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Abstract

Automatic fact-checking systems that em-
ploy large language models (LLMs) have
achieved human-level performance in combat-
ing widespread misinformation. However, cur-
rent LLM-based fact-checking systems fail to
reveal the reasoning principles behind their
decision-making for the claim verdict. In this
work, we propose Correlation-Enhanced Ex-
plainable Fact-Checking (CorXFact), an LLM-
based fact-checking system that simulates the
reasoning principle of human fact-checkers
for evidence-based claim verification: assess-
ing and weighing the correlations between the
claim and each piece of evidence. Following
this principle, CorXFact enables efficient claim
verification and transparent explanation gen-
eration. Furthermore, we contribute the Cor-
FEVER test set to comprehensively evaluate
the CorXFact system in claim-evidence correla-
tion identification and claim verification in both
closed-domain and real-world fact-checking
scenarios. Experimental results show that our
proposed CorXFact significantly outperforms
four strong fact-checking baselines in claim
authenticity prediction and verdict explanation.

1 Introduction

In the digital age, widespread online misinforma-
tion has increased the urgent need for automatic
fact-checking systems. Mainstream methods (Nie
et al., 2019; Zhong et al., 2020; Soleimani et al.,
2020; Jiang et al., 2021; Pradeep et al., 2021a,b;
DeHaven and Scott, 2023) that follow the pipeline
of document retrieval, evidence selection and claim
verification to predict the veracity of claims, have
shown promising results. Moreover, the emergence
of large language models (LLMs) further advances
fact-checking to a new level. Recent LLM-based
fact-checking systems (Pan et al., 2023b,a; Wang
and Shu, 2023; Tan et al., 2023; Zhang and Gao,
2023; Zeng and Gao, 2023) leverage the power-
ful understanding and interpretability of LLMs to

predict the veracity label of a claim along with a
brief natural language explanation to support its
adjudication. The aforementioned work has wit-
nessed the great success of LLMs in fact-checking
and highlighted their capability to combat misin-
formation and promote the truth in the digital age.
Nevertheless, the inherent “black-box” nature of
LLMs has failed to guide explanations to reveal the
reasoning principles behind their claim verification
decisions.

Research suggests that the strength and relevance
of evidence significantly impact the credibility of
claims. Strong relevant evidence enhances claim
credibility and persuasiveness, while weak or ir-
relevant evidence diminishes it (Luchok and Mc-
Croskey, 1978; Briggs and Krantz, 1992; Walker
et al., 2018). Based on this principle, human fact-
checkers tend to verify claims by revealing the sup-
portive relationship between each piece of evidence
and the claim, assessing the degree to which the ev-
idence supports the claim. Inspired by this, we aim
to simulate human decision-making principle to im-
prove the reliability of LLMs in delivering verdicts,
while also generating transparent and convincing
explanations during the reasoning process.

This paper focuses on verifying claims through
claim-evidence correlations. To this end, we come
up with Correlation-Enhanced Explainable Fact-
Checking (CorXFact), an LLM-based framework
designed for explainable claim verification through
a two-stage process: claim-evidence correlation
reasoning and correlation-based claim verification.
In the first stage, CorXFact leverages LLMs to iden-
tify the claim-evidence correlations from both rele-
vance and degree dimensions: i) Does the evidence
support the claim? ii) To what extent does the evi-
dence support the claim? In the second stage, these
insights are used to predict a veracity label for the
claim, along with a concise reasoning explanation
that analytically weighs the claim-evidence corre-
lations. To thoroughly evaluate CorXFact in dis-
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tinguishing claim-evidence correlation and claim
verification, we further contribute a CorFEVER test
set consisting of closed-domain and real-world fact-
checking parts. The closed-domain part features
manually annotated claim-evidence correlations,
while the real-world part simulates real-world fact-
checking scenarios with diverse and informal evi-
dence retrieved from open websites.

We conduct experiments on the FEVER (Thorne
et al., 2018) and CorFEVER datasets, and build
CorXFact on several LLMs for assessment: Llama-
2 (Touvron et al., 2023), GPT-4 (OpenAI, 2024),
and fine-tuned Llama-2 tailored for claim verifica-
tion and claim-evidence correlation identification.
The experimental results show CorXFact signifi-
cantly outperforms the LLM-based fact-checking
baselines in both claim authenticity prediction and
verdict explanation generation.

In summary, the key contributions of this work
are three-fold:

• We introduce CorXFact, an LLM-based frame-
work that provides reliable veracity labels and
transparent verdict explanations for evidence-
based fact-checking. Moreover, by instructing
LLMs to follow specific principles for logi-
cal reasoning during claim verification, this
work provides reference for exploring reason-
ing principles in other NLP tasks.

• We investigate LLMs’ capabilities in real-
world fact-checking scenarios and reveal the
impact of irrelevant evidence in such tasks.

• We contribute CorFEVER, a test set com-
prising both closed-domain and real-world
parts to assess LLMs’ ability in distinguishing
claim-evidence correlations and performing
evidence-based claim verification. All codes
and data will be released to the research com-
munity.1

2 Related Work

2.1 Evidence-based Fact-Checking

The task of evidence-based fact-checking aims to
automatically verify the authenticity of a claim
based on evidence provided. The mainstream of
this task follows a three-module pipeline frame-
work: retrieving documents related to the claim, se-
lecting claim-relevant evidence in each document,

1https://github.com/txAnnie/
Explainable-Fact-checking

making authenticity judgments of claims based on
selected evidence (Nie et al., 2019; Zhong et al.,
2020; Soleimani et al., 2020; Jiang et al., 2021;
Pradeep et al., 2021a,b; DeHaven and Scott, 2023).

With the success of the above studies and the pur-
suit of interpretability (Guidotti et al., 2018; Balkir
et al., 2022), explainable fact-checking (Kotonya
and Toni, 2020a,b; Krishna et al., 2022; Fajcik et al.,
2023), which provides a brief explanation of how
decisions are made to make judgments more reli-
able and convincing, has drawn increasing atten-
tion. Among them, one line of work (Popat et al.,
2017; Cui et al., 2019; Yang et al., 2019; Lu and
Li, 2020) focuses on providing insights into neural
models’ decision process. Another line of work fo-
cuses on providing readable post-hoc explanations,
e.g., Gad-Elrab et al. (2019); Ahmadi et al. (2019)
generate abstractive justifications based on knowl-
edge graphs; Atanasova et al. (2020); Kotonya and
Toni (2020c); Jolly et al. (2022) generate natural
language summaries of retrieved relevant evidence.
Most recently, there has been exploration into lever-
aging LLMs to generate refined explanations (Tan
et al., 2023; Zhang and Gao, 2023; Kim et al.,
2024), opening up new directions in this field.

2.2 Evidence-Independent Fact-Checking
With the strong reasoning and vast knowledge of
LLMs being witnessed in nature language pro-
cessing (NLP) tasks including question answering
(QA) (Press et al., 2023), the task of fact-checking
is no longer limited to evidence-based solutions.
More and more work considers fact-checking as a
QA problem and verifies claims without any evi-
dence. For example, Wang and Shu (2023); Pan
et al. (2023b) leverage LLMs to translate a claim
into several sub-claims and perform knowledge-
grounded question-and-answer pairs to make verac-
ity predictions. Pan et al. (2023a) leverage LLMs to
guide the model’s reasoning process by asking a se-
ries of questions critical for verifying a claim. Rani
et al. (2023) propose a 5W framework (who, what,
when, where, and why) for question-answer-based
fact explainability. Aly et al. (2023) use question
answering to predict natural logic operators, tak-
ing advantage of the generalization capabilities of
instruction-tuned language models.

Even though the evidence-independent solution
has shown promising results in providing reasoning
principles through question answering, it heavily
depends on the knowledge base that LLMs has
been trained on. Besides, QA-based fact-checking

https://github.com/txAnnie/Explainable-Fact-checking
https://github.com/txAnnie/Explainable-Fact-checking
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Relevance
Degree Definitely Indirectly Partially

SUPPORT <—————->
REFUTE <—————->

NEI —-

Table 1: Claim-evidence correlation degree definition.
“NEI” denotes to “NOT ENOUGH INFO”.

may encounter issues like LLMs’ hallucination,
where the questions generated are not grounded
in reality or are based on incorrect assumptions.
This work belongs to the evidence-based explain-
able fact-checking scope and introduces the idea
of verifying claims follow specific reasoning prin-
ciples to avoid the hallucination problem in the
evidence-independent solutions.

3 CorFEVER

3.1 Task Definition

The task of evidence-based explainable fact-
checking verifies the validity of a claim
based on available evidence and generates
a brief explanation on decision-making.
In this paper, given a claim c and a set
of evidence E = {e1, e2, ..., en}, the fact-
checking model predicts a veracity label, L ∈
{SUPPORTS,REFUTES,NOT ENOUGH INFO},
for the claim and generates a brief explanation J of
the verdict not only based on evidence E but also
rely on corresponding claim-evidence correlations
R = {r1, r2, .., rn}, which indicate the degree to
which each piece of evidence supports or refutes
the claim.

Considering the correlations between claim and
each piece of evidence can range from supportive
to contradictory, with varying levels of relevance in
between (Wadden et al., 2022) (Table 1). To cover
the relevance and degree between the claim and
each piece of evidence, we define the following
claim-evidence correlation labels for correlation-
enhanced claim verification:

Label 0: Evidence definitely supports Claim;
E.g., Claim: The Hunger Games is a book; Evidence:
The Hunger Games is a 2008 dystopian novel by the
American writer Suzanne Collins.

Label 1: Evidence definitely contradicts Claim;
E.g., Claim: Marvel vs. Capcom: Infinite is only
a comic; Evidence: Marvel vs. Capcom: Infinite is
an upcoming fighting video game in development by
Capcom.

Label 2: Evidence indirectly supports Claim;

E.g., Claim: Macklemore works with Ryan Lewis;
Evidence: Their second album, This Unruly Mess I’ve
Made, was released on February 26, 2016. (Lacking
Knowledge: This Unruly Mess I’ve Made is the second
studio album by American hip hop duo Macklemore
& Ryan Lewis.)

Label 3: Evidence indirectly contradicts Claim;
E.g., Claim: The Cyclades are southeast of mainland
China; Evidence: They are one of the island groups
which constitute the Aegean archipelago. (Lack-
ing Knowledge: The Aegean archipelago belongs to
Greece.)

Label 4: Evidence partially supports Claim;
E.g., Claim:Colin Kaepernick was quarterback
backup to Alex Smith; Evidence: Colin Rand Kaeper-
nick (born November 3 , 1987) is an American football
quarterback who is currently a free agent.

Label 5: Evidence partially contradicts Claim;
E.g., Claim: Buffy Summers has been portrayed
by Kristy Swanson; Evidence: Buffy was portrayed
by Kristy Swanson in the film, and later by Sarah
Michelle Gellar in the television series.

Label 6: Evidence has no relation with Claim.
E.g., Claim: Camp Flog Gnaw is an event; Evidence:
Camp Flog Gnaw has been held every year since 2012.

According to the diverse sources of evidence, we
define the following two fact-checking scenarios:

• Closed-domain: Evidence E is obtained from an-
notated Wikipedia articles (Thorne et al., 2018)
or dedicated fact-checking websites, such as Poli-
tiFact (Wang, 2017), which are well-organized
and reliable.

• Real-world: Evidence E is obtained from open
websites like Google2 and Bing3, which present
a high degree of complexity, vagueness, and di-
versity.

To identify correlations between each piece of
evidence and the associated claim, and to conduct
evidence-based claim verification, this paper in-
troduces the CorFEVER test set consisting of two
scenarios: a closed-domain set and a real-world
set.

3.2 Closed-Domain Set
For the closed-domain set, We extract 1,000 claims
from the FEVER (Thorne et al., 2018) develop-
ment set, maintaining a 33% proportion for each
verdict label (i.e. SUPPORT, REFUTE, NOT
ENOUGH INFO). To ensure the adequacy and re-
liability of evidence, we utilize human-annotated
ground-truth evidence from the FEVER dataset

2https://www.google.com
3https://www.bing.com

https://www.google.com
https://www.bing.com
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Figure 1: Statistics on label distribution.

as claim-relevant evidence. We recruit two NLP
researchers proficient in English to manually an-
notate claim-evidence correlations based on the
annotation guideline (See Appendix A.1) to ensure
high-quality annotation.

In summary, 1,043 claim-evidence correlations
are annotated for 1000 claims, the distribution of
annotated correlation labels is depicted in Figure 1.
The Cohen’s Kappa (Cohen, 1960) score for inter-
annotator agreement is 0.792, indicating substantial
agreement among the annotators.

3.3 Real-World Set
For the real-world set, the claims are identical to
those in the closed-domain CorFEVER. To sim-
ulate a real-world fact-checking scenario with di-
verse and informal claim-relevant evidence, we
retrieve evidence from open websites using the
Google Custom Search Engine API4. As the
world’s most widely used search engine, Google
automatically ranks the relevance of websites that
match a search query and returns the most rele-
vant sentence snippets. On this basis, we input the
whole claim as a search query and directly treat
the returned snippets of matching websites as evi-
dence. Besides, to avoid insufficient or one-sided
evidence for potential fake claims, we expand the
search scope to keywords of claims. Specifically,
we extract nouns and noun chunks from the claims
using SpaCy (Honnibal et al., 2020) and input these
keywords5, separated by semicolons as the search

4https://developers.google.com/custom-search/
v1/overview?hl=zh-cn

5We apply the en_core_web_sm model to extract “token”
and “noun_chunks” attributes for nouns and noun chunks.

Dataset SUP. REF. NEI
FEVER dev set 6,666 6,666 6,666
CorFEVER (Closed-domain) 333 333 333
CorFEVER (Real-world) 426 443 131

Table 2: Claim statistics on FEVER and CorFEVER.
“SUP.”, “REF.”, “NEI” denotes “SUPPORT”, “RE-
FUTE”, and “NOT ENOUGH INFO”, respectively.

query. To reduce the information overload and
reduce complexity for the subsequent claim veri-
fication stage, we select the top-5 results returned
for both the full claim and keyword-based queries.

To avoid claim label reversals due to introduc-
tion of ambiguity or fake evidence on public web-
sites, up to 5 pieces of evidence in the closed-
domain CorFEVER are transferred to real-world
one in addition to the evidence from open websites.
Moreover, for claims with the “NOT ENOUGH
INFO" label in the original FEVER dataset have
no evidence provided, we re-assign labels based
on the claim-relevant evidence gathered from open
websites. This manner results in total 202 “NOT
ENOUGH INFO" claims being relabeled.

As a result, after removing duplicate evidence re-
trieved by claim and claim keywords queries, each
claim contains 10 pieces of evidence on average.
The distribution of labels is listed in Table 2.

4 CorXFact

4.1 Correlation-Enhanced Claim Verification
Determining correlations between each piece of
evidence and the claim are crucial for human fact-
checkers to verify a claim, particularly facing com-
plex and conflicting evidence. Thoroughly assess-
ing the claim-evidence correlations ensures a robust
and reliable verdict.

Building upon this principle, we harness the
strong understanding of LLMs to simulate human
fact-checkers’ reasoning principle for claim ver-
ification in a chain-of-thought (Wei et al., 2023)
strategy: i) Assessing the correlation between each
piece of evidence and the claim; ii) Making a ver-
dict of the claim and providing a concise explana-
tion of the decision-making process by comprehen-
sively weighing all claim-evidence correlations.

Claim-evidence correlation reasoning. Given
a claim c and the claim-relevant evidence set
E = {e1, e2, ..., en}, we employ LLMs as a cor-
relation_identifier to reason correlation degree
between each piece of evidence and the claim:
R = correlation_identifier(c, E), where R =

https://developers.google.com/custom-search/v1/overview?hl=zh-cn
https://developers.google.com/custom-search/v1/overview?hl=zh-cn
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{r1, r2, ..., rn}. Considering that the evidence is
claim-relevant, we agree on the rules that correla-
tion_identifier employs the claim as the context of
the evidence during identifying the claim-evidence
correlation, particularly in cases where evidence
employs abbreviations or pronouns instead of spe-
cific entities6. To be specific, the few-shot prompt
we use for correlation_identifier to reason claim-
evidence correlations is:

Judge the Correlation between Claim and Evidence
from following options: a) Evidence definitely sup-
ports Claim; b) Evidence definitely contradicts Claim;
c) Evidence indirectly supports Claim; d) Evidence in-
directly contradicts Claim; e) Evidence partially sup-
ports Claim; f) Evidence partially contradicts Claim;
g) Eevidence has no relation with Claim. You can
treat Claim as the context of Evidence:

Claim

Evidence

»»»
Output: Claim-Evidence Correlation.

The claim-evidence correlations obtained in this
stage not only contribute to the claim verification
process but also serve as part of the verdict ex-
planation, reflecting LLMs’ ability to identify and
respond to conflicting evidence.

Correlation-based claim verification. With the
claim-evidence correlations, R = {r1, r2, ..., rn},
obtained from the correlation reasoning stage,
we employ LLMs as fact_checkers to make
verdict of the claim: Y = fact_checker(c, E,R).
The verdict Y contains a veracity label L ∈
{SUPPORTS,REFUTES,NOT ENOUGH INFO}
for the claim and a brief natural language expla-
nation J on decision-making. Specifically, the
few-shot prompt we use for fact_checker to verify
claims is:

Verify the authenticity label (‘SUPPORT’, ‘REFUTE’,
or ‘NOT ENOUGH INFO’) of Claim with a briefly
explanation on why you get this conclusion based on
Evidence and corresponding Claim-Evidence Corre-
lations. Try not to predict ‘NOT ENOUGH INFO’ as
much as possible:

Claim

Evidence & Claim-Evidence Correlation

»»»
Output: Label; Explanation.

We expect the explanation generated in this stage re-
veals the logical reasoning behind decision-making

6Claim: Goosebumps (film) was directed by Tim Burton.
Evidence: It was directed by Rob Letterman, and written by
Darren Lemke, based from a story by Scott Alexander and
Larry Karaszewski.

by highlighting the evidence and corresponding
correlations that ultimately lead to the verdict. Be-
sides, along with claim-evidence correlations, the
decision explanation further increases the trans-
parency and interpretability of the reasoning pro-
cess, enhances user trust in veracity prediction, and
assists human fact-checkers in error tracking and
double-checking the claim.

LLM model tuning. Our proposed framework
can be easily adapted to current popular LLMs.
In this work, we apply the method to both large-
scale API-based GPT-4 and moderate-scale Llama-
2 model. To ensure the Llama-2 model gener-
ates reliable claim-evidence correlations, we ex-
plore fine-tuning the Llama-2 model with samples
from the latest GPT-4. Specifically, we contribute
12,142 claim verification samples and correspond-
ing 19,998 claim-evidence correlation identifica-
tion samples generated by GPT-4. The details of
the our fine-tuning sample construction and abla-
tion study on different tuning strategies are pre-
sented in Appendix A.2.

5 Experimentation

5.1 Experimental Settings
Datasets. We evaluate the proposed CorXFact on
CorFEVER (see Section 3) and FEVER (Thorne
et al., 2018), the largest and most popular dataset
in automatic fact-checking. For FEVER, we use
the development set for claim verification evalua-
tion since the test set is a blind set without claim
labels annotated. Detailed statistics on FEVER and
CorFEVER are shown in Table 2.

Baselines. We compare the proposed CorXFact
with BEVERS (DeHaven and Scott, 2023): a stan-
dard three-module baseline system that achieves
SoTA performance on the FEVER dataset and three
LLM-based fact-checking systems with following
powerful LLMs employed:

Llama-2: Large language model Meta AI 2
(Llama-2)7 (Touvron et al., 2023) is entirely
open-source, allowing all individuals full access
to the model. We employ the Llama-2-7b-chat
model for experiments in this work.

Fine-tuned Llama-2: Fine-tuning the above
Llama-2 model with claim verification and
claim-evidence correlation identification sam-
ples to tailor Llama-2 to this task.
7https://github.com/facebookresearch/llama

https://github.com/facebookresearch/llama
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Model CE Source CorAcc. LLM Employed Acc. SUPPORT REFUTE NEI

Baseline - -
Llama-2 63.30 42.86 66.33 73.67

Fine-tuned Llama-2 93.30 90.27 99.70 89.91
GPT-4 92.93 92.06 92.96 93.75

CorXFact

Llama-2 59.16
Llama-2 72.50 39.14 78.72 84.35

Fine-tuned Llama-2 93.30 89.56 99.25 90.96
GPT-4 94.95 93.75 95.65 95.38

Fine-tuned Llama-2 78.24
Llama-2 83.40 72.15 84.30 91.26

Fine-tuned Llama-2 94.80 92.09 99.11 93.12
GPT-4 95.90 94.72 96.80 96.11

GPT-4 84.76
Llama-2 90.40 85.76 89.88 95.07

Fine-tuned Llama-2 96.50 95.25 98.81 95.39
GPT-4 95.96 95.38 97.06 95.38

Human -
Llama-2 96.70 95.81 96.38 97.89

Fine-tuned Llama-2 98.50 97.76 99.85 97.89
GPT-4 96.80 95.87 97.51 96.99

Table 3: Results on the closed-domain CorFEVER dataset. “CE Source” denotes the source of correlation-evidence.
“Acc.” and “CorAcc.” represent the accuracy results, while “SUPPORT”, “REFUTE”, and “NEI” denote the F1

score results.

GPT-4: Generative Pre-trained Transformer 4
(GPT-4)8 is a large-scale Transformer-based
model that exhibits human-level performance on
various professional and academic benchmarks.

Parameters. For all LLM-based systems, we
use a cutoff length of 256, the generation
uses temperature=0.2, top_p=0.9, top_k=1, pres-
ence_penalty=1.1, frequency_penalty=2.

Evaluation. We report the Accuracy (Acc.) of
the claim verdict, as well as Precision (P), Recall
(R), and F1 score for different claim labels to reflect
the proportion of correctly predicted claims.

5.2 Results on Closed-Domain CorFEVER

We report the claim verification results of LLM-
based CorXFact and baseline models on the closed-
domain CorFEVER in Table 3. To intuitively com-
pare with the baseline models, we divide the CorX-
Fact results into four groups according to the di-
verse sources of the claim-evidence correlation:
Llama-2 (lines 4-6), Fine-tuned Llama-2 (lines 7-
9), GPT-4 (lines 10-12), and Human (lines 13-15).

The overall results show that all the CorXFact
models incorporating claim-evidence correlations
outperform the corresponding LLM-based base-
lines, demonstrating the effectiveness of the rea-
soning principle considering claim-evidence corre-
lations in claim verification.

To further analyse the impact of claim-evidence
correlations on claim verification, we evaluate the
coarse-grained accuracy of claim-evidence corre-
lations identification (CorAcc.) by considering

8https://openai.com/gpt-4

four general correlation categories (i.e., “SUP-
PORT”, “REFUTE”, “PARTIAL”, and “No Re-
lationship”)9. Among the results (column 3 in
Table 3), GPT-4 achieves the best performance
(CorAcc.: 84.76) on claim-evidence correlation
identification. Comparing the fact-checking results
across groups, we found that the higher the accu-
racy on claim-evidence correlation identification,
the more the improvement in claim verification.
Even the claim-evidence correlation obtained from
Llama-2 (CorAcc.: 59.16) brings certain perfor-
mance improvements. These result further verify
the importance of the claim-evidence correlation
reasoning principle in claim verification.

Comparing the fact-checking results within a
group, with the CorXFact method employed, the
fine-tuned Llama-2 model performs on par with
GPT-4 when incorporating claim-evidence corre-
lations identified by LLMs. When incorporating
manually annotated claim-evidence correlations,
the fine-tuned Llama-2 model can even outperform
GPT-4 and achieves state-of-the-art results (line
14), which demonstrates the significance of our
approach.

5.3 Results on Real-World CorFEVER

We report the claim verification results of LLM-
based CorXFact and baseline models on the real-

9We treat the definitely support and indirectly support la-
bels as “SUPPORT”, definitely refute and indirectly refute
labels as “REFUTE”, partially support and partially refute
labels as “Partially” (as these labels do not fully support or
refute the claim) and remains the “No Relation” label for
coarse-grained claim-evidence correlation evaluation. Fine-
grained claim-evidence correlation evaluation and analysis are
in Section 6.

https://openai.com/gpt-4
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Model CE Source CorAcc. LLM Employed Acc. SUPPORT REFUTE NEI

Baseline - -
Llama-2 58.20 57.71 27.64 73.64

Fine-tuned Llama-2 72.60 76.89 11.78 78.29
GPT-4 82.30 83.50 55.38 89.20

CorXFact

Llama-2 45.95
Llama-2 44.00 28.46 31.49 70.26

Fine-tuned Llama-2 71.70 74.27 11.25 79.24
GPT-4 80.60 81.84 55.60 86.67

Fine-tuned Llama-2 68.93
Llama-2 47.50 29.00 33.24 76.15

Fine-tuned Llama-2 74.70 77.98 8.55 82.32
GPT-4 81.70 83.06 55.32 89.02

GPT-4 74.41
Llama-2 55.20 38.49 36.98 83.33

Fine-tuned Llama-2 77.80 80.40 11.85 85.99
GPT-4 83.60 84.88 61.87 89.33

Table 4: Results on the real-world CorFEVER dataset. “CE Source” denotes the source of correlation-evidence.
“Acc.” and “CorAcc.” represent the accuracy results, while “SUPPORT”, “REFUTE”, and “NEI” denote the F1

score results.

Model Acc. SUPPORT REFUTE NOT ENOUGH INFO
P R F1 P R F1 P R F1

BEVERS (DeHaven and Scott, 2023) 81.84 97.17 74.72 84.48 97.64 77.69 86.53 69.67 100.00 82.12
Fine-tuned Llama-2 91.94 91.91 83.65 87.58 85.25 92.17 88.57 99.14 100.00 99.57
CorXFact (Fine-tuned Llama-2) 93.57 89.15 93.47 91.26 93.73 87.23 90.37 97.96 100.00 98.97

Table 5: Results on the FEVER dataset.

world CorFEVER in Table 4. Similar to the experi-
ments on the closed-domain CorFEVER, we divide
the CorXFact results into three groups according
to the different sources of the claim-evidence cor-
relation: Llama-2 (lines 4-6), Fine-tuned Llama-2
(lines 7-9), GPT-4 (lines 10-12).

Since the claim-relevant evidence retrieved from
public websites is diverse and informal which may
contain semantic ambiguity and conflicts, the over-
all results in the real-world fact-checking scenario
are far from those in the closed-domain setting.
Although the coarse-grained claim-evidence corre-
lation results (CorAcc.) shown in Table 4 (column
3) are at an acceptable level10, the contradictions
between claim-evidence correlations caused by di-
verse evidence interfere with the verdict decisions.
Therefore, not all CorXFact models outperform
the baselines. Compared to the results with claim-
evidence correlations identified by Llama-2 and
Fine-tuned Llama-2 (lines 4-9), GPT-4 is more
robotic in dealing with such contradictions between
claim-evidence correlations.

All in all, the results in Table 4 on the one hand,
demonstrate the importance of claim-evidence cor-
relations in claim verification decisions; and on
the other hand, these results reveal the impact of
informal and diverse evidence in real-world fact-
checking scenarios, which requires future attention

10We manually annotated 383 claim-evidence correlations
for 36 random claims to evaluate the coarse-grained accuracy
of claim-evidence correlations identified by LLMs.
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Figure 2: Statistics on claims that are misjudged by the
LLM-based baseline and corrected by CorXFact.

and exploration.

5.4 Results on FEVER

We compare our proposed CorXFact (the fine-
tuned Llama-2 employed) with the traditional BEV-
ERS (DeHaven and Scott, 2023) system and an
LLM-based (fine-tuned Llama-2) system on the
FEVER (Thorne et al., 2018) development set11

and report the results in Table 5.
The results12 show that the LLM-based baseline

has an obvious advantage on the FEVER dataset,
the introduction of claim-evidence correlation in
the CorXFact model further widens the gap be-
tween the traditional BEVERS system and the
LLM-based one. Moreover, the statistics in Fig-
ure 2 show that almost 88% of the “REFUTE” and

11Similar to the experiments on closed-domain CorFEVER,
we use human annotated evidence for claim verification.

12No evidence is provided for the claims with the “NOT
ENOUGH INFO” label in the FEVER dataset, which results
in 100% Recall of the “NOT ENOUGH INFO” label.
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Lab. Statistics Evaluation
Human GPT-4 FT Llama-2 Llama-2

0 424 84.93 73.00 53.87
1 448 79.09 65.24 11.91
2 49 25.61 16.28 10.90
3 18 12.61 2.61 8.81
4 18 0.00 0.00 0.00
5 2 0.00 0.00 0.00
6 84 41.41 33.04 12.68

Accuracy 69.22 53.12 24.35

Table 6: Statistics and assessment on claim-evidence
correlations in the closed-domain CorFEVER. “FT
Llama-2” denotes to “Fine-tuned Llama-2”. Sign “Lab.”
denotes to the label defined in Section 4.1

33% of the “SUPPORT” claims that are misjudged
by baseline can be corrected by CorXFact. These
statistics further clarify the source of the perfor-
mance improvement in this task.

6 Analysis

We analyse the claim-evidence correlations in the
closed-domain and real-world CorFEVER.

6.1 Analysis on Claim-Evidence Correlation
in Closed-Domain CorFEVER

We count the distribution of manually identified
claim-evidence correlations in Table 6 (column 2).
The statistics in Table 6 show that almost 80% of
evidence has “definitely support/refute (labels 0-
1)” relation with the claim, 8% (84) evidence “has
no relation (label 6)” with the claim and a very
low proportion of other labels (labels 3-5)13. This
distribution indicates that the evidence extracted
from Wikipedia article is consistent and reliable for
claim verification.

Besides, we further evaluate the accuracy of
claim-evidence correlation identified by LLMs. As
shown in Table 6 (columns 3-5), all the LLMs has
a relatively accurate understanding on the “defi-
nitely support/refute” relation between evidence
and claims (Labels 0 and 1). Among them, GPT-4
achieves the best performance in predicting claim-
evidence correlations than the fine-tuned Llama-
2 and vanilla Llama-2 (Label 6). For the claim-
evidence correlations that account for a small pro-
portion, i.e., Labels 2-6, all the three LLMs are
poor at identifying them.

13Few claims are supported by evidence from one single
Wikipedia document and are interdependent in FEVER. In
this case, all evidence jointly support or refute a claim; while
a single piece of evidence may partially support or refute the
claim, which results in a low proportion of labels 2-5.
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Figure 3: Label statistics on claim-evidence correlation
identified on the real-world CorFEVER.

6.2 Analysis on Claim-Evidence Correlation
in Real-World CorFEVER

Statistics on claim-evidence correlations. We
display the distribution of human annotated claim-
evidence correlations in Figure 3. Claim-relevant
evidence in real-world CorFEVER is extracted
from open websites and are diverse and informal
compared to closed-domain CorFEVER. Therefore,
over 53% (204) of all claim-evidence correlations
are labelled as Label 6 (no relation). This observa-
tion indicates the significant challenges faced by
real-world fact-checking.

Impact and challenges of open evidence. To
investigate the impact of evidence labelled as La-
bel 6 (no relation), we compare the fact-checking
results with (w/) and without (w/o) such evidence
and plot the performance change in Figure 4. As
shown in the figure, after removing the evidence
of Label 6, the fact-checking results of all Llama-2
models increase apparently. Moreover, with the
CorXFact method applied, both Llama-2 and fine-
tuned Llama-2 achieve a significant performance
improvement, narrowing the gap with GPT-4. This
demonstrates that reducing evidence not related
to the claim can help the smaller Llama-2 models
make better decision-making. Notably, the results
of GPT-4 show an exception, that is, when em-
ploying such evidence not related to the claim, it
achieves better performance. We conjecture that
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Figure 4: Performance comparison with and without
evidence of Label 6 ("Evidence has no relation with
Claim"). The claim-evidence correlations used by each
LLM comes from itself.

GPT-4 has a larger parameter volume and richer
knowledge. Therefore, when it receives such ev-
idence along with the meta information of “Evi-
dence has no relation to Claim” (Label 6), it can
well exclude useless knowledge from mind, thus
reaching a more accurate claim verdict.

7 Conclusion

This paper introduces a novel framework namely
Correlation-Enhanced Explainable Fact-Checking
(CorXFact). It simulates the human fact-checkers
to assess and weigh the claim-evidence correlations
for claim verification. The quantitative experimen-
tal results and qualitative analysis demonstrate that
the proposed method enables generating transpar-
ent explanation behind decision-making and per-
forming efficient claim verdict.

8 Limitations

We identify three main limitations of the proposed
CorXFact. First, our CorXFact currently employs
large language models such as GPT-4 and Llama-
2. The LLM-based models inevitably suffer from
hallucination issues. Even though we have intro-
duced the idea of verifying claims following spe-
cific reasoning principles to avoid the hallucina-
tion problem, the approach is still far from perfect.
Secondly, even though we retrieve claim-relevant
evidence from open websites, we only take En-
glish into consideration. Besides, the claim in

the FEVER dataset is structured and concise com-
pared to social media claims. In this situation, the
generalization to other languages and more noisy
real-world claims requires further study. Thirdly,
while our CorXFact enables consistent judgment
explanations through claim-evidence correlation
analysis, our primary focus remains on enhancing
fact-checking performance, with interpretability as
a secondary outcome. From a traditional explana-
tion perspective (Guidotti et al., 2018; Balkir et al.,
2022), the explanations generated by the CorXFact
still falls into the local, post-hoc explanation cate-
gory that provide a specific decision for a specific
input.
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Label 0 or Label 1 depending on the support
or contradict case. Otherwise,

2. If the evidence, supplemented with additional
knowledge, can cover the overall content of
the claim, we annotate it as having an indirect
claim-evidence correlation, labelled as either
Label 2 or Label 3 depending on the support
or contradict case. Otherwise,

3. If the evidence only partially covers the con-
tent of the claim, we annotate it as having a
partial claim-evidence correlation, labelled
as either Label 4 or Label 5 depending on the
support or contradict case.

Notably, for labels falling into the second situa-
tion, we require annotators to specify the “lacking
knowledge” that would fully cover the claim along
with the evidence.

A.2 Fine-Tuning Process of Llama-2
We randomly select 12,142 claims and correspond-
ing 19,998 ground evidence from FEVER train-
ing dataset and instruct GPT-4 with prompts de-
scribed in Section 4.1 for Llama-2 fine-tuning
sample construction. As a result, we construct
12,142 claim verification samples and correspond-
ing 19,998 claim-evidence correlation identifica-
tion samples with following JSON format:

# claim verification sample
{
"instruction": "Verify the authenticity label

('SUPPORT', 'REFUTE', or 'NOT ENOUGH INFO
') of Claim with a brief explanation on
why you get this conclusion",

"input": {
"claim": Claim,
"evidence": [Evidence 1,Evidence 2,... ]

},
"output": {
"verdict label": Label,
"explanation": Explanation

}
}

# claim-evidence correlation sample
{
"instruction": "Judge the Correlation between

Claim and Evidence from the options: a)
Evidence definitely supports Claim; b)
Evidence definitely contradicts Claim; c)
Evidence indirectly supports Claim; d)
Evidence indirectly contradicts Claim; e)
Evidence partially supports Claim; f)
Evidence partially contradicts Claim; g)
Eevidence has no relation with Claim",

"input": {
"claim": Claim,
"evidence": Evidence

},
"output": Correlation

}

Given the above constructed samples, we adopt
following strategies for fine-tuning Llama-2:

Fact-check & Cor: Shuffling and mix the fact-
checking and claim-evidence correlation identi-
fication samples to fine-tune one Llama-2 model
with the two capabilities.

Fact-check ; Cor: Fine-tuning two Llama-2
models with fact-checking and claim-evidence
correlation identification samples separately.

Fact-check -> Cor: Combining the two kinds of
samples in to one sample like chain-of-thought
to fine-tune one Llama-2.

We employ LoRA fine-tuning for 3 epochs to
adapt Llama-2 for claim-evidence correlation iden-
tification and claim verification capabilities, ensur-
ing both effectiveness and efficiency. The overall
results on CorFEVER are shown in Table 7.

Tuning Strategy Acc. SUP. REF. NEI
Fact-check & Cor 94.80 92.09 99.11 93.12
Fact-check ; Cor 94.10 90.68 99.25 92.22
Fact-check -> Cor 83.60 67.59 100.00 80.19

Table 7: Fact-checking results of different fine-tuning
strategies for Llama-2.

It shows that fine-tuning one Llama-2 with two
capabilities gains the best results. Therefore, we
use the “Fact-check & Cor” fine-tuning strategy for
CorXFact and baseline models. We will release the
fine-tuning data to the research community.

A.3 Error Correction
We display an error correction example in Table 8
where the fine-tuned Llama-2 baseline misjudges
the claim where the fine-tuned Llama-2 with CorX-
Fact corrects it. The example shows that by iden-
tifying the correlation between the claim and the
evidence, the verdict is corrected, and the gener-
ated explanation with claim-evidence correlations
clearly explains the reasoning process behind the
decision-making process, which is more logical
and convincing.
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Claim Hot Right Now is mistakenly attributed to DJ Fresh.

Evidence “Hot Right Now” is a single by British drum and bass producer DJ Fresh, released as the second single
from his third studio album, Nextlevelism.

Model Baseline CorXFact
Claim-Evidence
Correlation - The evidence definitely contradicts the claim.

Verdict and Ex-
planation

Label: True. Explanation: The claim that “Hot
Right Now” is mistakenly attributed to DJ Fresh is
true based on the evidence provided. Evidence 1
clearly states that “Hot Right Now” is a single by
British drum and bass producer DJ Fresh, released
as part of his third studio album titled Nextlevelism.
There’s no mention in this context about it being
incorrectly attributed; therefore, we can conclude
from this information alone that there was indeed
an error or misattribution regarding who produced
“Hot Right Now.”.

Label: False. Explanation: The claim states that
“Hot Right Now” is mistakenly attributed to DJ
Fresh, implying it was incorrectly credited as his
work rather than belonging to someone else en-
tirely or being a misattribution altogether. How-
ever, the evidence provided clearly identifies “Hot
Right Now” as a single by British drum and bass
producer DJ Fresh from his third studio album ti-
tled Nextlevelism which directly contradicts this
claim since there’s no mention of any mistake in
attributing him with this track; therefore, we can
conclude based on available information that the
original statement about incorrect attribution is
false.

Table 8: Error correction example.
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