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Abstract

Query-product relevance classification is cru-
cial for e-commerce stores like Amazon, ensur-
ing accurate search results that match customer
intent. Using a unified multilingual model
across multiple languages/marketplaces tends
to yield superior outcomes but also presents
challenges, especially in maintaining perfor-
mance across all languages when the model is
updated or expanded to include a new one. To
tackle this, we examine a multilingual contin-
ual learning (CL) framework focused on rele-
vance classification tasks and address the issue
of catastrophic forgetting. We propose a novel
continual learning approach called attention
distillation, which sequentially adds adapters
for each new language and incorporates a fu-
sion layer above language-specific adapters.
This fusion layer distills attention scores from
the previously trained fusion layer, focusing
on the older adapters. Additionally, translat-
ing a portion of the new language data into
older ones supports backward knowledge trans-
fer. Our method reduces trainable parameters
by 80%, enhancing computational efficiency
and enabling frequent updates, while achiev-
ing a 1-3% ROC-AUC improvement over sin-
gle marketplace baselines and outperforming
SOTA CL methods on proprietary and external
datasets.

1 Introduction

Large-scale e-commerce search systems, like those
of Amazon and Walmart, employ a multi-step
process to retrieve relevant products. Initially, a
product set approximating relevance to the query
is generated (Agrawal et al., 2023b) (Agrawal
et al., 2023a), followed by optimization steps for
relevance, customer interest, and other metrics
(Momma et al., 2022). Accurately capturing rele-
vance between a customer’s query-intent and the
product set is crucial for a positive customer expe-
rience, leading to the adoption of relevance models
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Figure 1: In Continual Learning, the model (LM) trains
on one dataset at a time, starting with EN language,
then FR language, and so on. Parameters are updated
sequentially using loss function L(.). This diagram
demonstrates the CL training framework and is not a
production representation.

in various marketplaces. However, as new mar-
ketplaces emerge, the need for language-specific
relevance models arises, resulting in the mainte-
nance of multiple models. Yet, achieving semantic
alignment across languages and utilizing a single
model trained on data from all marketplaces can en-
hance knowledge transfer (Zhang and Yang, 2021;
Liu et al., 2019). However, creating a single model
for multiple marketplaces presents challenges; ex-
panding to new marketplaces demands retraining
the entire model with data from all existing ones, in-
curring substantial computational costs and necessi-
tating simultaneous access to data from all market-
places during training. This paper addresses these
challenges in a continual learning scenario, where
marketplaces are introduced sequentially (see Fig-
ure 1). This scenario demands model updates to
accommodate new marketplaces while preserving
performance for older ones, without replaying data
from older marketplaces. Please note that introduc-
ing a new marketplace implies the presence of data
in a new language.
In this context, we propose a novel approach called

attention distillation, wherein adapters (Rebuffi
et al., 2017a) are progressively incorporated for
each marketplace data. In this context, an adapter
fusion layer (Pfeiffer et al., 2020a) is incorporated
with randomly initialised weights at every time
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step t that sits atop the adapters. In this case (see
Figure 2(b)), the attention scores related to previ-
ous adapters in the new fusion layer are distilled
from the previously trained fusion layer. While, the
attention scores for the new marketplace adapter
are trained using the conventional approach as de-
tailed in (Pfeiffer et al., 2020a) for their specific
new target tasks. Furthermore, we introduce utiliz-
ing a subset of new language data translated into
the older language datasets to enable backward
knowledge transfer through our proposed method-
ology. Our experimental focus addresses the fol-
lowing research questions: RQ1: Given Adapter
fusion operates in a non-sequential manner, can
our proposed approach attain similar performance
in continual learning while also reducing a signifi-
cant number of parameters? RQ2: How effective
are state-of-the-art Continual Learning Methods
in transferring knowledge in multilingual scenar-
ios? RQ3: What is the impact of translating new
marketplace language data at time t into the older
marketplace languages within a continual learning
setup on knowledge transfer when training for new
marketplace? Our key contributions include:
1. We propose a novel attention distillation method
tailored for continual learning: (a) We introduce
an adapter fusion layer with randomly initialized
weights at each time step t, positioned above the
adapters. This layer distills attention scores related
to previous adapters from the previously trained
fusion layer. (b) Furthermore, we facilitate back-
ward knowledge transfer by translating some new
marketplace data into older ones, leveraging our
attention distillation approach.
2. Empirical evaluation of the proposed approach
on proprietary and public datasets results in a sig-
nificant boost of 1-3% ROC-AUC on the query-
product relevance task compared to training each
marketplace dataset separately. Our approach also
outperforms existing SOTA CL algorithms when
evaluating relevance classification tasks across var-
ious languages within a continual learning context.
our approach facilitates a significant reduction of
trainable parameters in a transformer model—up
to 80%—when expanding to new languages.

2 Problem Statement

We define the multi-lingual continual learning
problem as follows: Consider n distinct market-
place datasets {D1, D2, . . . , Dn}, each in a unique
language. We train a multilingual transformer
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Figure 2: (a) AdapterFusion (Pfeiffer et al., 2020a) in
a transformer takes inputs from various task-specific
adapters, learning to mix their encoded information.
(b) Our proposed method integrates attention distilla-
tion into a continual learning framework, conducting
training at time t while leveraging knowledge from the
previously trained model at time step t− 1.

model sequentially on these datasets, excluding
older data to improve computational efficiency.
For example, when training on Dt, we exclude
{Dt−1, Dt−2, . . . , D1}.

Let Mt represent the model trained on Dt, built
upon Mt−1. Our goal is to fine-tune Mt using Dt

while preserving performance on previous datasets
{D1, D2, . . . , Dt−1} and mitigating catastrophic
forgetting. The model parameters at time t are
ΘMt , and the base transformer model parameters
are Θbase. The task-specific loss function for Mt is
Lt.

3 Related Work

Continual Learning: Continual learning meth-
ods generally fall into four categories: (i) Replay-
based methods: These techniques involve caching
a portion of data for each new task introduced to
the model. The system then utilizes experience
replay to prevent catastrophic forgetting, as illus-
trated in prior work by Dautume et al. (de Mas-
son d’Autume et al., 2019) (Rebuffi et al., 2017b).
(ii) Regularization-based methods: These apply
regularization loss to various model components
to prevent significant deviations from previously
learned tasks. Regularization can target the output
(Li and Hoiem, 2017), hidden space (Rannen et al.,
2017), or model parameters (Lopez-Paz and Ran-
zato, 2022) (Zenke et al., 2017). (iii) Architecture-
based methods: These methods design model
segments to handle specific tasks, reducing inter-
ference between tasks. Examples include (Rusu
et al., 2022) and (Mallya and Lazebnik, 2018),
with our approach inspired by the CTR architec-
ture (Ke et al., 2021a). (iv) Meta-Learning based
methods: These focus on optimizing knowledge
transfer across tasks (Riemer et al., 2019). For
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instance, (Wang et al., 2022) introduces prompt
learning to adapt Large Language Models (LLMs)
to new tasks.
Adapters and Adapter Fusion: Adapters are
small parameter efficient fully connected networks
that are introduced at every layer of a transformer
model. In the work by (Pfeiffer et al., 2020a),
Adapter Fusion is introduced as an attention layer
placed on top of these Adapters. It’s purpose is to
encourage the non-destructive transfer of knowl-
edge between various task-specific adapters shown
in Figure 2(a).
Components of Fusion Layer: Adapter Fusion
is trained to compose the n task-specific adapters
{Θ1, ...,Θn} and the shared pretrained model
Θbase through the introduction of a new set of
weights Ψ. As shown in Figure 2(a), we note that
the AdapterFusion parameters Ψ encompass Key,
Value, and Query matrices at each layer denoted
as Kl, Vl, and Ql, respectively. For each layer l of
the transformer and at each token-step j, the output
from the feedforward sub-layer of layer l serves as
the query vector. The output of each adapter, zl,j ,
is employed as input for both value and key trans-
formations. As outlined in Vaswani et al. (Vaswani
et al., 2017), we learn a contextual activation for
each adapter t using

sl,j = softmax(hT
l,jQl · zTl,j,tKl), tϵ{1, ..., n} (1)

z′l,j,t = zTl,j,tVl, tϵ{1, ..., n} (2)

Z′
l,j = [z′l,j,1, ...., z

′
l,j,n] (3)

ol,j = sTl,jZ
′
l,j (4)

Here, n denotes the total count of adapters.

4 Proposed Methodology

This paper aims to develop a query-product rel-
evance classification model (Mangrulkar et al.,
2022) that can handle multiple sequentially in-
troduced marketplaces, outperform marketplace-
specific training, and significantly reduce compu-
tational resources and training time. We also aim
to enable effective knowledge transfer across dif-
ferent marketplaces. The paper is organized as fol-
lows: Section 4.1 discusses using language-specific
adapters and fusion modules in a continual learn-
ing environment. Section 4.2 introduces our pro-
posed architecture, Attention Distillation, which

distills attention scores generated from fusion layer
with the previously trained fusion layer to prevent
catastrophic forgetting and enhance performance.
Section 4.3 explores how translation enhancement
improves performance.

4.1 Adapters and Adapter Fusion Modules in
CL Context

Adapters: The base model (Θbase) is a
transformer-based, multi-language pre-trained ar-
chitecture (e.g., mBERT) with all parameters
frozen. When a new language is introduced, a
randomly initialized adapter, based on the Pfeiffer
architecture (Pfeiffer et al., 2020b), is added after
the feed-forward layer in each mBERT layer (see
Figure 2(a)). A classification head is placed on the
final adapter layer, and the new adapter is trained
on marketplace data (Dt). Once training is com-
plete, the adapter is preserved independently, with
its weights denoted as ΘAt , where t corresponds to
the time-step. The model weights are expressed as:

ΘMt = Θbase +

t∑
j=1

ΘAj (5)

During training, only the adapter weights (ΘAt) are
unfrozen, while all other parameters remain frozen.
The training objective for model Mt is as follows:

ΘAt ←− argmin
Θ
Lt(Dt; Θbase,ΘA1 , ...,ΘAt−1 ,Θ) (6)

Adapter Fusion: To enable knowledge sharing
between different language adapters, an attention
layer called adapter fusion is added on top of the
adapters (Pfeiffer et al., 2020a) (see Figure 2(a)).
Let Ψt denote the Key, Value, and Query matri-
ces introduced by the fusion layer upon the intro-
duction of the Dt marketplace. After training an
adapter on Dt, the entire model, including adapters,
is frozen. The Adapter Fusion layer is then trained
with task-specific loss Lt, and the learning objec-
tive becomes:

Ψt ←− argmin
Ψ
Lt(Dt; Θbase,ΘA1 , ...,ΘAt ,Ψ) (7)

The final model weights are:

ΘMt = Θbase +

t∑
j=1

ΘAj +Ψt (8)
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Figure 3: Three-Stage Training Pipeline for the Model (Mt) at Time t within a Continual Learning Framework:
Translation followed by individual Adapter training followed by Attention Distillation Method.

4.2 Attention Distillation Training using
Adapter Fusion layer

The fusion layer’s weight dimension changes with
the addition of new language-specific adapters,
making it impossible to reuse trained weights from
model Mt−1 in the new model Mt. To address
this, our attention distillation method follows these
steps:
1. When a new language is introduced at time t, the
fusion layer parameters are randomly initialized.
The previous model (Mt−1) serves as the teacher,
and the new model (Mt) as the student.
2. During training, both models process each batch
of data. The student model’s attention scores (sl,j
in Equation 1) for old adapters are distilled from the
teacher model using KL-Divergence (Kullback and
Leibler, 1951), while scores for the new adapter are
trained using the conventional approach (outlined
in (Vaswani et al., 2017)) for their respective new
target tasks.

Let Ωt represent the attention score matrix
produced by the Fusion layer in Mt with di-
mensions batch_size×max_tokens× t. The
attention distillation loss (LAD) and total loss
(Ltotal_t) are defined as follows, where ωt

= {Ωt[i, j, k]; i ≤ batch_size, j ≤ max_tokens,
k ≤ t - 1}.

LAD = KL(Ωt−1||ωt) =
∑
i,j,k

Ωt−1 log(
Ωt−1

ωt
) (9)

Ltotal_t = Lt + LAD (10)

The total loss balances task-specific learning for
the new marketplace with maintaining attention
distribution from the previous model.

4.3 Proposed Method: Attention Distillation
with translation

When training model Mt with a new language, we
compute the attention distillation loss using model
Mt−1 (teacher) and Mt (student). However, for
syntactically different languages, the activations
from Mt−1’s fusion layer may become irrelevant.
To address this, our revised method includes the
following steps:
1. Train a new language-specific adapter (ΘAt)
using dataset Dt, incorporating it into Mt, which
already includes the frozen base model (Θbase) and
t− 1 language-specific adapters.
2. Translate a portion of Dt into older languages,
denoted as T1, T2, ..., Tt−1.
3. Introduce a fusion layer (Ψt) atop the t adapters
in Mt, freezing all parameters except the fusion
layer.
4. During training, if a batch is from the translated
subset, we pass it to both the teacher (Mt−1) and
student (Mt) models, applying the attention distilla-
tion loss. If the batch is from the new language Dt,
we compute the task-specific cross-entropy loss.

To manage computational complexity, only a
small subset of the new data is translated into older
languages. The learning objective is updated as:

Ψt ←− argmin
Ψ
{Lt(Dt,Ψ) + LAD(T1, T2, ..., Tt−1,Ψ)}

(11)

Algorithm 1 in Appendix and Figure 3 provide
an overview and depict our proposed approach.

5 EMPIRICAL EVALUATION

We present our findings on the benefits of using
multi-lingual continual learning for relevance clas-
sification tasks. We begin with the dataset details.
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Method ROC-AUC #Trainable Parameters

MA MB MC MD

SM (baseline) 0.880(±0.0009) 0.8540(±0.0001) 0.8712(±0.0006) 0.8760(±0.0002) 110M

Sequential Fine-tuning

MA→MB 0.8756(±0.0007) 0.8630(±0.0003) – –
MA→MB →MC 0.8670(±0.0001) 0.850(±0.0011) 0.8851(±0.0004) –
MA→MB →MC →MD 0.8583(±0.0010) 0.8429(±0.0006) 0.8701(±0.0012) 0.8824(±0.0005) 110M

Adapter and Adapter Fusion - without Sequential

Adapter 0.8742(±0.0003) 0.8532(±0.0009) 0.8693(±0.0008) 0.870(±0.0013) 0.59M
Adapter Fusion 0.8867(±0.0002) 0.8756(±0.0006) 0.8832(±0.0005) 0.8851(±0.0008) 22M

Attention Distillation with Translation (Our approach)

MA→MB 0.8829(±0.0004) 0.8782(±0.0003) – –
MA→MB →MC 0.8832(±0.0007) 0.8724(±0.0002) 0.8890(±0.0005) –
MA→MB →MC →MD 0.8874(±0.0012) 0.8768(±0.0009) 0.8854(±0.0010) 0.8865(±0.0004) 22M

Table 1: ROC-AUC scores for SM, sequential fine-tuning, adapters and adapter fusion (not in sequence), and our
proposed method on the Amazon proprietary Dataset. We also include the number of trainable parameters for each
method. The sequence x→ y→ z indicates the fine-tuning order of the mBERT model, where after training on
the z language, performance is evaluated on all languages, x, y, and z. Green signifies a ROC-AUC score increase
compared to the SM baseline, while red indicates a decrease. Mean & std. (±) error for ROC-AUCs are reported
based on 5 trials.

Method Amazon Proprietary Dataset Aicrowd Public Dataset

MA MB MC MD En Es Jp

HAT 0.8349(±0.0005) 0.8367(±0.0012) 0.8438(±0.0010) 0.8427(±0.0008) 0.7768(±0.0002) 0.7271(±0.0002) 0.7242(±0.0001)

CTR 0.8538(±0.0011) 0.8221(±0.0008) 0.8338(±0.0009) 0.8346(±0.0004) 0.7855(±0.0013) 0.7400(±0.0011) 0.7258(±0.0003)

B-CL 0.8421(±0.0002) 0.8349(±0.0002) 0.8389(±0.0004) 0.8410(±0.0007) 0.7623(±0.0006) 0.7382(±0.0004) 0.7244(±0.0008)

DyTox 0.8740(±0.0002) 0.8642(±0.0004) 0.8702(±0.0005) 0.8654(±0.0006) 0.7624(±0.0010) 0.7483(±0.0003) 0.7168(±0.0007)

Attention Distillation 0.8852(±0.0008) 0.8727(±0.0001) 0.8738(±0.0008) 0.8772(±0.0002) 0.8004(±0.0001) 0.7894(±0.0012) 0.7400(±0.0013)

Table 2: Comparing ROC-AUC with SOTA Continual Learning Models on both the Amazon proprietary dataset
and a publicly available Aicrowd query dataset. The ROC-AUC values are averaged over 4 random sequences.
Mean & std. (±) error for ROC-AUCs are reported based on 5 trial runs.

Datasets: 1. Amazon proprietary e-commerce data
from four marketplaces: To ensure confidential-
ity, we denote the four marketplaces as MA, MB ,
MC , and MD. Each marketplace dataset includes
a ground truth label categorized as either relevant
or non-relevant. All datasets in our analysis are
anonymized, aggregated, and do not represent pro-
duction distribution. 2. Public Aicrowd Shopping
Query dataset (Reddy et al., 2022) from EN, ES,
and JP marketplaces. Further details on the genera-
tion of these datasets can be found in Appendix A.
Reproducibility and Hyperparameters: Please
refer to Appendix B for detailed information on the
reproducibility of our experiments and the hyper-
parameter configurations.
Algorithm Baselines: To evaluate our method, we
use the following baselines:
(i) Single Marketplace (SM): Fine-tuning M-
BERT individually for each marketplace dataset.
(ii) Sequential Fine-tuning: Sequentially fine-

tuning M-BERT for each marketplace in a specific
order.
(iii) HAT (Serra et al., 2018): A hard attention
mechanism that retains previous tasks’ information
while learning new tasks.
(iv) CTR (Ke et al., 2021a): Incorporates a contin-
ual learning plug-in (CL-plugin) in BERT to facil-
itate knowledge transfer and protect task-specific
knowledge.
(v) B-CL (Ke et al., 2021b): Uses continual learn-
ing adapters and capsule networks to promote
knowledge transfer and safeguard task-specific
knowledge.
(vi) DyTox (Douillard et al., 2022): A dynamic
continual learning strategy with a transformer-
based architecture.
Evaluation Metric: For classifying relevance and
identifying optimal query-product pairs, we use
ROC-AUC (Brown and Davis, 2006) as our pri-
mary metric. Although ranking metrics like pre-



96

cision@k, recall@k, and NDCG could be used,
however, we opted not to generate results for rank-
ing metrics due to the limited number of products
per query in our datasets.

5.1 Results
In Table 1, we present our proposed method results
on Amazon proprietary dataset, comparing them
with- SM, Sequential Fine-tuning, and Adapter
& Adapter Fusion (non-sequential). Throughout
our experiments, we use the pre-trained mBERT
model. Sequential Fine-tuning demonstrates a case
of catastrophic forgetting for all the older market-
places. Regarding RQ1, Adapter fusion trained
on all marketplaces together demonstrates superior
results compared to SM with an ∼80% reduction
in parameters. However, it cannot be employed
in a Continual fashion. Conversely, our proposed
method, specifically tailored for Continual fine-
tuning, surpasses the SM baseline and achieves
nearly comparable performance with Adapter fu-
sion while reducing parameters by ∼80%.
RQ2: Comparison with SOTA CL methods: Ta-
ble 2 highlights that the current SOTA continual
learning models are not well equipped for handling
multilingual continual learning scenarios. This
can be attributed to the architecture of some meth-
ods such as CTR (Ke et al., 2021a) which weighs
the embeddings generated by the base transformer
model based on the similarity between different
tasks. Since the task remains the same, the respec-
tive capsules in CTR are unable to capture any ad-
ditional information that needs to be transferred be-
tween different marketplaces and hence we notice
that the results are similar for every marketplace
even though the data distribution is significantly dif-
ferent. In contrast, our method consistently outper-
forms all SOTA continual learning methods when
provided with a multilingual continual learning sce-
nario.
RQ3: Benefits with Translation: Translating the
entirety of the new marketplace’s data back into
the old marketplace languages significantly extends
the time required for training. In this context, we
present a summary of our findings in Figure 4. We
employ our proposed approach for a sequence of
four languages, translating data from the fourth lan-
guage into the first three. We then calculate the
average ROC-AUC gains for the initial three lan-
guages, taking into account the percentage of data
translated. The findings reveal that the highest per-
formance coupled with the ideal training duration
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Figure 4: Training Time and ROC-AUC Gains vs. Trans-
lation Subset Size

is attained when 30% of the entire dataset is trans-
lated back into the older marketplace languages.

5.2 Deployment Considerations
Effective query-product relevance models are cru-
cial for reducing irrelevance on online e-commerce
stores. Our analysis shows that a significant portion
of product impressions come from offline sourc-
ing strategies, which contribute substantially to
search irrelevance. We use various offline strategies
to curate product lists for head and torso queries,
which are repetitive and cover a large portion of
query coverage. We then apply a high-performing
relevance model to evaluate query-product pairs,
storing highly relevant pairs in an offline cache.
This relevance model enhances the relevance of
displayed query-product pairs, leading to improved
customer experience and an increase in overall
sales.

6 Conclusion and Future Work

We propose a novel Attention Distillation method
and outline a training process for multilingual con-
tinual learning. This method enables the seamless
integration of new marketplaces over time without
causing a decline in performance for older ones.
Our experiments on internal and external datasets
demonstrate consistent performance across all mar-
ketplaces, outperforming state-of-the-art Continual
Learning methods. This approach also offers poten-
tial for future exploration in applying Attention Dis-
tillation to multi-task problem-solving challenges.
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A Datasets

1. Amazon Proprietary Dataset From four
distinct Amazon marketplaces, we gather separate
sets of 500K human-audited query-product pairs,
each containing data in its respective language.
Test and validation datasets are generated by
randomly sampling 30K query-product pairs for
each marketplace, and these 60K pairs are then
excluded from the training dataset.
2. Aicrowd Shopping Query Public Dataset
(Reddy et al., 2022) is a publicly available dataset
released by Amazon containing product search
data for the EN, ES and JP marketplaces. To create
test and validation datasets, 20% of the training
datasets are chosen at random and excluded from
the training datasets. Each query-product pair is
annotated with labels denoted as E/S/C/I, which
stand for Exact, Substitute, Complement, and
Irrelevant. In the context of search, the pairs
labeled as Exact and Substitute are considered
relevant (positive class), while the pairs labeled
as Complement and Irrelevant are considered
irrelevant (negative class). Hence, the task can be
formulated as a binary classification problem, with

the goal of comparing performance in terms of
roc-auc.

B Reproducibility and Hyperparameters

In this section, we present the hyperparameters and
training methodologies used in our experiments.
We use publicly available datasets and open-source
models to ensure that our work can be indepen-
dently verified and reproduced. All experiments
are carried out utilizing the PyTorch framework
(Paszke et al., 2019) in conjunction with the Hug-
gingFace models (Wolf et al., 2019). We use a
consistent set of hyperparameters during training
on Proprietary and Public datasets, which were op-
timized through a series of preliminary trials and
are detailed in Table 3.

The bert-base-multilingual-uncased (Devlin
et al., 2018) 1 model serves as the base model for
conducting all the CL-based experiments. During
the training phase, we employ pre-trained check-
points and then train every marketplace adapter for
5 epochs followed by training the Adapter Fusion
layer using Attention Distillation for an additional
5 epochs, incorporating early-stopping criteria. Re-
garding the translation-based distillation process
detailed in Section 4.3, when addressing a new
language, we execute translation on 30% of the
data to revert it back into the languages of earlier
marketplaces. This is accomplished using Helsinki-
NLP’s Opus MT models (Tiedemann and Thottin-
gal, 2020). Please note that our methodology de-
mands significantly less computational resources as
compared to the baseline models since the weights
of the base transformer model are frozen in our
training process.

Hyperparameter Value
Batch Size 512
Learning Rate 5e-5
Epochs for Adapter Training 5
Epochs for Adapter Fusion Training 5
Weight Decay 0.0
Optimizer Adam
Adam ϵ 1e-8
Gradient Clipping 0.1

Table 3: Hyperparameters used for training the models.

1https://huggingface.co/
bert-base-multilingual-uncased
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Algorithm 1 Training Procedure for the Model Mt Using Attention Distillation with Translation Approach
in a Continual Learning Context

Require: Dataset Dt, Translated Datasets {T1, ..., Tt−1}, Adapter At, Batchsize bs, Task Specific Loss
Lt, Max Token Length v, KL Divergence Loss KL, Frozen Base Model Parameters Θbase

Ensure: Learn Adapter Parameters ΘAt and Adapter Fusion Parameters Ψt at time-step t
ΘA1 , ...,ΘAt−1 ← Frozen Adapters Parameters
ΘAt ←argmin

Θ
Lt(Dt,Θbase,ΘA1 , ...,ΘAt−1 ,Θ)

ΘAt ← Frozen tth Adapters Parameters
Ψt−1 ← Frozen Adapter Fusion Parameters
Ωt ← Attention score matrix from Adapter Fusion
{Qbs=1, ..., Qbs=last} ∈ Dt

⋃
T1

⋃
...
⋃

Tt−1

for j← 1 to bs=last do
ωt← {Ωt[p, q, r]; p ≤ bs, q ≤ v, r ≤ t - 1}
LAD ← KL(Ωt−1||ωt)
Ψt ←− argmin

Ψ
{Lt(Dt,Ψ) + LAD(T1, ..., Tt−1,Ψ)}

end for
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