), which denotes the ease of pro-
cessing and retrieval of more frequent words rela-
tive to rarer words. Zhao et al. (2021) find that a
model is more likely to provide a common word as
an answer relative to a rarer one.

2.2 Cognitive biases in LLMs

Zhao et al. (2021) perform an analysis of cogni-
tive biases in LLMs. Specifically, they examine
the same cognitive biases we do in this paper on
GPT-2 (Radford et al., 2019) and GPT-3 (Brown
et al., 2020) models of varying size. They per-
form text classification on SST-2 (Socher et al.,
2013), TREC (Voorhees and Tice, 2000), Super-
GLUE (Wang et al., 2019), AGNews (Zhang et al.,
2015), and DBPedia (Zhang et al., 2015) datasets.
Fact retrieval is evaluated with LAMA (Petroni
et al., 2019), and information extraction, with ATIS
(Hemphill et al., 1990) and MIT movies (Liu et al.,
2012). We replicate some of their experiments but
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come to different conclusions with respect to their
findings.

Dubey et al. (2024) additionally run extensive
experiments to examine the effects of different
prompt orderings in zero- and few-shot settings
on evaluation robustness of their recently released
Llama models. They find that their models are
affected by these factors, and that performance is
more robust in larger models.

Wang et al. (2023) examine primacy bias in Chat-
GPT (OpenAI, 2022), showing that it is sensitive
to label order in zero-shot prompts. They note that
label shuffling yields inconsistent results and find a
strong effect of label order in GPT-3.5-turbo. They
further posit that, in more difficult tasks, ChatGPT
may lack sufficient discriminative understanding
from the input text. However, they conduct no
in-depth analysis involving the role of task com-
plexity.

Rather than analyse model behaviour, Malaviya
et al. (2022) carry out an in-depth examination of
annotated multiple-choice reading comprehension
datasets. They search for traces of the use of heuris-
tics that can bias a given model when generating
question-answer pairs for model training or evalua-
tion. For instance, they find evidence of the avail-
ability heuristic, by which annotators tend to prefer
question-answer pairs that minimise retrieval effort
(i.e. answers which can be found towards the begin-
ning or the end of a reading passage). They argue
that this artifact of any dataset can very easily be
the cause of primacy or recency effects in LLMs.

2.3 Task complexity
We follow Shrawgi et al. (2024) and look at the
definition and theoretical model developed by Liu
and Li (2012). They state that there are objective
views (where the complexity of a task is due to its
inherent characteristics) and subjective views of
task complexity (where it is due to the interplay
between task characteristics and the entity under-
taking the task).

Liu and Li’s objective model of task complexity
suggests that it is the aggregation of any intrinsic
task characteristics that influence the performance
of a task. They state that a task is composed of
multiple components: output, input, process, pre-
sentation, and time. Each of these can be arbitrarily
more or less complex based on different contribu-
tion factors.

We follow Shrawgi et al. (2024) in selecting
specific contribution factors where we modify the

complexity of a task. For their manipulations, they
only focus on specific factors that can be applicable
to LLMs. They consider that only size, variety,
relationship, and action complexity are the relevant
dimensions for this scenario. Liu and Li (2012)
ascribe to an objective view of task complexity, but
Shrawgi et al. (2024) argue that there are specific
tasks which LLMs struggle with, and therefore task
complexity for LLMs must be subjective.

For our task manipulations, we specifically tar-
get the contribution factor of size; we make each
task more or less complex by increasing or decreas-
ing the number of possible output options. Our
methods are described further in Section 3.

3 Methods

In this paper, we aim to discern if LLMs rely on
cognitive biases and determine the effect of task
difficulty on this reliance. To do so, we statisti-
cally compare a model’s likelihood of providing an
answer as influenced by inherent cognitive biases
in specific tasks. Furthermore, we manipulate the
difficulty levels of these tasks and then observe the
effect our manipulation has on model behaviour.

This Section is structured as follows: §3.1 de-
scribes our model selection, and in §3.2, we detail
each of our experiments, organised by type of cog-
nitive bias. We detail the datasets we use for each
task and how we manipulate them to obtain eas-
ier or more complex task variants, along with the
statistical analyses performed.

3.1 Models

We follow Itzhak et al. (2024) in evaluating both
base and instruction-tuned LLMs to discern if in-
struction tuning has any effect on the presence of
cognitive biases in LLMs by evaluating the likeli-
hood of various candidates from a predefined set of
possible answers. This it circumvents formatting
issues, specific keyword matching, etc.

We select the FLOR-BLOOM pair of model
families due to the language adaptation paradigm
carried out to train the FLOR model (Da Dalt et al.,
2024). Essentially, FLOR is a BLOOM model
(Workshop et al., 2022) that has been adapted in
a continual pretraining setting. We evaluate them
to see if the effect of the cognitive biases is com-
parable for both model types. As it has been al-
ready noted, we also include in our analysis the
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Dataset # few-shot
FLOR BLOOM Mistral

base instructed base instructed base instructed

1.3B 6.3B 1.3B 6.3B 1.7B 7.1B 1.7B 7.1B 7B 7B

SST-2 (original) 4 0.66 0.69 0.72 0.78 0.78 0.79 0.67 0.72 0.90 0.93
SST-2 (hard) 5 0.65 0.51 0.71 0.52 0.77 0.69 0.67 0.75 0.90 0.87

ARC-Easy (3 ans.) 0 0.37 0.43 0.37 0.44 0.37 0.41 0.71 0.84 0.86 0.91
ARC-Challenge (3 ans.) 0 0.34 0.36 0.34 0.36 0.33 0.35 0.54 0.67 0.72 0.82
ARC-Easy (4 ans.) 0 0.28 0.35 0.28 0.35 0.28 0.32 0.66 0.80 0.82 0.88
ARC-Challenge (4 ans.) 0 0.25 0.29 0.26 0.28 0.24 0.26 0.46 0.61 0.65 0.75

DBPedia (8 labels) 0 0.34 0.35 0.21 0.16 0.39 0.66 0.79 0.71 0.59 0.85
DBPedia (14 labels) 0 0.21 0.25 0.09 0.07 0.31 0.47 0.77 0.72 0.59 0.87

Table 1: Model performance on different datasets, as measured by accuracy.

instructed versions of both FLOR1,2 and BLOOM
(BLOOMZ; Muennighoff et al., 2023). We also
examine Mistral (Jiang et al., 2023) due to its high
performance across multiple benchmarks.

3.2 Experimental Setup

For all of our experiments, probabilities for
each choice are estimated using version 0.4.2 of
EleutherAI’s Evaluation Harness (Gao et al., 2023).
The choice with the highest likelihood is taken
as the model’s answer. This ensures that model
responses are consistent and reproducible across
runs, and eliminates any undesired variation. We
conduct our statistical analyses using SciPy (Virta-
nen et al., 2020). We provide examples from each
dataset and task in Appendix B.

3.2.1 Primacy and recency bias
To examine primacy and recency bias, we carry out
a zero-shot classification task. We use the ARC
dataset (Clark et al., 2018), consisting of several
multiple choice questions that are divided into an
easy and challenge set. To avoid introducing un-
wanted confounds, we only consider questions that
have four multiple-choice options prior to any of
our manipulations (i.e. containing options A, B,
C, D). We create four instances from each prompt,
each time changing the position of the correct an-
swer, thereby mitigating any confounds that stem
from label imbalance.

Following Liu and Li (2012), having more possi-
bilities for a decision makes a given task decidedly
more complex. Thus, we reduce the original task
complexity by discarding an incorrect option at ran-

1https://hf.co/projecte-aina/FLOR-1.
3B-Instructed

2https://hf.co/projecte-aina/FLOR-6.
3B-Instructed

dom, thus narrowing down the number of possible
options from four to three. In this simpler variant,
each instance is also prompted three times, varying
the position of the correct answer.3

We use a similar experimental design for both
primacy and recency bias on the ARC dataset. In
these cases, we perform a χ2 goodness-of-fit test
between the position of interest and the middle two
positions: when evaluating primacy bias, we ignore
instances whose predicted label is the last one given
in the prompt (i.e. we only consider options A, B,
and C), and when we evaluate recency bias, we ig-
nore instances whose predicted label is the first one
in the prompt (B, C, and D). Performing tests on
groups of three rather than all four positions allows
us to isolate the specific effects of each position of
interest, while avoiding influence from the other
bias. Note that we exclude instances in which the
model outputs identical log likelihood for multiple
options, as it makes evaluating the selected answer
more difficult.

3.2.2 Majority class bias

Majority class bias is assessed with 4- and 5-shot
classification experiments. As in Zhao et al. (2021),
we use the SST-2 dataset on sentiment analysis,
which consists of approximately 70k single sen-
tences extracted from movie reviews labeled as
negative or positive. We make use of 25k instances,
while the remaining ones serve as training exam-
ples for the multi-shot design. Each test instance is
prompted with all possible unbalanced 4-shot distri-
butions; that is to say, we do not consider instances
where the number of positive classes is equal to
the number of negative ones. See Figure 3 for all

3Our manipulated version of the ARC dataset can be found
here: https://hf.co/datasets/BSC-LT/cobie_ai2_arc.

https://hf.co/projecte-aina/FLOR-1.3B-Instructed
https://hf.co/projecte-aina/FLOR-1.3B-Instructed
https://hf.co/projecte-aina/FLOR-6.3B-Instructed
https://hf.co/projecte-aina/FLOR-6.3B-Instructed
https://hf.co/datasets/BSC-LT/cobie_ai2_arc
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examined 4-shot settings.
We increase complexity by introducing an ad-

ditional neutral class. We then carry out 5-shot
classification: in each few-shot scenario, we insert
a neutral example between the first two and last
two examples as to avoid confounding primacy and
recency effects.4

Using SST-2, we conduct χ2 independence tests
between the predicted label and the majority class
in the few-shot setting: 0 (negative) or 1 (positive)
for each of the two variables.

In addition, we observe primacy and recency
effects after further dividing the dataset based on
the majority class. For each majority class, we
perform additional independence tests between the
predicted label and the class of the first shot, and
between the predicted label and the class of the
last shot. We highlight that, despite the presence
of significant effects in some cases, they do not
drastically influence the overarching majority class
effects, based on the frequencies shown in Figure
3. We include the results of the primacy and re-
cency effects when measuring majority class bias
in Appendix A.

3.2.3 Common token bias
We follow Zhao et al. (2021) and use DBPedia,
a balanced 14-way topic classification dataset, to
assess common token bias.

To determine the prevalence of each token in the
training data for our analysis, we take into account
both the frequency based on Google Ngrams5, and
the relative frequency as indicated by the mod-
els’ Byte-Pair-Encoding (BPE) tokenizer (Khanna,
2021). We examine the indices of specific tokens in
the tokenizer, as they more directly indicate token
frequency in the data used for pretraining. Some
target label names in the dataset do not correspond
to a unique token, which complicates the evalua-
tion of common token bias. We discard instances
where the correct label is not composed by a single
token in all of the tokenizers of the models we ex-
amine to avoid biases in the aggregation of token
probabilities. This yields a balanced dataset of 40k
instances and 8 labels out of the 14 original ones.
See Appendix B for the original prompt by Zhao
et al. (2021) and our slightly modified prompt.

We attempt to evaluate common token bias on
DBPedia leveraging several experimental setups.

4Our manipulated version of the SST-2 dataset is available
here: https://hf.co/datasets/BSC-LT/cobie_sst2.

5https://books.google.com/ngrams

Model
ARC-Easy ARC-Challenge

3 ans. 4 ans. 3 ans. 4 ans.
φ φ φ φ

FLOR
base 1.3B 0.71 1.03 0.73 1.04

6.3B 0.72 0.98 0.74 0.96

ins. 1.3B 0.76 1.10 0.77 1.09
6.3B 0.72 1.02 0.76 1.03

BLOOM
base 1.7B 0.82 1.15 0.82 1.16

7.1B 0.75 1.04 0.78 1.09

ins. 1.7B 0.11 0.15 0.14 0.17
7.1B 0.04 0.09 0.07 0.12

Mistral base 7B 0.12 0.14 0.16 0.24

ins. 7B 0.04 0.04 0.05 0.08

Table 2: φ coefficients resulting of χ2 goodness-of-
fit tests to check primacy bias on easy and challenge
subsets of ARC dataset. To isolate primacy effects, we
only consider options A, B, and C.

Our initial experiment follows the same method
as Zhao et al. (2021), with our modifications to
the prompt and evaluation (i.e. disregarding the
labels that are not included as a whole token in
the tokenizers of all evaluated models). We further
examine the effects of shuffling label order in each
prompt, and removing the labels from the prompt
altogether.

4 Results

Table 1 details performance results as measured by
accuracy on the different datasets used. Results of
statistical tests6 for each of the examined biases
are detailed below in Tables 2, 3, and 4. We only
include effect size coefficients where a significant
effect is found.

4.1 Primacy bias

We observe significant effects across the board for
all model families, sizes, and types as shown in
Table 2. The effect size is large in most models.
We see that effect size is smaller in larger models
when compared to smaller ones, and smaller in
instructed models as opposed to their base coun-
terparts. Furthermore, the table shows that effect
size is always greater in the four-answer dataset in
comparison to its three-answer version. This is not
necessarily the case when comparing ARC-Easy
and ARC-Challenge.

https://hf.co/datasets/BSC-LT/cobie_sst2
https://books.google.com/ngrams


1772

Figure 2: Frequency distributions of predicted answers on ARC subsets depending on their position in the prompt
and the number of multiple-choice answers given. Order of models in graph is top to bottom, then left to right.

Model
ARC-Easy ARC-Challenge

3 ans. 4 ans. 3 ans. 4 ans.
φ φ φ φ

FLOR
base 1.3B 0.12 0.22 0.07 0.21

6.3B 0.03 0.10 0.08 0.10

ins. 1.3B 0.13 0.27 0.17 0.32
6.3B 0.05 0.13 − 0.13

BLOOM
base 1.7B 0.20 0.23 0.19 0.25

7.1B − − − −

ins. 1.7B 0.04 0.03 0.06 0.06
7.1B 0.04 0.04 0.10 0.10

Mistral base 7B − − − 0.04

ins. 7B − − − −

Table 3: φ coefficients resulting of χ2 goodness-of-fit
tests to check positional bias on easy and challenge
subsets of ARC dataset. −: p-value > 0.05. To isolate
recency effects, we only include options B, C, and D.
Note that while the analysis was initially planned for
recency bias, effect sizes are for primacy bias.

4.2 Recency bias

While this experiment was designed to examine
recency bias, we find no recency effects. To our
surprise, taking Figure 2 and Table 3 together, we
see an extension of the effect of primacy bias; we
observe significant, but small, primacy effects for

6For φ and V coefficients, 0.1 represents a small effect;
0.3, a medium effect and 0.5 and greater, a large effect.

Model
SST-2

original hard
V V

FLOR
base 1.3B 0.46 0.54

6.3B 0.41 0.53

ins. 1.3B 0.39 0.45
6.3B 0.28 0.37

BLOOM
base 1.7B 0.23 0.31

7.1B 0.31 0.41

ins. 1.7B 0.53 0.52
7.1B 0.44 0.39

Mistral base 7B 0.11 0.05

ins. 7B 0.02 0.01

Table 4: V coefficients resulting of χ2 independence
tests to check majority class bias on SST-2 dataset.

FLOR and BLOOM model families, as seen in the
more elevated frequencies for option B as compared
to C, and C as compared to D. We see that increas-
ing model size decreases effect size for FLOR and
BLOOM base but not BLOOMZ, and instruction
tuning actually increases it for the FLOR models,
but decreases it for BLOOM.

4.3 Majority class bias

Majority class bias is evaluated on the SST-2
dataset in 4 and 5-shot settings. Figure 3 shows the
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Figure 3: Frequency distributions of class 0 predictions on SST-2 dataset depending on the class distribution in
few-shot. 0 denotes the negative class, while 1 denotes the positive class. In the lower figure, N represents the
included neutral example to add task complexity.

results obtained in both variants. Reliance on this
bias was statistically measured with χ2 indepen-
dence tests between predicted label and majority
class. Effect sizes (Cramér’s V coefficient) are
detailed in Table 4.

Table 4 shows similar results as Tables 2 and
3, in that larger and instructed models have lower
effect sizes than smaller base models. We see this
trend across the board for all model families. In
addition, our manipulation to make the task more
complex by adding an extra category makes the ef-
fect of majority class bias larger; we observe larger
effect sizes for almost every model on the SST-2
hard variant of the dataset. Exceptionally, both
versions of Mistral and BLOOMZ have a slightly
smaller effect size.

Furthermore, a careful observation of Figure 3
reveals a recency effect (see Appendix A Tables
6a-6d); output rates of the 0 class drop in the case
of 00(N)01, even more so than in the 10(N)00 shots.
We find that the effect is mirrored in 11(N)10 and
01(N)11 shots for the 1 class.

4.4 Common token bias

To evaluate common token bias, we initially fol-
lowed Zhao et al. (2021) and used DBPedia test
split with the prompt proposed by the authors.

Figure 4 illustrates the frequency distribution of
the models’ outputs for each of the included labels.
As clearly seen, there is a preference towards Com-
pany and Book in the upper panel. These results
align with Zhao et al. (2021), who stated that their
evaluated models predict the Book class more of-

ten than the Artist class (excluded here). However,
Figure 4 shows that this preference is not present
for Company when the list is shuffled (lower left),
but remains for Book. Nevertheless, we observe
a tendency to prefer the Book and Nature classes
in the smaller FLOR models when no labels are
explicitly provided (lower right). We highlight that
Book and Nature are not the most common tokens
according to Google Ngrams or according to the
FLOR BPE tokenizer (see Appendix C, Figure 5).

5 Discussion

5.1 Primacy, recency, and majority class
biases

For primacy and majority class biases, the trends
are quite clear; larger models exhibit smaller effects
of cognitive bias than their smaller counterparts
(e.g. BLOOM 7.1B vs. BLOOM 1.7B). Further-
more, instruction-tuned models are normally more
robust against cognitive biases than their base ver-
sions (e.g. FLOR-1.3B-Instructed vs. FLOR 1.3B).
However, this seems to be somewhat dependent on
the instruction tuning dataset; for instance, major-
ity class bias effect size is actually much greater
for BLOOMZ models than it is for BLOOM mod-
els. We suspect that the increase in model capacity
allows the model to be guided by the more rele-
vant aspects of the task, which decreases reliance
on irrelevant aspects. This may coincide with an
increase in performance, but not necessarily. For
instance, in Table 1, instructed FLOR models show
similar performance on ARC-Easy, while showing
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Figure 4: Frequency distributions of predicted DBPedia labels in three contexts: keeping the order in which labels
are presented in the prompt (upper panel), randomly shuffling their order each time (lower left), and not including
any label (lower right).

a lower effect size for primacy bias (Table 2).

We do not detect a recency effect on the ARC
multiple-choice task, but we do observe it in a few-
shot setting on the SST-2 dataset. Moreover, we
see that the recency effect does not follow the same
trends as primacy and majority class bias; the ef-
fect size actually decreases when we increase task
complexity, while the effect size for majority class
increases.

The presence of recency bias in the 4-shot setting
but not zero-shot setting suggests that the prompt
formats rely differently on cognitive biases. For
instance, Nathan et al. (2023) argue that in-context
learning in few-shot prompts is akin to a superficial
form of gradient descent, in which case the impor-
tance of the final shot may only be relevant when
the number of shots is small, as its contribution,
while salient, would become diluted with all other
shots. This differs from zero-shot settings as there
would be no in-context learning.

All examined biases seem to be affected in one
way or another by task complexity, albeit with some
differences. While increasing the difficulty of the
content lowers accuracy (i.e. models have lower
accuracy on ARC-Challenge than on ARC-Easy),
we observe that it does not necessarily increase
reliance on cognitive biases. However, our manip-
ulation of increasing or decreasing the number of
options for each task (e.g. removing an incorrect
option for ARC or adding an extra neutral class

for SST-2) consistently yields differences in per-
formance in addition to increasing the models’ re-
liance on cognitive bias. This suggests that while
the ARC-Challenge subset may include more chal-
lenging questions in terms of content, the task in it-
self is not more complex, consistent with the model
put forth by Liu and Li (2012).

Regarding the transfer of cognitive biases as a
result of continued pretraining, some similarities
are observed between FLOR and BLOOM models.
However, these are by no means robust, as there can
be stark differences between base models. For in-
stance, BLOOM base models have a much smaller
effect size for majority class bias in comparison to
FLOR base models.

Furthermore, our results support Shrawgi et al.
(2024)’s subjective perspective of task difficulty;
if an unmitigated reliance on cognitive biases can
be taken as a proxy for task complexity, then our
results show that complexity must be affected by
both the model’s capacity and the complexity con-
tribution factors.

5.2 On the difficulty of assessing common
token bias

Given our use of multilingual models, correctly
estimating token frequency is a complex task. On
one hand, utilising Google Ngrams would give a
rough estimate of the prevalence of a given word
in monolingual corpora. But on the other hand,
directly examining a BPE tokenizer can reveal the
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relative order of tokens by how common they are
in the entire pretraining corpus (Khanna, 2021).

While our initial experiment shows agreement
with Zhao et al. (2021), we observe that our re-
sults are also consistent with primacy and recency
effects. Results of the χ2 goodness-of-fit tests con-
firm that these biases come into play, with very
large effect sizes in some instances (see appendix
A). Further to this, randomly reordering the labels
on a prompt-by-prompt basis leads to the disap-
pearance of these effects, as shown in the lower
left in Figure 4. However, our third experiment
where the labels are completely removed (lower
right of Figure 4) does show that the labels Book
and Nature are predicted with a higher frequency.
We highlight that these are not the most common
tokens according to either Google Ngrams or the
BPE tokenizer.

In light of the discrepancy between the predic-
tions and token frequencies, we posit that other
factors are at play that influence the prediction pro-
cess that may have stronger effects. Furthermore,
we do not carry out an experiment where we mod-
ify task difficulty, as it is unclear what cognitive
bias we would be measuring.

6 Conclusion and future work

Our results contribute to a growing body of work
showing that cognitive biases occur frequently in
LLMs. This raises the question: How should NLP
practitioners and developers measure performance
in a fair and robust way? Furthermore, we highlight
the novelty of our contributions: our theory-driven
data manipulations show that the complexity of a
given task often impacts the extent to which LLMs
make use of these biases, which has consequences
on the robustness of current evaluation frameworks.

We demonstrate that several types of bias can
be at play within the same task, to the extent that
they can obscure specific effects (i.e. primacy and
recency bias can be concealed by common token
bias) thus making the analysis more difficult. This
has been, to the best of our knowledge, consistently
overlooked in the literature.

Future work will aim to develop a more ade-
quate method to detect the presence of common
token bias. Additionally, our method aligns with
Dubey et al. (2024) in examining model robustness
against cognitive biases; rather than conducting
a broad analysis, we carry out an in-depth analy-
sis on a few specific datasets. However, we argue

that the robustness of the trends across datasets,
models and types of bias is indicative of the gener-
alisability of our findings, especially when taking
into account previous literature (Zhao et al., 2021;
Shrawgi et al., 2024). That said, we aim to further
extend our analysis to more varied datasets and
model families.

7 Limitations

As stated in Section 6, given the depth of our anal-
ysis of task complexity manipulations and the de-
tail with which we examine the cognitive biases,
our scope of analysis is fairly limited in terms of
datasets and model families.

In addition, we were able to discern that primacy
and recency biases influence model performance
on the DBPedia text classification task. However,
were not able to completely rule out (or rule in)
common token bias, due to issues accessing the
specific datasets the models were trained on and the
compute budget necessary to quantify occurrences
of each label in the dataset. As stated, we aim to
address these issues in future work.

8 Ethics statement

With this paper, we aim to shed light on the pres-
ence of cognitive biases in LLMs and their inter-
play with task difficulty and evaluation robustness.
However, by doing so, we expose a weakness in
LLMs that can be exploited to influence their pre-
dictions. At the same time, by exposing the weak-
ness and participating in the discussion of what the
implications are for model evaluation, we hope to
contribute to finding a solution. We do not fore-
see our work being used for any other unethical
purposes beyond what is mentioned in this section.
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A On the Interplay of Primacy and
Recency Biases with Other Biases:
Statistical Analysis

Tables 5a and 5b show the results on common token
bias. Tables 6a, 6b, 6c and 6d detail the results
of χ2 independence tests to check the interaction
between primacy and recency biases on majority
class bias.

Model
DBPedia
(8 labels)

φ

FLOR
base 1.3B 1.44

6.3B 1.83

ins. 1.3B 1.97
6.3B 1.67

BLOOM
base 1.7B 1.10

7.1B 0.68

ins. 1.7B 0.37
7.1B 0.67

Mistral base 7B 0.78

ins. 7B 0.21

(a) Primacy bias. To isolate primacy effects, we do not
consider the last option in the prompt.

Model
DBPedia
(8 labels)

φ

FLOR
base 1.3B 1.46

6.3B 0.92

ins. 1.3B 1.63
6.3B 1.01

BLOOM
base 1.7B 1.55

7.1B 0.57

ins. 1.7B 0.52
7.1B 0.76

Mistral base 7B 0.75

ins. 7B 0.22

(b) Recency bias on DBPedia dataset (8 labels). To isolate
recency effects, we do not consider the first option in the
prompt.

Table 5: φ coefficients resulting from χ2 goodness-of-fit
tests to check positional effects on DBPedia.
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Model
SST-2

original hard
V V

FLOR
base 1.3B 0.14 0.12

6.3B 0.05 0.03

ins. 1.3B 0.18 0.15
6.3B 0.06 0.12

BLOOM
base 1.7B 0.03 0.04

7.1B 0.06 0.04

ins. 1.7B 0.04 0.03
7.1B − −

Mistral base 7B 0.03 0.03

ins. 7B 0.02 0.02

(a) Primacy bias when class distribution in few-shot is
unbalanced towards class 0. −: p-value > 0.05.

Model
SST-2

original hard
V V

FLOR
base 1.3B 0.10 0.07

6.3B 0.04 0.04

ins. 1.3B 0.07 0.03
6.3B 0.07 −

BLOOM
base 1.7B 0.06 0.07

7.1B 0.03 −

ins. 1.7B 0.05 0.03
7.1B 0.02 0.02

Mistral base 7B 0.03 0.03

ins. 7B 0.02 0.02

(b) Primacy bias when class distribution in few-shot is
unbalanced towards class 1. −: p-value > 0.05.

Model
SST-2

original hard
V V

FLOR
base 1.3B 0.36 0.03

6.3B 0.22 0.18

ins. 1.3B 0.34 0.05
6.3B 0.15 0.13

BLOOM
base 1.7B 0.29 0.01

7.1B 0.24 0.05

ins. 1.7B 0.17 0.02
7.1B 0.17 0.01

Mistral base 7B 0.03 0.01

ins. 7B 0.01 −

(c) Recency bias when class distribution in few-shot is
unbalanced towards class 0. −: p-value > 0.05.

Model
SST-2

original hard
V V

FLOR
base 1.3B 0.35 0.06

6.3B 0.22 0.02

ins. 1.3B 0.24 0.05
6.3B 0.21 −

BLOOM
base 1.7B 0.27 0.02

7.1B 0.20 0.01

ins. 1.7B 0.20 0.07
7.1B 0.14 −

Mistral base 7B 0.04 0.01

ins. 7B − −

(d) Recency bias when class distribution in few-shot is
unbalanced towards class 1. −: p-value > 0.05.

Table 6: V coefficients resulting from χ2 independence tests to check positional effects on SST-2.
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B Prompts Used

Tables 7, 8 and 9 show the default prompts used
for all tasks.

Task Example Prompt Labels

original Review: very pleasing at its best moments
Sentiment: positive

Review: accident
Sentiment: negative

Review: an unremittingly ugly movie
Sentiment: negative

Review: like a medium-grade network sitcom – mostly
inoffensive , fitfully amusing , but ultimately so
weightless that a decent draft in the auditorium might
blow it off the screen .
Sentiment: negative

Review: it ’s a charming and often affecting journey .
Sentiment:

negative, positive

hard Review: very pleasing at its best moments
Sentiment: positive

Review: accident
Sentiment: negative

Review: This is an example.
Sentiment: neutral

Review: an unremittingly ugly movie
Sentiment: negative

Review: like a medium-grade network sitcom – mostly
inoffensive , fitfully amusing , but ultimately so
weightless that a decent draft in the auditorium might
blow it off the screen .
Sentiment: negative

Review: it ’s a charming and often affecting journey .
Sentiment:

negative, positive,
neutral

Table 7: Few-shot prompts used to assess majority class bias with SST-2 dataset. We show one example per task and
their possible predicted labels. Note that each instance is prompted with all possible class distributions in few-shot
setting. The original 4-shot prompt is the one used by Zhao et al. (2021). The hard 5-shot version was created
inserting a neutral example (in bold).
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Task Example Prompt

3 answers Question: Why do satellites and spacecraft launched from Earth
need to reach a specific speed to escape Earth’s surface?
Possible answers: to overcome Earth’s gravitational force, to
break through the sound barrier, to avoid Earth’s magnetic field.
Answer:
Question: Why do satellites and spacecraft launched from Earth
need to reach a specific speed to escape Earth’s surface?
Possible answers: to break through the sound barrier, to overcome
Earth’s gravitational force, to avoid Earth’s magnetic field.
Answer:

Question: Why do satellites and spacecraft launched from Earth
need to reach a specific speed to escape Earth’s surface?
Possible answers: to break through the sound barrier, to avoid
Earth’s magnetic field, to overcome Earth’s gravitational force.
Answer:

4 answers Question: Seasons in Alaska are primarily caused by which factor
as Earth revolves around the Sun?
Possible answers: the tilt of Earth on its axis, the rate of
rotation of Earth, the effects of solar flare activity, the
relative distance between Earth and the Sun.
Answer:

Question: Seasons in Alaska are primarily caused by which factor
as Earth revolves around the Sun?
Possible answers: the rate of rotation of Earth, the tilt of
Earth on its axis, the effects of solar flare activity, the
relative distance between Earth and the Sun.
Answer:

Question: Seasons in Alaska are primarily caused by which factor
as Earth revolves around the Sun?
Possible answers: the rate of rotation of Earth, the effects
of solar flare activity, the tilt of Earth on its axis, the
relative distance between Earth and the Sun.
Answer:

Question: Seasons in Alaska are primarily caused by which factor
as Earth revolves around the Sun?
Possible answers: the rate of rotation of Earth, the effects of
solar flare activity, the relative distance between Earth and
the Sun, the tilt of Earth on its axis.
Answer:

Table 8: Zero-shot prompts with instances from ARC easy and challenge subsets used to assess primacy and recency
bias. We show one example per task. Predicted labels are each possible answer in each case. Original prompt was
taken from Gao et al. (2023).
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Task Example Prompt Labels

14 labels Classify the document based on whether it
is about a Company, School, Artist, Athlete,
Politician, Transportation, Building, Nature,
Village, Animal, Plant, Album, Film, or Book.
Article: RagWing Aircraft Designs (also called
the RagWing Aeroplane Company and RagWing
Aviation) was an American aircraft design and
manufacturing company based in Belton South
Carolina.
Answer:

Company, School, Artist,
Athlete, Politician, Trans-
portation, Building, Na-
ture, Village, Animal,
Plant, Album, Film, Book

8 labels Classify the document based on whether it is
about a Company, School, Building, Nature,
Village, Animal, Film, or Book.
Article: RagWing Aircraft Designs (also called
the RagWing Aeroplane Company and RagWing
Aviation) was an American aircraft design and
manufacturing company based in Belton South
Carolina.
Answer:

Company, School, Build-
ing, Nature, Village, Ani-
mal, Film, Book

8 labels,
shuffled

Classify the document based on whether it is
about an Animal, Film, Book, Building, School,
Company, Nature, or Village.
Article: RagWing Aircraft Designs (also called
the RagWing Aeroplane Company and RagWing
Aviation) was an American aircraft design and
manufacturing company based in Belton South
Carolina.
Answer:

8 labels,
without list of
labels

Classify the document based on its main topic.
Article: RagWing Aircraft Designs (also called
the RagWing Aeroplane Company and RagWing
Aviation) was an American aircraft design and
manufacturing company based in Belton South
Carolina.
Answer:

Table 9: Zero-shot prompts with intances from DBPedia to assess common token bias. We show one example per
task and their possible predicted labels. Original prompt with 14 labels is the one used by Zhao et al. (2021). It was
slightly modified to adapt it to only 8 labels and to show no labels. Changes are shown in bold. As for the prompt
showing the 8 possible labels in a random order, labels were shuffled for each prompt. Note that the a article before
the first label was changed to an when necessary to avoid grammatical errors.
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C DBPedia Token Frequencies

Figure 5 illustrates the frequency of each token
corresponding to DBPedia uni-token labels on the
web, calculated using Google Ngrams.

Figure 5: Frequency of DBPedia uni-token labels on the web according to Google Ngrams.
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