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Abstract

Using token representation from bidirectional
language models (LMs) such as BERT is still a
widely used approach for token-classification
tasks. Even though there exist much larger
unidirectional LMs such as Llama-2, they are
rarely used to replace the token representa-
tion of bidirectional LMs. In this work, we
hypothesize that their lack of bidirectional-
ity is what is keeping unidirectional LMs be-
hind. To that end, we propose to newly train
a small backward LM and concatenate its rep-
resentations to those of an existing LM for
downstream tasks. Through experiments in
token-classification tasks, we demonstrate that
introducing a backward model can improve
the benchmark performance by more than 10
points. Furthermore, we show that the pro-
posed method is especially effective for rare
domains and in few-shot learning settings.

1 Introduction

In recent years, pretrained large unidirectional lan-
guage models (UniLMs), such as Llama-2 (Tou-
vron et al., 2023) and OpenAI GPT (OpenAI,
2024), have become widely used. Large UniLMs
have demonstrated that various tasks can be solved
by means of generation. On the other hand, bidirec-
tional language models (BiLMs), most well-known
by BERT (Devlin et al., 2019), equipped with a
classification layer are still widely used in many
NLP tasks. In particular, BiLMs are still domi-
nant for token-level classification tasks. For ex-
ample, as of 2024, top three models in two popu-
lar token-level classification tasks, CoNLL 2003
named entity recognition (NER) (Tjong Kim Sang
and De Meulder, 2003) and DocRED relation-
ship extraction (Yao et al., 2019), are all based
on BiLMs1.

1From Papers With Code, as of May, 2024. Top three
models are (Wang et al., 2021; Yamada et al., 2020; Zhou and
Chen, 2021) for CoNLL 2003 and (Ma et al., 2023; Tan et al.,
2022; Xu et al., 2021) for DocRED.

The reason why the application of large UniLMs
in token-level classification tasks has not pro-
gressed can be attributed to their lack of bidirec-
tionality. In a UniLM, the representation of a token
is computed solely based on the preceding con-
text, as we elaborate in Section 2.1. To overcome
this problem, BehnamGhader et al. (2024) intro-
duced LLM2Vec, where UniLMs are fine-tuned
with masked token prediction after removing their
causal attention masks. This allows the model to at-
tend to both the beginning and the end of a sentence
thus acquiring bidirectionality. This allows utiliz-
ing existing UniLMs not only for generation tasks
but also for highly accurate solutions to token-level
classification tasks.

LLM2Vec, however, has a downside that it re-
quires training for each UniLM, which is costly if
we are to try out various UniLMs to find a good
fit for a downstream task. Given the already large
and rapidly evolving zoo of UniLMs, it would be
beneficial if there is a one-for-many solution for
equipping bidirectionality to UniLMs.

In this work, we propose a new way to acquire
bidirectionality without tuning large UniLMs them-
selves. Specifically, we newly train a small UniLM
for generating text from the end (referred to the
“backward LM”) and concatenate its token represen-
tations to those of the pretrained UniLM (referred
to the “forward LM”) to obtain pseudo bidirection-
ality. After that, we train only the classification
layer for the downstream tasks as a drop-in replace-
ment of BiLMs. The backward LM is independent
on which forward LM it is used with, thus it can
be combined with various size of UniLMs even if
it ended up in a heterogeneous configuration.

In the experiments, we focus on three kinds of
token-classification tasks, i.e., chunking, part-of-
speech (POS) tagging and NER, and compare the
performances of UniLMs with and without back-
ward LM. We observe that adding backward LMs
consistently improves the performance by up to

mailto:yuta.koreeda.pb@hitachi.com
https://paperswithcode.com/sota/named-entity-recognition-ner-on-conll-2003
https://paperswithcode.com/sota/relation-extraction-on-docred
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more than 10 points in CoNLL2003-NER. Addi-
tionally, we demonstrate that the proposed method
consistently improves performance in few-shot set-
tings or when targeting rare domains.

The contributions of this study are as follows:

1. We empirically show that unidirectionality is
a problem when adopting UniLMs to token-
level classification tasks.

2. We proposed a novel method to newly train
a small-scale backward LM and concatenate
its representations to those of existing LM to
achieve pseudo bidirectionality in UniLMs.

3. We open-sourced backward LM and its train-
ing code to foster future research2.

2 Proposed Method

2.1 Prerequisite
In this section, we review two types of LMs:
UniLMs and BiLMs. Given an input sequence x =
(x1, x2, . . . , xN ) with N tokens, the difference be-
tween the two models lies in how they compute
representations for each word xi (1 ≤ i ≤ N).

In BiLMs, the representation hbii is computed
based on the context from both the beginning and
the end of the text:

hbii = BiLMφ(xi|x<i,x>i), (1)

where x<i = (x1, x2, . . . , xi−1) and x>i =
(xi+1, xi+2, . . . , xN ). To solve token-classification
tasks, we can input hbii to the newly added classifi-
cation layers.

On the other hand, a forward LM computes the
representation

−→
h i solely based on earlier context:

−→
h i =

−−→
UniLMθ(xi|x<i). (2)

As can be seen from equation (2), UniLMs need
to compute the representation for the i-th word
without using the subsequent context x>i.

2.2 Utilization of the Bidirectional Language
Model

The proposed method leverages the concatenated
representations of both the forward LM

−−→
UniLM(·)

and the backward LM
←−−
UniLM(·) for the down-

stream task. In contrast to the forward LM, a back-
ward LM computes

←−
hi given the context from the

end:

←−
h i =

←−−
UniLMθ′(xi|x>i). (3)

2https://github.com/hitachi-nlp/backward-llm

The final representation for the i-th token con-
siders both the forward and backward contexts
by concatenating

−→
hi and

←−
hi, denoted as hi =

Concat[
−→
hi,
←−
hi]. Therefore, the dimensions of hi

is the sum of the hidden vector dimensions of the
forward and backward LMs.

To compute the concatenated representations as
described above, it is necessary to share the vo-
cabulary between the forward and backward LMs.
Nevertheless, it is possible to use arbitrary archi-
tectures and parameter sizes for both models. For
instance, we can employ a heterogeneous configu-
ration, such as |θ| � |θ′|. This means that we can
utilize the existing assets of |θ| with just a small
compute of training |θ′|. In this study, a part of
experiments is conducted with such heterogeneous
configuration.

3 Experiments

We verify whether UniLMs can acquire bidirection-
ality by adding backward UniLMs through evalu-
ation on four token-classification tasks. We train
a backward LM (124M parameters) and apply it
to GPT-2 (base, 124M) (Radford et al., 2019) and
Llama2-7b (Touvron et al., 2023), to verify whether
the proposed method can be applied to UniLMs of
different sizes.

3.1 Training Backward LM

We train a backward LM for each of Llama2 and
GPT-2, as the backward LM should have the same
vocabulary as the forward LM. The architecture
follows that of GPT-2 (base), but we resize the in-
put dimension of the embedding layer to match the
vocabulary size of the forward LM. We initialize
the models with random parameters and train it on
BookCorpus (Zhu et al., 2015) and Wikitext (Mer-
ity et al., 2017) (wikitext-103-raw-v1) datasets,
with next token prediction objective. During the
preprocessing step, we concatenate the training
data from both datasets and shuffle them on a doc-
ument level3. Next, we perform subword tokeniza-
tion with the forward LM’s tokenizer. We extract
training data by cutting it into segments of 1,024
tokens, starting the beginning of the dataset, and
then reversing them. For training, we set the batch
size to 512 and the learning rate to 2e-5 with a
cosine scheduler.

3For Wikitext, we removed empty lines and strings corre-
sponding to headings beforehand.

https://github.com/hitachi-nlp/backward-llm
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Figure 1: The performance of UniLMs (“Forward”) and the proposed concatenated LMs (“Concat”) against a
BiLM (BERT)

3.2 Downstream Tasks

To evaluate the effectiveness of the proposed
method in a token-level classification task, we em-
ploy chunking, POS tagging, NER from CoNLL-
2003 dataset (Tjong Kim Sang and De Meulder,
2003). In addition, we utilize Few-NERD dataset
(supervised setting) (Ding et al., 2021) to verify the
NER performance on rare domains. We hypothe-
size that larger forward LMs are effective in this
more challenging setting because of their extensive
knowledge.

In the evaluation, we use span-based F1 score
for chunking and NER, and word-level accuracy
for POS.

During downstream task training, we input the
representations hi from each model into the clas-
sification layer and optimize the classification
layer while keeping using cross-entropy loss. The
classification layer consists of two linear layers.
Let d be the dimensionality of hi and c be the
number of classes. We use W1 ∈ Rd×d and
W2 ∈ Rc×d to estimate the distribution p =
softmax(W2ReLU(W1hi)) ∈ Rc.

We set the batch size to 32 and employ
AdamW (Loshchilov and Hutter, 2019). We lin-
early decay the learning rate to zero from 1e-3. We
only train the classification layer while keeping the
other layers fixed.

We report the average scores of three different
seeds using the checkpoint that has maximum F1

scores on the validation set. We also train a model
using BERT (bert-base-uncased) with the same
setting to compare the proposed method to a BiLM.

3.3 Few-shot Setting

One of the potential benefits of large LMs is their
ability to make generalized predictions even with a
small number of training examples, leveraging the
knowledge embedded in their parameters. We also
analyze NER performance on CoNLL-2003 with
K-shot setting to examine the impact of limited
training examples.

In our K-shot setting, the training data consists
of 4K samples since we drawK samples from each
entity type: PER, LOC, ORG, and MISC. Note that we
only extract instances from the training data that
contain a single specific named entity type. During
training, we set the batch size to 4 and randomly
sampled the following hyperparameters; a learning
rate from {9e− 3, 8e− 3, . . . , 2e− 4, 1e− 4} , a
seed from {10, 11, . . . , 19}, a dropout probability
from {0, 0.1, 0.2, 0.3}. We determined top-3 hy-
perparameter settings in terms of F1 score on the
CoNLL-2003 validation set, and report the average
F1 on the test set of those settings.

3.4 Results

3.4.1 Full Dataset Setting
We show the results in Figure 1. The results show
the difference of the performance between BERT
and each of the settings. We can see the effective-
ness of the proposed method by comparing “For-
ward” and “Concat” settings, which indicates the
proposed method improves the performance on all
tasks. In particular, F1 scores on CoNLL2003-
NER have been improved by more than 10 points
for both models.

These results indicate that considering backward
context improves token-classification performance
and that the proposed method can provide the back-
ward context to UniLMs. Moreover, the compar-
ison of BERT and the proposed method indicates
that our approach has ability to bring the perfor-
mance of existing UniLMs comparable or better to
BERT performance. This implies that UniLMs can
acquire bidirectionality post hoc.

In the case of Few-NERD, Llama-2 outper-
formed GPT-2 with the proposed method. It can be
inferred that larger forward LMs are more effective
when targeting a rarer domain.

3.4.2 Few-shot Setting
The experimental results using BERT
(bert-base-cased) and GPT-2 (base and
xl) are shown in Figure 2. The x-axis represents
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Figure 2: Few-shot setting results on CoNLL-2003 test
set. In the x-axis, the number of training examples is
represented by multiplication of the number of entities
(= 4) and K.

the number of training examples 4K, and the
y-axis represents the F1 score on CoNLL2003 test
set. The dashed lines indicate only forward LM
while the solid lines represent the bidirectional and
the proposal setting. As observed from Figure 2,
the proposed method consistently outperforms
the forward LM-only setting. Particularly, when
the training data is limited (less than 16 shots for
each entity) the proposed method is more effective
than BERT. This has a significant value in practice
as there is generally a valley of performance
between few- to many-shots settings; zero- to
few-shots settings are more effectively addressed
by in-context learning and many-shots settings
are covered by BiLMs, but neither covers the
middle. Addressing this valley is important,
because annotating dozens of data for each label
might be justified but annotating hundreds sounds
overwhelming to many practitioners.

3.5 Case Study

We conduct a case study to understand how adding
backward context improves the token-level clas-
sification performance. As shown in Table 1, we
found that the proposed method is particularly ef-
fective when there is an entity at the beginning of a
sentence. Specifically, the NER results for the sen-
tence “Jones Medical completes acquisition .” are
[B-PER, I-ORG, –, –, –] for the forward UniLM
setting only, and [B-ORG, I-ORG, –, –, –] for the
proposed method and the reference. The forward
UniLM could not capture any context because the
entity appears at the beginning of the sentence. In
contrast, the proposed method was able to predict

Input Jones Medical completes acquisition .

UniLM B-PER I-ORG - - -
Proposal B-ORG I-ORG - - -
Reference B-ORG I-ORG - - -

Table 1: An example of NER with GPT-2 (base) in a
case that an entity at the beginning of the sentence.

the entity using the context from the end. We also
found that the proposed method could accurately
estimate the leading entity in phrases where enti-
ties are conjoined by “and.”4 These results suggest
that the UniLM representations are not suitable for
token-level classification tasks, even when the LM
is of large size, but the proposed method is able to
overcome this weakness by the simple idea.

4 Related Work

A traditional approach to combining UniLMs, such
as BiLSTM (Schuster and Paliwal, 1997) and
ELMo (Peters et al., 2018), is similar to the pro-
posal method. Our study revisits this idea in the
era of large LMs, and systematically shows its
effectiveness through compute-demanding exper-
iments. Our method is simple, but it in returns
shows that backward context matters even in the
era of large LM and that the traditional approach
of acquiring bidirectionality is still valid. In the
era of large language models, meet-in-the-middle
approach (Nguyen et al., 2023; Li et al., 2023b) con-
sider bidirectionality during generation by incor-
porating backward generation probability. While
there is some relevancy in the concept, these studies
work with generation whereas we aim to improve
the quality of token-level representations.

For the study to improve the quality of the rep-
resentation, Li et al. (2023a), BehnamGhader et al.
(2024) and Dukić and Snajder (2024) fine-tuned
UniLMs after removing the causal attention mask
to incorporate the context from the end of the sen-
tence. Although these methods require fine-tuning
for each LM, the proposed method can reuse the
backward LM as long as the vocabulary and tok-
enizer are the same. Moreover, another benefit is
that our approach can be applied to a black-box
model, i.e., when the parameters of a model are
not accessible but its final representations can be
obtained via API.

4The actual example can be found in Appendix A.
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5 Conclusion

In this study, we proposed to concatenate the
representations of forward and backward LM, to
overcome the lack of bidirectionality problem of
UniLMs. From the results in token-classification
tasks, we could confirm the effectiveness of the
proposed method. The proposed method provides
more use cases to UniLM, not only for a generation
model but also as an encoder model.
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Limitations

Limited Scope of Tasks and Conditions In this
work, we evaluated our proposed method with two
backbone UniLMs under four different token-level
classification tasks in English, and we observed
consistent performance improvement from the orig-
inal UniLMs. We focused on token-level classifica-
tion tasks in this study because we believe they are
the tasks where the effects of considering bidirec-
tionality are best demonstrated. Nevertheless, we
would like to extend the experiments in the future to
investigate varying effects of the proposed method
under different conditions. For example, we can
apply the proposed method to text classification
tasks by pooling token-level representations. Also,
we would like to see if significantly larger UniLMs
can yield better results, as we did not observe any
performance gain within the relatively small scope
of model sizes (124M to 7B parameters) that we
experimented with in this paper.

Training Strictly Comparable Models from
Scratch We compared BERT and GPT-2 be-
cause(a) they were release roughly the same time
and together represent the state-of-the-arts of uni-
directional and bidirectional LM of the time, and
(b) they are mostly comparable in terms of mag-
nitude of parameter sizes and training data. In re-
ality, there might be auxiliary differences because
the dataset for training or detail training settings,
e.g., the number of epochs, to train GPT-2 are
not disclosed (Radford et al., 2019). Though our
main finding that unidirectionality is a problem in
UniLMs holds from the GPT-2 results alone, strict

comparison can be performed by training BERT
and GPT-2-like models from scratch with the same
trainig data, which we leave for the future work.

Additionally, we can also consider using BiLMs
instead of a backward language model, as a
provider of backward context.

Comparison against Other Methods We did
not quantitatively compare the proposed method
against LLM2vec (BehnamGhader et al., 2024) in
the experiments. It was due to the fact their re-
ported results employed non-standard word-level
scores for NER instead of more standard span-level
scores that we employed and hence direct compar-
ison was not possible. We note that our method
has unique benefits that LLM2vec does not have:
(a) our backward model can be reused for differ-
ent backbone UniLMs as long as the tokenizer is
the same, and (b) we only need the output repre-
sentations of UniLMs and do not require access
to the internal representations nor gradients of the
UniLMs. Furthermore, our work has contribution
to the community by validating through a different
approach that bidirectionality is the key ingredient
of the success of BiLMs.

Computation Cost The proposed method re-
quires a backward LM, thus the inference com-
putation cost is higher than when using only a
forward LM. Nevertheless, this is generally not
a serious problem because the backward language
model works even with modest sized models such
as GPT-2. In practice, the proposed method can
be executed by reusing the large UniLMs deployed
for other purpose, e.g., generation, so there should
be cases where it is sufficient to deploy only the
backward UniLM. In this case, unless the UniLM’s
GPU utilization is 100%, we can run the proposed
method with only the cost of running backward
UniLM.

Ethical Consideration

Our research involves training moderately large
LMs and its carbon footprint can have negative im-
pact to the environment. That being said, we train
reusable LMs that allow us to utilize existing as-
sets (large UniLMs) to where they were previously
weak at. This can make the whole ecosystem of
LLMs more efficient and might be able to reduce
carbon footprint in the long run.

From the social justice and language preserva-
tion perspective, the downside of the proposed
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method is that it mainly benefits resource-rich lan-
guages with existing assets of large UniLMs. Nev-
ertheless, more and more of recent UniLMs sup-
port multilinguality (Team, 2024; Llama Team,
AI@Meta, 2024). We would like to explore our
proposed method in low-resource, cross-lingual
settings in the future.
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Input Note - Lotte and Hyundai , Haitai and Samsung played two games .

Forward-LM only - - B-PER - B-ORG - - B-ORG - - - -
Proposed - - B-ORG - B-ORG - B-MISC B-ORG - - - -
Reference - - B-ORG - B-ORG - B-ORG B-ORG - - - -

Table 2: An example of GPT-2 (base) in phrases where entities are conjoined by “and.” For the prediction corre-
sponding to Lotte, the forward-LM struggles to infer the entity type correctly, but proposal can estimate correctly.
This can be explained by the difference between considering only the context from the beginning: “Note - Lotte”
or entire context, cause the improvement.
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Appendices

A Another Example in Case Study

Table 2 shows an example where entities are con-
catenated with “and.” The forward-LM only setting
struggles with identifying the type of first entity,
for “Lotte.” In contrast, the proposed method cor-
rectly identified the entity type of it by using other
organization names such as “Hyundai.”
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