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Abstract

Recently, LoRA has emerged as a crucial tech-
nique for fine-tuning large pre-trained models,
yet its performance in multi-task learning sce-
narios often falls short. In contrast, the MoE
architecture presents a natural solution to this
issue. However, it introduces challenges such
as mutual interference of data across multi-
ple domains and knowledge forgetting of vari-
ous tasks. Additionally, MoE significantly in-
creases the number of parameters, posing a
computational cost challenge. Therefore, in
this paper, we propose MoSLD, a mixture-of-
shared-LoRAs model with a dropout strategy.
MoSLD addresses these challenges by sharing
the upper projection matrix in LoRA among dif-
ferent experts, encouraging the model to learn
general knowledge across tasks, while still al-
lowing the lower projection matrix to focus on
the unique features of each task. The applica-
tion of dropout alleviates the imbalanced up-
date of parameter matrix and mitigates parame-
ter overfitting in LoRA. Extensive experiments
demonstrate that our model exhibits excellent
performance in both single-task and multi-task
scenarios, with robust out-of-domain general-
ization capabilities.

1 Introduction

The emergence of Large Language Models (LLMs)
has significantly advanced Natural Language Pro-
cessing (NLP) technology, serving as a robust foun-
dation with broad applicability (Touvron et al.,
2023a,b; Ouyang et al., 2022). However, as the
parameter scale increases, the process of full pa-
rameter fine-tuning (FP-tuning) demands substan-
tial computational and memory resources. To strike
a balance between resource requirements and effec-
tiveness, the research community is increasingly
turning to parameter-efficient fine-tuning (PEFT)
methods (Zhao et al., 2022a; Zeng et al., 2023),
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Figure 1: The increase between mixture setting and
single setting for FP-tuning and LoRA on four datasets.
The vertical axis is Score (mixture)-Score (single).

with LoRA emerging as the most prevalent and ef-
fective choice. Nevertheless, training an LLM via
LoRA with multi-faceted capabilities faces signifi-
cant challenges due to the differences and diversity
inherent in various tasks. Figure 1 illustrates that
while FP-tuning demonstrates competitive perfor-
mance in a multi-task mixed training data setting,
plain LoRA exhibits a drop. This decline under-
scores the challenge posed by the heterogeneity
and imbalance in training data, resulting in interfer-
ence between data from different tasks and conse-
quently degrading the performance of plain LoRA
on in-domain tasks. In essence, plain LoRA proves
highly sensitive to the configuration of training
data.

As we all know, MoE (Shazeer et al., 2017) has
demonstrated remarkable advantages in amalga-
mating multiple capabilities. Particularly, the inte-
gration of MoE and LoRA (Hu et al., 2022) stands
out as a promising approach to leveraging MoE
in a parameter-efficient manner. This method pre-
serves domain knowledge while significantly reduc-
ing training costs by introducing a limited number
of domain-specific parameters (Dou et al., 2024;
Luo et al., 2024; Liu et al., 2023). Presently, several
works are devoted to applying MoE to LoRA. Some
directly combine trained LoRAs linearly (Zhang
et al., 2023; Huang et al., 2024), while others ap-
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ply combinations of MoE and LoRA to different
backbones (Chen et al., 2024; Dou et al., 2024). An-
other approach involves training a LoRA module
for each distinct task type and employing a routing
mechanism to integrate the LoRA modules under
a shared LLM (Feng et al., 2024). However, we
contend that these methods inadequately address
the issue of data conflicts across different domains
during LoRA training. Three primary challenges
emerge: (1) The MoE architecture emphasizes the
unique attributes of each LoRA and overlooks the
transfer of general knowledge between different Lo-
RAs, thereby impeding cross-task generalization
in LLMs; (2) Requires a large number of trained
LoRA modules (for each task); (3) Multiple LoRAs
escalate the number of parameters and computa-
tional costs.

To solve these issues, in this paper, we propose
a parameter-sharing method applied to the mixture-
of-LoRAs, called MoSLD. The plain LoRA mod-
ule comprises the upper projection matrix (A) and
the lower projection matrix (B), which can be
viewed as naturally decoupled general-feature and
specific-feature matrices, respectively. Building
upon the classic MoE architecture, we enable all
experts at each layer to share a general-feature ma-
trix while retaining the specific-feature matrix of
each expert. This approach compels the model to
capture shared general knowledge across various
tasks to the fullest extent. The shared operation
notably reduces the parameters of the MoE archi-
tecture, aligning with findings indicating parameter
redundancy among experts (Fedus et al., 2022b;
Kim et al., 2021). Despite the majority of parame-
ters in the LoRA module being shared, differences
can still be learned in each expert’s specific-feature
matrix due to the tight coupling between the gen-
eral and specific features. We posit that this mech-
anism can adaptively generalize to any new task.
Furthermore, recognizing that the general-feature
matrix is updated more frequently than the specific-
feature matrix during fine-tuning, and overfitting
tends to occur in LoRA (Wang et al., 2024), we
apply the dropout strategy to the general-feature
matrix, that is some weight values are randomly set
to zero during training. This approach helps bal-
ance the updates between the general-feature and
specific-feature matrices. Consequently, it not only
facilitates a more balanced information exchange
between different experts but also mitigates issues
related to parameter redundancy and optimization
imbalance.

In summary, our contributions are as follows:
(1) We introduce a parameter-efficient MoSLD ap-
proach that disentangles domain knowledge and
captures general knowledge by sharing a general-
feature matrix, thus mitigating interference be-
tween heterogeneous datasets. (2) We implement
a dropout strategy on the general-feature matrix
to effectively mitigate overfitting and address the
imbalance in directly optimizing MoE. (3) We con-
duct extensive experiments on various benchmarks
to validate the effectiveness of our methods. Addi-
tionally, our approach demonstrates superior gener-
alization to out-of-domain data.

2 Related Work

2.1 Mixture-of-Expert

The Mixture of Experts (MoE) functions as an en-
semble method, conceptualized as a collection of
sub-modules or experts, each tailored to process
distinct types of input data. Guided by a router,
each expert is selectively activated based on the
input data type. This technique has garnered in-
creasing attention and demonstrated remarkable
performance across various domains, including
computer vision, speech recognition, and multi-
modal applications (Fedus et al., 2022a). Evolution
of MoE techniques spans from early sample-level
approaches (Jacobs et al., 1991) to contemporary
token-level implementations (Shazeer et al., 2017;
Riquelme et al., 2021), which have now become
mainstream. Concurrently, some researchers (Zhou
et al., 2022; Chi et al., 2022) are delving into the
router selection problem within MoE. Notably, the
majority of these endeavors aim to scale up model
parameters while mitigating computational costs.

2.2 Mixture-of-LoRA

As LoRA gradually becomes the most common
parameter-efficient fine-tuning method, researchers
pay more attention to combining MoE and LoRA
for more efficient and effective model tuning.
Huang et al. (2024) and Feng et al. (2024) pioneer
the approach of training several LoRA weights on
upstream tasks and then integrating the LoRA mod-
ules into a shared LLM using a routing mechanism.
However, these methods necessitate the training
of numerous pre-defined LoRA modules. Chen
et al. (2024) initially engage in instruction fine-
tuning through sparse mixing of LoRA experts in
the multi-modal domain, while Dou et al. (2024)
split the LoRA experts into two groups to explicitly
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Figure 2: Overview of the share mechansim and dropout strategy in our MoSLD. Noted that the matrix A is shared
among all experts in each layer.

learn different capabilities for each group. These
mixture-of-LoRA methods typically involve pre-
defined hyperparameters that require careful selec-
tion, and they densely mix LoRA experts, signif-
icantly increasing computational costs. To tackle
overfitting resulting from an excessive number of
experts, Gao et al. (2024) allocate a varying num-
ber of experts to each layer. Wu et al. (2024) pro-
pose MOLE, treating each layer of trained LoRAs
as a distinct expert and implementing hierarchical
weight control through a learnable gating function
within each layer to tailor composition weights spe-
cific to a given domain’s objectives. However, these
approaches overlook the issue of data conflicts
across different datasets during LoRA training. As
our concurrent work, MixLoRA (Li et al., 2024)
also focuses on multi-task learning, which fuses
multiple LoRAs with the shared FFN layer and em-
ploy a plain LoRA on the self-attention layer. We
believe this method will introduce a large number
of additional trainable parameters and incur a huge
computational cost. In our study, we conduct ex-
tensive experimental analysis for both single and
mixture data settings in a more lightweight way.

3 Methodology

In this section, we describe our MoSLD from the
sharing mechanism, dropout strategy and optimiza-
tion details, as shown in Figure 2.

3.1 Sharing Mechanism of LoRAs

In the area of parameter-efficient fine-tuning, LoRA
introduces the concept of training only two low-
rank matrices as an alternative to dense layer up-
dates. In other words, it reformulates the pa-
rameter fine-tuning process in LLMs as a low-
rank decomposition. Specifically, the equation
W0 + ∆W = W0 + BA captures this decom-

position. Here, W0 ∈ Rdin×dout represents the
parameter matrix of the pre-trained LLM, while
∆W ∈ Rdin×dout denotes the matrix updated dur-
ing fine-tuning. The matrices B ∈ Rdin×r and
A ∈ Rr×dout are low-rank and trainable.

In order to achieve the transfer of general fea-
tures between different tasks and capture the shared
general knowledge, we design a novel sharing
mechanism. Specifically, given a Transformer
model with L layers, we allocate Nl experts for
layer l and create Nl pairs of low-rank matrices
{Ai,l, Bi,l}Nl

i=1, where Ai,l is initialized from a ran-
dom Gaussian distribution and each Bi,l is set
to zero. It is worth noting that the matrix Ai,l

is shared among all experts in each layer, i.e.,
A1,l = A2,l... = ANl,l (l ∈ L). In other words,
the core idea is to share the matrix A as the general-
feature matrix and keep matrix B as specific-feature
matrix. In this way, we can only keep L central
general-feature matrices for a L-layer MoE archi-
tecture, which significantly reduces the parameters
of the MoE architecture. A router with a trainable
weight matrix Wl ∈ Rdin×Nl is used to specify
different experts for the input x. As in the orig-
inal MoE, MoSLD selects the top K experts for
computation, and the gate score Sk

l is calculated as
follows:

Sk
l (x) =

TopK(softmax(Wlx),K)k∑K
k=1TopK(softmax(Wlx),K)k

(1)

3.2 Dropout Strategy
In order to alleviate the imbalance and over-fitting
problems caused by frequent general-feature ma-
trix updates, we propose to apply the dropout strat-
egy on the general-feature parameter matrix Al.
Dropout involves randomly ignoring a proportion
of updates to the parameter matrix during each it-



1650

qw MoSLD kw MoSLDvw

Attention

Add & Norm

Feed-Forwrd

Add & Norm

L

Figure 3: The overview of our proposed Mixture-of-
Shared-LoRA with dropout strategy applied on Wq and
Wv .

eration of training. This technique helps prevent
over-reliance on specific parameters and encour-
ages robust learning by introducing noise. That
is, at each iteration, we take a certain probabil-
ity p to discard the update in the general-feature
matrix. Specifically, we generate a binary mask ma-
trix drawn from Bernoulli distribution with a mask
probability p, where each element in the general-
feature matrix independently takes a value of 1
(keeping the parameter) with probability 1− p or 0
(dropping the parameter) with probability p. The
general-feature matrix is updated as follows:

Mask ∼ Bernoulli(p)

A
′
l = Mask⊙Al

Ã′
l = A

′
l/(1− p)

(2)

3.3 The Overall Procedure

Our method is a combination of shared LoRA mod-
ules and MoE framework, as shown in Figure 3.
Here, we apply our MoSLD on the matrix Q and
matrix V of the self-attention layer:

hl = W0x+
α

r

K∑
k=1

Sk
l (x)Ak,lBk,lx (3)

where W0 ∈ {Wq,Wv} and hl is the output em-
bedding. Besides, similar to previous sparse MoE
works, the load balancing loss Lb is also applied
on each MoE layer, which is formulated as:

Lb =
K∑
k=1

ck · sk

pk =
∑
x∈X

eS
k(x)∑k eSk(x)

(4)

where ck is the number of tokens assigned to the
k-th expert.

4 Experimental Setup

4.1 Datasets
To evaluate the effectiveness of MoSLD, we con-
duct experiments on six commonsense reasoning
datasets, including commonsense QA task (OBQA
(Mihaylov et al., 2018), CSQA (Talmor et al.,
2019)), reading comprehension task (Race (Lai
et al., 2017), MCTest (Richardson et al., 2013)),
and subject knowledge QA task (Arc-e (Clark et al.,
2018), and Arc-c (Clark et al., 2018)). We de-
note the six datasets as {D1, D2, ..., D6}, and we
also create a mixed dataset Dmix, corresponding
to the single setting and the mixture setting respec-
tively. The dataset sizes are as follows for training
and testing: 5,457/500, 10,962/1140, 10,083/4934,
1,330/147, 2,821/2,376, and 1,418/1,172. We allo-
cate 10% of the training set for validation. For all
datasets, we use answer accuracy as the evaluation
metric.

4.2 Baselines
We compare MoSLD with five parameter-efficient
fine-tuning methods: Prefix-tuning (Li and Liang,
2021; Zhao et al., 2022b), LoRA (Hu et al., 2022),
MoLoRA (Zadouri et al., 2024), SiRA (Zhu et al.,
2023), MoLA (Gao et al., 2024), MixLoRA (Li
et al., 2024). Additionally, we evaluate full-
parameter fine-tuning. The details can be seen in
Appendix A.

4.3 Training Details
We take LLaMA2-7B (Touvron et al., 2023b)
which contains 32 layers as our base model. For
plain LoRA and its variants, the r is set to 8 and α
is 16. Beside, the LoRA modules are used in matrix
Q and matrix V in attention layers. Our MoSLD
also follows the same settings. We allocate 8 ex-
perts to each layer for 1-8 layers, 6 experts to each
layer for 9-16 layers, 4 experts to each layer for
17-24 layers, and 2 experts to each layer for the last
8 layers. The K of the selected experts is 2. For
training details, we finetune models with 10 epochs
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Model OBQA CSQA Race MCTest Arc-e Arc-c Avg

FP-tuning single 75.00 75.74 80.62 39.05 72.39 60.63 67.24
mixture 76.00 75.27 81.46 50.42 73.69 65.45 70.38

Prefix-tuning single 47.76 42.65 53.77 25.19 45.65 35.50 41.70
mixture 46.51 44.98 49.88 22.46 47.92 35.30 41.18

LoRA single 75.40 76.33 76.06 53.10 73.82 62.71 69.57
mixture 72.80 76.30 78.23 55.67 70.87 61.00 69.15

MoLoRA single 74.71 76.65 74.26 49.08 74.14 61.38 68.37
mixture 75.04 75.27 73.88 55.37 75.25 62.86 69.61

SiRA single 73.99 76.26 75.63 48.28 74.02 62.86 68.51
mixture 74.34 76.22 75.04 52.33 74.98 63.16 69.35

MoLA single 74.60 77.23 75.29 44.90 72.73 60.80 67.59
mixture 76.60 73.46 75.25 54.42 76.34 63.91 70.00

MixLoRA single 75.60 74.83 75.47 50.88 74.51 60.10 68.57
mixture 75.80 76.81 74.79 54.26 74.41 63.62 69.95

MoSL (our) single 76.30 77.56 74.63 49.66 76.30 60.48 69.16
mixture 76.80 (+0.50) 75.02 (-2.54) 74.69 (+0.06) 58.50 (+8.84) 76.09 (-0.21) 64.16 (+3.68) 70.88 (+1.72)

MoSLD (our) single 78.40 75.84 76.08 53.06 76.35 61.49 70.20
mixture 78.80 (+0.40) 76.43 (+0.59) 76.96 (+0.88) 54.42 (+1.36) 76.60 (+0.25) 66.13 (+4.64) 71.56 (+1.36)

Table 1: Results of different methods on the in-domain test sets of six commonsense reasoning datasets. We also
report the increase of mixture setting compared to single setting. Results are averaged over three random runs. (p <
0.01 under t-test)

and a peak of 3e-4 learning rate. The drop ratio
applied to matrix A is set to 0.1. The batch size
during model tuning is 128. The experiments are
run on 16 NVIDIA A100 40GB GPUs.

4.4 Main Results

Table 1 presents the experimental outcomes of vari-
ous baselines under both single and mixture set-
tings across different datasets. Initially, we re-
port the performance of models trained on indi-
vidual datasets. LoRA notably outperforms other
baselines, exhibiting improvements of 2.33% and
27.87% over FP-tuning (single) and Prefix-tuning
(single), respectively. MoLoRA, SiRA, MoLA, and
MixLoRA trail behind LoRA by 1.20%, 1.06%,
1.98%, and 1.00%, indicating that simply combin-
ing LoRA and MoE does not confer an advantage
in single in-domain datasets. After establishing a
robust baseline in the single setting, we proceed
to report results for the mixture setting. Here, we
observe a decline in LoRA’s performance, trail-
ing 1.23 points behind FP-tuning (70.38%). Con-
versely, applying the MoE framework to LoRA, i.e.,
MoLoRA, SiRA, MoLA, and MixLoRA, achieves
scores of 69.61%, 69.35%, 70.00%, and 69.95%,
demonstrating MoE’s suitability for multi-task sce-
narios and MoLA is the best performing baseline
in the mixture setting. Further comparison between
single and mixture settings reveals that FP-tuning
and MoLA improve by 3.14% and 2.41%, respec-
tively, in the mixture setting compared to the single
setting. However, LoRA’s performance decreases
by 0.42% in the mixture setting compared to the
single setting, indicating conflicts between multi-

task data and the mixture strategy’s detrimental
impact on performance.

Upon closer examination, our proposed MoSLD
demonstrates performance enhancements of 2.61%
and 1.56% over MoLA in single and mixture set-
tings, respectively. This emphasizes the effective-
ness of the sharing mechanism and dropout strategy
in alleviating data conflicts and retaining shared
knowledge between various tasks. Furthermore,
conducting ablation experiments by removing the
dropout strategy, MoSL experiences performance
decreases of 1.04% and 0.68%, respectively, com-
pared to MoSLD. This highlights the crucial role
of the dropout strategy in mitigating training over-
fitting and optimization imbalance. Nevertheless,
MoSL still achieves competitive results of 69.16%
and 70.88%. We also found that our model not
only achieves good results in the mixture setting,
but also achieves good results in the single setting,
which overcomes the disadvantage of MoLA’s poor
performance in the single setting. However, we
find that our models, especially MoSL, do not have
much advantage over plain LoRA, which is consis-
tent with the performance of all baselines combin-
ing MoE with LoRA. This is because the complex-
ity of the model ensemble causes overfitting on a
single simple task, resulting in little improvement.
In conclusion, our approach exhibits significant ad-
vantages under both single and mixture settings,
particularly in alleviating data conflicts across mul-
tiple tasks and addressing knowledge forgetting
issues in multi-task learning. In addition, we also
pay attention to the efficiency of training. Due to
the introduction of multiple LoRAs, the trainable
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(a) OBQA (b) CSQA (c) Race

(d) MCTest (e) Arc-e (f) Arc-c

Figure 4: A comparision of performance for LoRA, MoLA, MoSL, and MoSLD on single and mixture settings for
MMLU test set.

parameters of MoLA are higher than those of plain
LoRA. However, although our MoSLD expands
LoRA several times through the MoE architecture,
it does not introduce a large number of additional
parameters and also enables the LoRA training to
have multiple capabilities. Details can be seen in
Section 5.5.

5 Qualitative Analysis

5.1 Out-of-domain Test

To assess the generalization capability of our pro-
posed model, we conducted out-of-domain ex-
periments using the test set of MMLU. Figure
4 presents a boxplot, where the top and bottom
horizontal lines represent the mixture and single
settings, respectively. Our models, MoSL and
MoSLD, consistently outperform others in both
settings, exhibiting significant improvements, par-
ticularly on Race, Arc-e, and Arc-c datasets. This
highlights the effectiveness of our models in disen-
tangling domain knowledge and transferring gen-
eral features across diverse datasets. OBQA and
CSQA exhibit similar trends in the boxplot, indi-
cating similar data distributions between the two
datasets. Conversely, for MCTest, while improve-
ments are observed in the mixture settings, the sin-
gle settings remain relatively unchanged. This di-
vergence may stem from the substantial differences
between the MCTest and MMLU test sets, sug-
gesting that introducing data from other domains

or tasks could inspire general domain knowledge.
In summary, our model demonstrates strong gen-
eralization capabilities, particularly in multi-task
scenarios.

(a) OBQA&CSQA&Race (b) MCTest&Arc-e&Arc-c

Figure 5: Results of six datasets under different dropout
ratios. Here, we are based on the mixture setting.

5.2 Effect of Model Parameters
In this section, we conduct parameter search exper-
iments.
Dropout Location As shown in Table 2, we
show the results of applying our methods on ma-
trix A and matrix B. We found that in the single
setting, MoSLD (matrix B) does not achieve much
improvement, 0.94 points lower than the ordinary
LoRA and 1.04 points higher than MoLA. The mix-
ture setting still achieves good results. However,
the results of applying our method on matrix B
are lower than those of applying it on matrix A
in both the single and mixture settings. This also
shows that matrix A is more used to extract general
features.
Dropout Ratio In Figure 5, we depict the per-
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Model OBQA CSQA Race MCTest Arc-e Arc-c Avg

LoRA single 75.40 76.33 76.06 53.10 73.82 62.71 69.57
mixture 72.80 76.30 78.23 55.67 70.87 61.00 69.15

MoLA single 74.60 77.23 75.29 44.90 72.73 60.80 67.59
mixture 76.60 73.46 75.25 54.42 76.34 63.91 70.00

MoSLD (matrix A) single 78.40 75.84 76.08 53.06 76.35 61.49 70.20
mixture 78.80 76.43 76.96 54.42 76.60 66.13 71.56

MoSLD (matrix B) single 77.60 75.76 74.58 46.94 76.09 60.83 68.63
mixture 76.40 74.11 75.25 56.46 77.15 65.02 70.73

Table 2: The results for applying our methods on matrix A and matrix B.

(a) OBQA (b) CSQA (c) Race

(d) MCTest (e) Arc-e (f) Arc-c

Figure 6: Different data amount of OpenOrca between MoSLD and MoLA on six datasets. Here, we use the mixture
setting.

Figure 7: Different allocation strategies for the number
of experts at different layers of the model. Here, we use
the mixture setting.

formance of six datasets under the mixture setting
with varying dropout ratios. We observe a general
downward trend in most results as the dropout ratio
increases. This phenomenon occurs because while
dropout can mitigate overfitting to some extent,
excessively high dropout rates may diminish the
model’s capabilities. Therefore, careful selection
of the dropout ratio parameter is necessary. Inter-
estingly, the curves for the Arc-e and Arc-c datasets
remain relatively stable across different dropout ra-
tios. We attribute this stability to the simplicity of

these two datasets, where model sparsification has
minimal impact on the results.
Expert Number Considering the redundancy
among experts, following (Gao et al., 2024), we
set different numbers of experts at different layers
in Figure 7. Keeping the total number of experts
constant, we choose three settings, i.e., (2,4,6,8),
(5,5,5,5), (8,6,4,2). It is observed that assigning
more experts at higher layers and fewer experts at
lower layers, i.e., (2,4,6,8), works better. This is
consistent with people’s intuition: the lower layers
of the model mainly extract general knowledge,
which can be well learned by a small number of
experts. While the higher layers of the model focus
more on acquiring specific features of different
tasks, and a larger number of experts can better
capture multi-aspect capabilities.

5.3 Mix with Other Data

Mathematical Reasoning Data We construct a
new multi-task setting, including commonsense
QA task (OBQA), reading comprehension task
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Model OBQA MCTest Arc-c GSM8K Avg

LoRA single 75.40 53.10 62.71 23.12 53.58
mixture 73.20 55.10 64.08 17.51 52.47

MoSLD single 78.40 53.06 61.49 22.06 53.75
mixture 79.80 53.90 63.29 22.73 53.93

Table 3: The results of the mixture setting of tasks with little commonality.

Model OBQA CSQA Race MCTest Arc-e Arc-c Avg

LLaMA2-7B single 78.40 75.84 76.08 53.06 76.35 61.49 70.20
mixture 78.80 76.43 76.96 54.42 76.60 66.13 71.56

LLaMA2-13B single 81.4 77.95 78.01 57.86 78.93 65.05 73.20
mixture 82.2 78.46 79.87 58.50 79.67 70.14 74.81

LLaMA-33B single 83.93 81.49 83.27 65.99 85.10 68.52 78.05
mixture 84.55 83.26 84.90 66.73 85.95 74.36 79.96

Table 4: The results of six datasets in single and mixture settings based on LLaMA2-7B, LLaMA2-13B and
LLaMA-33B.

(MCTest), subject knowledge QA task (Arc-c), and
mathematical reasoning task (GSM8K). As shown
in Table 3, we found that for plain LoRA, the mix-
ture setting was 1.11 points lower than the single
setting on average, especially for GSM8K, it is
reduced by 5.61%, which shows that it is very chal-
lenging for plain LoRA to train multiple tasks with
little commonality. However, for our MoSLD, the
mixture setting is 1.18 points higher than the sin-
gle setting on average. For the GSM8K with the
largest difference, it is also improved by 0.67%.
This shows that MoSLD is also effective for tasks
with little commonality. This is because for tasks
with little commonality, although the role of the
shared general-feature matrix becomes smaller, the
unique-feature matrix still captures the knowledge
of each task, which further shows that our MoSLD
can effectively alleviate the data conflict problem
in multi-task learning.
Mix with General Data In Figure 6, we illus-
trate the impact of adding varying amounts of ran-
domly filtered data from OpenOrca1 to the mixed
dataset Dmix. The data amount from OpenOrca
ranges from 1,375 to 22,000. We observed that for
MoLA, as the amount of general data increases,
performance initially improves before eventually
declining. This suggests that mixing a large amount
of general data can lead to data conflicts and do-
main knowledge forgetting. In contrast, MoSLD
demonstrates an upward trend in performance with
the increase in data amount for OBQA, MCTest,
Arc-e, and Arc-c. However, performance on CSQA
and Race experiences a decline. We attribute this to

1https://huggingface.co/datasets/Open-Orca/OpenOrca

significant distribution differences between these
datasets and the general data. Overall, our model
consistently outperforms MoLA when mixing var-
ious amounts of generic data. This underscores
our model’s ability to effectively leverage general
knowledge across different tasks.

5.4 Scaling of Model Size

Table 4 shows the results of our model for the six
datasets both in single and mixture settings as the
model size scalings. We find that the performance
of our model increases with the size of the model,
whether in single or mixture settings, which is in
line with our expectations. In addition, it is ob-
served that the results improve by 1.36%, 1.61%,
and 1.91% from single to mixture for LLaMA2-
7B, LLaMA2-13B, and LLaMA-33B, respectively.
The experimental results show that our method has
achieved good performance on models of different
sizes, and has a certain scaling ability. We also give
the model size scaling results of other LoRA-based
baselines, which can be seen in the Appendix C.
5.5 Analysis of Computation Efficiency

In Table 5, we further show the computational effi-
ciency of our model. We first analyze the number
of new LoRA modules inserted in ordinary LoRA,
MoLA, and MoSLD. Since MoLA introduces the
MoE framework, the trainable parameters become
5 times that of ordinary LoRA, and its results are
improved by 0.43 points from 69.57 to 70.00. We
believe that despite the introduction of a large num-
ber of trainable parameters, the change in results
is not very large, which is a method of sacrificing
efficiency for effect. In addition, we also found that
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Model LoRA number Forward param Trainable param Avg_score
FP-tuning / 6.738B 6.738B 70.38
LoRA (1A+1B)*32 6.743B 0.419B 69.57
MoLA (5A+5B)*32 6.761B 2.228B 70.00
MoSLD (1A+5B)*32 6.572B 1.389B 71.56

Table 5: The number of LoRA matrices, forward parameters, and trainable parameters for FP-tuning, LoRA, MoLA,
and our MoSLD during training. Here, "A" is matrix A, "B" is matrix B, and "5" is the average number of experts
per layer. We also report the average results across 6 datasets under the mixture setting.

although our method reduces 128 matrix A com-
pared to MoLA, it is still 1.56% higher than MoLA
and 1.99% higher than LoRA. This shows that al-
though our MoSLD introduces multiple LoRAs
through the MoE framework, the expert sharing
mechanism greatly reduces the additional param-
eters and achieves a balance between effect and
efficiency. We also compare FP-tuning. Athough
our trainable parameters are 20.6% of FP-tuning,
but it still achieves a 1.18 point improvement. This
also proves that our MoSLD is indeed an extremely
efficient-parameter fine-tuning method.

6 Conclusion

In this paper, we propose MoSLD, which is
a mixture-of-shared-LoRAs model with dropout
strategy. Unlike traditional LoRA-MoE ap-
proaches, we design a sharing mechanism for ma-
trix A, which aims to capture the general-feature
among various tasks. A dropout strategy is also ap-
plied to the matrix A, solving the overfitting caused
by parameter redundancy to a certain extent. Eval-
uations show that MoSLD outperforms the base-
line in both single-task and multi-task scenarios.
Especially in multi-task scenarios, where it can
effectively alleviate knowledge conflict and forget-
ting problems. In general, our model is extremely
parameter-efficient for fine-tuning.
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Limitations

Although MoSLD achieves significant improve-
ments over existing baselines, there are still av-
enues worth exploring in future research. (1) This
paper focuses on applying MoSLD on the matrix
Q and V of the attention layer. We hope to ex-
tend this method to the FFN layer. (2) This paper
explores the multi-task setting of directly mixing

multiple datasets and compares with the perfor-
mance of a single task. We plan to study the impact
of multi-task data ratio on MoSLD. (3) This paper
emphasizes the extraction of general and unique
features by the upper and lower projection matrices
in LoRA, and intends to visualize this phenomenon
in the future.

Ethics Statement

LoRA has emerged as a pivotal technique for refin-
ing extensive pre-trained models. Nevertheless, its
efficacy tends to fail in multi-task learning. Con-
versely, the MoE architecture offers a promising
remedy to this setback. However, it introduces
hurdles such as the interference of data across di-
verse domains and the risk of forgetting knowledge
from various tasks. Furthermore, MoE substan-
tially inflates parameter counts, presenting com-
putational challenges. In light of these considera-
tions, we present MoSLD in this paper, a model
that integrates the strengths of both approaches.
MoSLD, a mixture-of-shared-LoRAs model with
a dropout strategy, addresses these obstacles inge-
niously. By sharing the upper projection matrix
in LoRA among different experts, MoSLD fosters
the acquisition of broad knowledge across tasks
while allowing the lower projection matrix to con-
centrate on task-specific features. Additionally, the
application of dropout mitigates parameter overfit-
ting in LoRA. The experimental results prove the
effectiveness of our model andevaluation frame-
work. Besides, there is no hugebiased content in
the datasets and the models. Ifthe knowledge base
is further used, the biased con-tent will be brought
into the generated responses,just like biased con-
tent posted by content creatorson the Web which is
promoted by a search engine.To prevent the tech-
nology from being abused fordisinformation, we
look forward to more research effort being paid
to fake/biased/offensive contentdetection and en-
courage developers to carefullychoose the proper
dataset and content to build theknowledge base.
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During fine-tuning, the LLM remains frozen, and
only the virtual tokens are optimized.

LoRA (Hu et al., 2022): A popular parameter-
efficient tuning approach widely used in LLM fine-
tuning, LoRA leverages low-rank matrix decompo-
sition of pre-trained weight matrices to significantly
reduce the number of training parameters.

MoLoRA (Zadouri et al., 2024): A method
which is a parameter-efficient MoE by uniquely
combining MoE architecture with lightweight ex-
perts.

SiRA (Zhu et al., 2023): A method leverages
the Sparse Mixture of Expert (SMoE) and enforces
the top k experts routing with a capacity limit re-
stricting the maximum number of tokens each ex-
pert can process.ta

MoLA (Gao et al., 2024): A LoRA variant
with layer-wise expert allocation, MoLA flexibly
assigns a different number of LoRA experts to each
Transformer layer.

MixLoRA (Li et al., 2024): It inserts multiple
LoRA-based experts within the feed-forward net-
work block of a frozen pre-trained dense model and
employs a commonly used top-k router.

B Effect on Rank

In this section, we add experiments on the effect
of rank for our MoSLD, with r ranging from 2 to
32. Overall, the results of the six datasets did not
fluctuate much, and the best value was obtained
at 8 or 16. From the perspective of efficiency, 8
is indeed a suitable hyperparameter, which is also
in line with the change law of LoRA’s rank. The
results are as shown in Table 6:

C Scaling of Model Size

In this section,We add model scaling experi-
ments on LoRA-based baselines, such as LoRA,
MoLoRA, SiRA, and MoLA. We find that for each
baseline, the results improve as the model size in-
creases, among which our model MoSLD scales
even better. The results are shown in Table 7 :
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Dataset r=2 r=4 r=8 r=16 r=32
OBQA 76.19 76.34 78.80 75.53 74.27
CSQA 74.35 75.16 76.43 77.39 76.62
Race 75.22 76.01 76.96 76.74 74.73
MCTest 52.28 54.17 54.42 54.16 53.52
Arc-e 75.51 76.98 76.70 75.88 75.63
Arc-c 63.28 64.06 66.13 66.10 65.87

Table 6: The performance of our MoSLD as different rank values.

Model OBQA CSQA Race MCTest Arc-e Arc-c Avg

LoRA

7B single 75.40 76.33 76.06 53.10 73.82 62.71 69.57
mixture 72.80 76.30 78.23 55.67 70.87 61.00 69.15

13B single 77.21 79.84 77.34 58.29 74.99 63.89 71.93
mixture 77.98 78.32 77.83 55.74 74.05 64.11 71.34

33B single 79.06 80.97 81.78 59.54 77.36 64.79 73.92
mixture 79.05 80.02 82.95 58.27 75.33 64.88 73.42

MoLoRA

7B single 75.40 76.33 76.06 53.10 73.82 62.71 69.57
mixture 72.80 76.30 78.23 55.67 70.87 61.00 69.15

13B single 77.46 81.26 75.33 51.79 75.83 64.27 70.99
mixture 77.95 82.44 80.25 54.73 74.21 62.65 72.04

33B single 78.23 83.18 79.59 59.41 82.11 65.28 74.63
mixture 77.54 81.35 81.78 61.62 82.07 64.35 74.79

SiRA

7B single 73.99 76.26 75.63 48.28 74.02 62.86 68.51
mixture 74.34 76.22 75.04 52.33 74.98 63.16 69.35

13B single 75.15 77.93 78.28 50.78 73.85 62.03 69.67
mixture 75.01 76.45 78.11 50.24 74.52 61.74 69.35

33B single 78.99 81.34 80.03 53.59 75.78 64.55 72.38
mixture 79.46 82.02 80.00 56.84 75.81 66.75 73.48

MoLA

7B single 74.60 77.23 75.29 44.90 72.73 60.80 67.59
mixture 76.60 73.46 75.25 54.42 76.34 63.91 70.00

13B single 76.82 80.55 76.87 48.35 74.84 63.66 70.18
mixture 77.61 77.59 77.04 60.83 76.71 65.27 72.51

33B single 80.36 82.94 79.06 50.88 76.00 67.06 72.72
mixture 81.79 85.03 79.82 57.35 76.48 68.82 74.88

MixLoRA

7B single 75.60 74.83 75.47 50.88 74.51 60.10 68.57
mixture 75.80 76.81 74.79 54.26 74.41 63.62 69.95

13B single 77.33 78.34 76.82 53.12 77.39 64.53 71.26
mixture 76.98 78.05 77.31 56.88 78.00 66.92 72.36

33B single 80.57 81.04 78.99 55.62 81.25 67.45 74.15
mixture 80.03 82.87 79.45 58.98 79.73 70.87 75.32

MoSLD

7B single 78.40 75.84 76.08 53.06 76.35 61.49 70.20
mixture 78.80 76.43 76.96 54.42 76.60 66.13 71.56

13B single 81.40 77.95 78.01 57.86 78.93 65.05 73.20
mixture 82.20 78.46 79.87 58.50 79.67 70.14 74.81

33B single 83.93 81.94 83.27 65.99 85.10 68.52 78.05
mixture 84.55 83.26 84.90 66.73 85.95 74.36 79.96

Table 7: The model scaling results about LLaMA2-7B, LLaMA2-13B, and LLaMA-33B of six datasets in single
and mixture settings for LoRA, MoLoRA, SiRA, MoLA, MixLoRA, and our MoSLD.
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