
Proceedings of the 31st International Conference on Computational Linguistics: Industry Track, pages 771–783
January 19–24, 2025. ©2025 Association for Computational Linguistics

771

Efficient Vocabulary Reduction for Small Language Models

Yuta Nozaki*, Dai Nakashima*, Ryo Sato*,
Naoki Asaba*, Shintaro Kawamura*

*Ricoh Company, Ltd.
{yuta.nozaki1,dai.nakashima,ryo.sato4,

naoki.asaba,shintaro.kawamura}@jp.ricoh.com

Abstract

The increasing size of large language mod-
els (LLMs) poses significant challenges due
to their high computational costs and energy
consumption, making their deployment in in-
dustrial settings difficult. Small language mod-
els (SLMs) have been introduced to mitigate
these challenges by reducing model size while
preserving performance. However, the em-
bedding layer, which occupies a significant
portion of the model, remains a bottleneck
in model compression efforts. In this paper,
we valdated vocabulary reduction as a solution
to compress the embedding layer and reduce
model size without significant loss of perfor-
mance. We conduct a series of experiments to
investigate how vocabulary reduction affects
GPU memory footprint, inference speed, and
task performance. Our results show that while
performance generally declines with vocabu-
lary reduction, fine-tuning can recover much
of the lost performance. Moreover, in some
tasks, such as truthfulness and summarization,
the vocabulary-reduced models outperform the
baseline. Finally, we demonstrate that vocab-
ulary reduction can be effectively applied in
domain adaptation, particularly in the medical
domain, and in multilingual adaptation, improv-
ing task efficiency and cross-lingual robustness.

1 Introduction

The practical deployment of large language mod-
els (LLMs) has introduced significant challenges
due to their computational costs and energy con-
sumption (Stojkovic et al., 2024). While increas-
ing model size generally leads to better perfor-
mance (Kaplan et al., 2020), the high cost of infer-
ence makes it difficult to apply LLMs in real-world,
industrial environments. These costs not only affect
operational efficiency but also raise environmen-
tal concerns (Luccioni et al., 2024), leading to a
growing demand for more efficient solutions.

To address these challenges, small language

Llama3-8B Llama-Reduced Qwen-1.8B Qwen-Reduced
0

1

2

3

4

5

6

7

8

M
od

el
 S
ize

 (B
)

1.05B

8.03B

0.68B

7.04B

0.62B

1.83B

0.39B

1.25B

Embedding Layer

Figure 1: Model size reduction using the embedding
layer compression method employed in this study. In
the case of Llama3-8B, reducing the vocabulary to 8k
results in a decrease of approximately 1B total parame-
ters.

models (SLMs) (Lu et al., 2024) have been devel-
oped to reduce computational load while maintain-
ing performance. Many SLMs achieve compres-
sion through distillation techniques, reducing the
number of transformer blocks (Abdin et al., 2024;
Dubey et al., 2024). However, the embedding layer,
which constitutes a large portion of the model, of-
ten remains unchanged, creating a bottleneck in
model compression and limiting the benefits of
transformer block reduction.

As a preliminary experiment, we demonstrate
that the smaller the model size, the higher the
proportion of the embedding layer becomes. For
instance, in LLMs such as Llama-3-70B (Dubey
et al., 2024), the embedding layer represents only
3% of the model size, while in smaller models like
Llama-3-8B, it accounts for 13%. In even smaller
models, such as Qwen1.5-1.8B (Yang et al., 2024),



772

this proportion reaches 34%. These results indicate
that in smaller language models, the embedding
layer makes up a constant portion of the overall
model (Table ??).

Model Total
Params

Embed
Params

Embed
Ratio

Llama-3-70B 70B 2.1B 3%
Llama-3-8B 8B 1.1B 13%
Qwen1.5-1.8B 1.8B 622M 34%

Table 1: Total and Embedding Parameters and Ratios
for Different Models

In this paper, we explore a novel approach to mit-
igate this bottleneck through vocabulary reduction
(Figure 1). In SLMs that employ Byte Pair En-
coding (BPE) (Gage, 1994; Sennrich et al., 2016)
for tokenizer construction, directly pruning vocabu-
lary from source tokenizers is not feasible. Instead,
we reconstruct the tokenizer with a smaller vocab-
ulary and replace the corresponding embedding
vectors. This method reduces the size of the em-
bedding layer while also allowing the introduction
of a more targeted vocabulary for specific tasks or
domains.

This approach, while promising, presents trade-
offs, such as potential declines in inference speed
and task performance. Thus, our key research ques-
tion is: how can we construct a smaller, efficient
vocabulary without sacrificing performance? To
address this, we focus on three key aspects:

• How does vocabulary reduction affect GPU
memory footprint, inference speed, and task
performance?

• What methods can mitigate the performance
degradation caused by vocabulary reduction?

• What methods can mitigate the performance
degradation caused by vocabulary reduction?

To address these questions, we conducted a se-
ries of experiments. First, we evaluated the impact
of vocabulary reduction on GPU memory footprint
(model size), and inference speed by reducing the
vocabulary of Llama3-8B at various levels. We
observed that memory footprint decreased steadily,
but inference speed initially slowed before improv-
ing with further reductions.

Next, we evaluated task performance across four
model variants: the source model, a vocabulary-
reduced model, a vocabulary-reduced model fine-
tuned on additional data, and a vocabulary-reduced

����������

�����

⁝

⁝

⁝ �����

	
	��

⁝

⁝

⁝

�����

⁝

����

����

��


�����

�����

�	
��
�	�

���	���������	�

�
���	 �
�	�

���	���������	�

Figure 2: Process of generating embeddings for new
tokens by combining subword tokens from the source
model. For tokens not present in the source model (e.g.,
’motorcycle’), the embeddings of existing subword to-
kens (’motor’ and ’cycle’) are averaged to generate a
new embedding. This is made possible by the Byte-
level BPE tokenization used in many SLMs, where the
smallest unit of division is a byte, preventing unknown
words.

model with task arithmetic applied. Overall, perfor-
mance initially declined with vocabulary reduction,
but fine-tuning helped recover accuracy in most
tasks. In some cases, such as truthfulness evalu-
ation, the models with reduced vocabularies and
task arithmetic even matched or exceeded the per-
formance of the baseline models.

Finally, we applied vocabulary reduction in both
domain adaptation and multilingual adaptation set-
tings. In the medical domain, we created tokeniz-
ers tailored to medical terminology and fine-tuned
the Llama3 model on PubMed abstracts. Vocabu-
lary reduction improved inference speed and mem-
ory footprint, but reducing the vocabulary size too
much resulted in slower inference and lower ac-
curacy, emphasizing the need to balance vocabu-
lary size for optimal domain-specific performance.
In multilingual adaptation, integrating vocabular-
ies across languages demonstrated improved cross-
lingual efficiency and robustness, further validating
the versatility of vocabulary reduction.

2 Reduce Method

We describe the specific method used to reduce the
vocabulary size. LLMs typically use tokenizers
based on BPE. In BPE, vocabulary selection starts
by splitting text into byte-level tokens, then repeat-
edly merging the most frequent token pairs until
the predefined vocabulary size is reached. This
method prioritizes high-frequency tokens, ensuring



773

their inclusion in the tokenizer’s vocabulary.
However, when using a BPE-based tokenizer,

both a dictionary and merge rules are required.
Thus, reducing the vocabulary size involves ad-
justing the merge rules. Manually altering these
optimized rules risks disrupting the tokenization
process and leading to suboptimal results. To avoid
these complications, we construct a new tokenizer
with a reduced and arbitrary vocabulary size. Nor-
mally, the embedding layer is closely tied to the
tokenizer’s vocabulary, and reducing the vocabu-
lary would disrupt this mapping. However, based
on Zipf’s Law (Zipf, 1942), high-frequency tokens
tend to remain consistent across different tokeniz-
ers and corpora, as a small number of tokens domi-
nate text samples. This means that there will be a
significant overlap between the source and new vo-
cabularies. For tokens common to both the source
and new tokenizers, the source embeddings are
simply remapped. For tokens not present in the
source model, new embeddings are generated by
combining the embeddings of existing subword to-
kens and averaging them (Figure 2). This approach
helps assign meaningful vectors to new tokens in
the reduced vocabulary while aiming to maintain
the model’s performance and reduce the size of the
embedding layer.

3 Experiments

3.1 GPU Memory Footprint and Inference
Time

To evaluate the impact of vocabulary reduction on
memory footprint and inference time, we measured
the model size in terms of actual GPU memory
footprint during inference. We constructed tokeniz-
ers with reduced vocabulary sizes—64,128 (64k),
32,064 (32k), 16,032 (16k), and 8,016 (8k)—using
a 1:1 mixture of Wikipedia (Guo et al., 2020) and
C4 datasets (Raffel et al., 2020), with 128,256
(source) as a reference. Inference on 5,000 sum-
mary examples using one NVIDIA H100 GPU
showed that reducing the vocabulary to 64k re-
duced the GPU memory footprint by 20%, and
further reduction to 8k decreased it by 34% (Fig-
ure 3). This demonstrates significant memory sav-
ings when reducing vocabulary from the source
size.

To assess the effect on inference time, we mea-
sured the average inference time per example at the
same vocabulary levels. Reducing the vocabulary
to 64k increased inference time by 35%, the longest

128k 64k 32k 16k 8k
Vocabulary Size

0

5

10

15

20

25

M
em

or
y 
Fo

ot
pr
in
t (

GB
)

Figure 3: Graph of peak GPU memory footprint during
inference on 5,000 summarization tasks. It shows that
memory footprint decreases as the vocabulary size is
reduced.

128k 64k 32k 16k 8k
Vocabulary Size

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

Av
er
ag

e 
In
fe
re
nc

e 
Ti
m
e 
pe

r S
am

pl
e

Figure 4: Graph of average inference time per sample
during inference on 5,000 summarization tasks. Infer-
ence time increases when the vocabulary is reduced
to 32k, but then begins to decrease, with only a 10%
increase compared to the source at 8k.

observed duration. However, further reductions
gradually improved inference times, with the 8k vo-
cabulary only resulting in a 10% increase compared
to the source model, showing an improvement from
the initial 35% increase (Figure 4).

3.2 Task Performance

Next, we examine the impact of simple vocabu-
lary reduction on downstream task performance us-
ing the Llama3-8B model. The experiments were
conducted in three stages: (1) performance eval-
uation after vocabulary reduction (*-init), where
we tested the models immediately after reducing
the vocabulary without any fine-tuning; (2) per-
formance after fine-tuning (*-ft), where we fine-
tuned the vocabulary-reduced models using 1% of
Wikipedia data (Guo et al., 2020); and (3) task arith-
metic (*-ft-ta), where we applied task arithmetic to
the fine-tuned models from stage (2) to transfer the
instruction-tuning effects.



774

Model CoLA MNLI MNLI-m GSM8K ARC Hella
Swag MMLU Truthful

QA
XL

Sum
Llama-3 (128k) .471 .542 .538 .498 .590 .820 .651 .439 .905
Llama-3-Instruct .432 .672 .665 .748 .623 .787 .657 .516 .887
8k-init .259 .499 .503 .289 .398 .586 .616 .490 .872
8k-ft .275 .491 .510 .347 .542 .773 .594 .436 .908
8k-ft-ta .340 .628 .625 .569 .564 .735 .595 .521 .904
16k-init .378 .545 .546 .382 .446 .656 .628 .449 .882
16k-ft .428 .426 .427 .368 .549 .780 .597 .423 .907
16k-ft-ta .390 .620 .620 .619 .577 .750 .600 .510 .904
32k-init .419 .511 .511 .434 .516 .727 .635 .447 .902
32k-ft .380 .537 .542 .379 .559 .789 .609 .432 .907
32k-ft-ta .396 .632 .632 .639 .584 .758 .609 .512 .904
64k-init .387 .535 .531 .463 .519 .750 .619 .436 .903
64k-ft .422 .540 .547 .384 .565 .790 .600 .429 .903
64k-ft-ta .386 .635 .630 .635 .584 .759 .604 .518 .901

Table 2: Task performance comparison of Llama3 and vocabulary-reduced variants (8k, 32k, 64k) at different
stages: init (reduced), train (fine-tuned), and train-chat (fine-tuned with task arithmetic). Results are shown across
benchmarks including CoLA, MNLI, GSM8K, ARC, HellaSwag, MMLU, TruthfulQA, and XL-Sum.

For evaluation, we selected downstream tasks
commonly used in NLP benchmarks. Among them,
we prioritized tasks that are especially important in
industrial applications, focusing on general knowl-
edge, common sense reasoning, recognition of log-
ical relationships, truthfulness, and summarization.

3.2.1 Vocabulary Reduction Only (*-init)
First, the performance of each model was evaluated
immediately after vocabulary reduction, without
any further fine-tuning). As shown in Table 2, vo-
cabulary reduction had various effects depending
on the task. Performance degradation was relatively
minimal across most tasks, even when the vocabu-
lary was reduced to 32k. Tasks requiring broader
contextual understanding, such as MNLI (Williams
et al., 2018), HellaSwag (Zellers et al., 2019),
and XL-Sum (Hasan et al., 2021), showed only
slight decreases in performance with smaller vo-
cabularies, suggesting reliance on contextual under-
standing over specific token granularity. However,
tasks such as CoLA (Warstadt et al., 2019) and
GSM8K (Cobbe et al., 2021), which require pre-
cise linguistic or logical structures, exhibited more
significant performance drops. For instance, per-
formance on GSM8K deteriorated sharply as the
vocabulary was reduced to 16k tokens, indicating
that this task is particularly sensitive to vocabulary
size.

In knowledge-based tasks like ARC (Clark et al.,
2018) and MMLU (Hendrycks et al., 2021), the

impact of vocabulary reduction varied. ARC saw a
consistent drop in performance as the vocabulary
shrank, while MMLU maintained relatively stable
performance until the vocabulary size dropped to
16k.

Interestingly, performance improved in Truth-
fulQA (Lin et al., 2022) after vocabulary reduction.
This task tests the ability to avoid hallucinating
false information, and limiting the vocabulary may
have restricted the production of ambiguous or mis-
leading tokens. This aligns with the "inverse scal-
ing" concept (Lin et al., 2022), where larger models
sometimes perform worse in tasks requiring truth-
fulness.

3.2.2 Fine-Tuning (*-ft)
Next, the vocabulary-reduced models were fine-
tuned using 1% of the English Wikipedia dataset
to re-optimize them. Fine-tuning helped recover
much of the performance lost due to vocabulary
reduction, particularly in tasks requiring contextual
understanding (Table 2). For instance, in MNLI,
HellaSwag, and XL-Sum, substantial performance
recovery was observed, even with vocabularies
reduced to 16k. This suggests that models can
adapt to reduced vocabularies for tasks that de-
pend more on understanding context rather than
token precision. However, certain tasks like CoLA
and GSM8K continued to struggle even after fine-
tuning. These tasks rely heavily on the precise re-
lationships between tokens, and fine-tuning alone



775

could not fully compensate for the loss in token
resolution caused by vocabulary reduction.

3.2.3 Task Arithmetic (*-ft-ta)
Finally, we explored the effectiveness of task arith-
metic for the vocabulary-reduced models. Task
arithmetic, as proposed by (Ilharco et al., 2023),
involves taking the weight difference between an
Instruct-tuned model and its base model, and ap-
plying this difference to the vocabulary-reduced
models to transfer the instruction-tuning effects.
This technique allows models to inherit instruction-
following capabilities even after vocabulary re-
duction, without requiring the embedding layer
to be retrained from scratch. Task arithmetic
could be effectively applied between the Llama3-
8B and Llama3-8B-Instruct models since, as is
well-known, these models share the same embed-
ding layer size. However, in our case, due to the
difference in the size of the embedding layers after
vocabulary reduction, it was not possible to take
the difference for the embedding layer between
the reduced model and the Instruct model. To ad-
dress this, we conducted a preliminary experiment
and found that the cosine similarity between the
embedding layers of Llama3-8B and Llama3-8B-
Instruct was nearly 1, indicating that the semantic
representation of the embedding vectors remained
almost identical. The only observed change was in
the magnitude of the vectors. Therefore, we con-
cluded that the embeddings of individual tokens did
not undergo significant semantic changes between
the base and Instruct models. Based on this find-
ing, we applied task arithmetic by calculating the
difference in all layers except for the embedding
layer. By applying task arithmetic only to the trans-
former blocks and excluding the embedding layer,
the resulting task arithmetic models (train-chat)
generally achieved performance levels close to the
Llama-3-Instruct model(Table 2). Notably, in the
TruthfulQA task, the train-chat models performed
almost on par with the Llama3-Instruct model, even
with reduced vocabularies. This suggests that vo-
cabulary reduction, combined with task arithmetic,
can effectively limit the model’s tendency to pro-
duce incorrect or false information, especially in
tasks requiring precise handling of knowledge and
truthfulness. While TruthfulQA showed signifi-
cant improvement, other tasks, such as MNLI and
CoLA, demonstrated more variable results, with
the train-chat models not fully reaching the perfor-
mance of Llama-3-Instruct in some cases.

128k 64k 32k
Vocabulary Size

0

5

10

15

20

25

30

Av
er
ag

e 
In
fe
re
nc

e 
Ti
m
e 
pe

r S
am

pl
e

Figure 5: Graph of total inference time for 375 predic-
tions on the PubMedQA task. Comparison of inference
time per sample across models with different vocabu-
lary sizes (64k, 32k, and the source model). The 64k
model shows the best inference speed, while the 32k
model, despite its improved task accuracy, experiences
a noticeable slowdown.

3.3 Industry Application

We investigated practical applications of vocab-
ulary reduction through experiments in medical
domain adaptation and multilingual adaptation.

3.3.1 Medical Domain Adaptation

Model PubMedQA
Llama-3 (source, 128k) .730
source-128k-ft .780
PubMed-64k-init .738
PubMed-64k-ft .780
PubMed-32k-ft .746

Table 3: Vocabulary sizes and accuracies on Pub-
MedQA. ’Llama-3 (128k)’ is the source model; ’-ft’ de-
notes models fine-tuned on PubMed abstracts; ’PubMed-
Xk’ refers to models with vocabulary reduced to X thou-
sand tokens.

One of the most practical applications of vocabu-
lary reduction is in domain adaptation (Gururangan
et al., 2020). In specialized fields such as the medi-
cal domain, where many domain-specific terms are
prevalent, building a tokenizer tailored for that do-
main becomes crucial for effectively reducing infer-
ence costs and memory footprint while maintaining
or even improving task performance. Additionally,
domain-specific models do not always require high
accuracy on general tasks, making them suitable
for SLMs focused on efficiency.

In this experiment, we applied our vocabulary
reduction technique to the medical domain by con-
structing tokenizers specifically tailored to medi-



776

cal terminology. Using the PubMed abstracts cor-
pus (pub, 2024), we created two tokenizers with
vocabulary sizes of 64k and 32k. These reduced
tokenizers were then used to fine-tune the Llama3
model on the same PubMed abstracts corpus. To
establish a baseline for comparison, we evaluated
the source model and a version fine-tuned on the
PubMed abstracts corpus without modifying its
vocabulary.

The performance evaluation was conducted us-
ing the PubMedQA task (Jin et al., 2019). We
measured two key metrics: the average inference
time per example in the PubMedQA dataset and
the task accuracy. The results showed that the
vocabulary-reduced models demonstrated mixed
outcomes in terms of inference time and task accu-
racy. The model with the 64k tokenizer achieved
nearly the same task accuracy as the source Llama3
model fine-tuned directly on the medical domain,
confirming that vocabulary reduction at this level
had little negative impact on performance. How-
ever, the 32k tokenizer, while still outperforming
the source Llama3 model in task accuracy, did not
surpass the fine-tuned model that used the original,
unmodified tokenizer (Table 3).

In terms of inference time, the vocabulary-
reduced models performed differently. The 64k
model demonstrated significant improvements in
inference speed compared to the source model, con-
firming the efficiency benefits of moderate vocab-
ulary reduction. However, the 32k model, despite
showing better task accuracy than the source model,
exhibited a significant slowdown in inference speed
(Figure 5).

Overall, these findings confirm that vocabulary
reduction can optimize task performance and infer-
ence efficiency, but only to a certain extent. While
the 64k model maintained a good balance between
performance and efficiency, the 32k model high-
lighted the trade-offs involved: although it im-
proved accuracy relative to the source model, it did
not match the fine-tuned model with the original
tokenizer, and its inference speed was significantly
slower. This suggests that reducing the vocabulary
too much can negatively impact both task accu-
racy and processing efficiency, and there may be a
threshold where the benefits of vocabulary reduc-
tion begin to diminish.

These results indicate that while vocabulary re-
duction is a viable solution for domain adaptation
tasks, particularly in specialized fields like health-
care, careful consideration is required when choos-

source 128k 64k 16k
Vocabulary Size

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

Av
er
ag

e 
In
fe
re
nc

e 
Ti
m
e 
pe

r S
am

pl
e

Figure 6: Graph of total inference time for 200 pre-
dictions on the XLSum-JA task. Vocabulary-reduced
models, particularly the 64k model, achieved faster in-
ference compared to the source model, likely due to the
tokenizer’s optimization for Japanese input.

ing the level of reduction. A moderate reduction
can lead to faster inference and competitive accu-
racy, but excessive reduction may compromise both
performance and efficiency.

3.3.2 Multilingual Adaptation
The multilingual adaptation of single-language
models is a form of domain adaptation. Previous
approaches (Wang et al., 2020; Pfeiffer et al., 2021)
involve appending new vocabulary to the tokenizer
and continuing pretraining, which increases model
parameters and memory consumption. To address
this, we propose applying vocabulary reduction to
optimize multilingual models.

In this experiment, we constructed tokenizers in-
tegrating Japanese and English vocabularies using
data from Japanese Wikipedia (Guo et al., 2020)
and CC-100 (Conneau et al., 2020) (for Japanese)
and English Wikipedia (Guo et al., 2020) (for En-
glish). The tokenizer was trained on data sampled
at a 6:5 ratio of Japanese to English. The Llama3-
8B model, initially specialized for English, was
fine-tuned using a mixed dataset comprising 97%
Japanese data and 3% English data to enhance its
comprehension. Tokenizers with vocabulary sizes
of 128k, 64k, and 16k were created and used for
fine-tuning. For comparison, the original model
was also fine-tuned on the same data without modi-
fying its vocabulary.

Performance was evaluated using Japanese and
English tasks, measuring task accuracy and av-
erage inference time. Results (Figure 6 and Ta-
ble ??) show that vocabulary reduction improved
Japanese task performance and minimized forget-
ting on English tasks. In reading comprehension



777

Model JSQuAD NIILC XL
Sum-JA ARC Hella

Swag MMLU Truthful
QA

XL
Sum-EN

Llama-3 (source, 128k) .877 .396 .751 .590 .822 .651 .905 .440
source-128k-ft .526 .349 .703 .514 .754 .544 .899 .425
128k-ja-en .849 .474 .752 .519 .748 .540 .901 .427
64k-ja-en .853 488 .752 .497 .743 .534 .904 .406
16k-ja-en .864 .509 .752 .492 .727 .513 .898 .436

Table 4: Performance of Llama3-8B models with different vocabulary sizes on Japanese and English tasks.

(JSQuAD), smaller vocabularies achieved higher
accuracy, while knowledge-intensive tasks like NI-
ILC saw significant gains. Summarization tasks
(XLSum-JA) remained stable, showing robustness
to reduction. English tasks such as ARC, Hel-
laSwag, and MMLU showed minimal degradation
despite reduced English vocabulary and Japanese-
focused fine-tuning.

Inference time analysis (Figure 6) revealed that
both the 128k and reduced vocabulary models out-
performed the source model in speed, likely due
to the tokenizer’s optimization for Japanese input.
These findings confirm that vocabulary reduction
is a practical solution for improving multilingual
model performance and efficiency without increas-
ing memory costs.

4 Related Works

Several techniques have been proposed to com-
press Transformer models, including distillation
and pruning, which typically target intermediate
layers. However, a substantial portion of the model
parameters lies in the embedding layer, leading to
recent efforts focused on compressing this compo-
nent.

For example, (Cohn et al., 2023) introduced dy-
namic embeddings to reduce BERT’s model size
with minimal performance loss, while (Yu et al.,
2024) explored character-level generation to re-
move long tokens in Chinese poetry models. Sim-
ilarly, (Xue et al., 2022) developed a byte-level
model to optimize vocabulary usage efficiently.

Our approach differs by constructing a tokenizer
with a smaller, high-frequency vocabulary tailored
to specific domains and reallocating the embedding
layer accordingly. This method highlights the trade-
off between vocabulary size and inference speed,
particularly beneficial for SLMs where balancing
compression and performance is crucial.

5 Conclusion and Limitations

In this paper, we investigated vocabulary reduc-
tion as a method for compressing the embedding
layer of SLMs to enhance memory footprint and
inference speed without compromising task perfor-
mance. Our experiments confirmed that reducing
the vocabulary size results in significant memory
savings, and moderate reductions (e.g., 64k) pro-
vide a good balance between efficiency and accu-
racy across various tasks. In particular, for domain
adaptation in the medical field, models with re-
duced vocabularies showed competitive task accu-
racy and improved inference speed. Additionally,
in multilingual adaptation, vocabulary reduction
enabled efficient integration of multiple languages,
enhancing cross-lingual robustness while maintain-
ing strong performance on language-specific tasks.

However, this study has some limitations. First,
we did not investigate the underlying mechanisms
behind the observed improvements in truthfulness
evaluation and summarization tasks due to vocab-
ulary reduction. Further research is needed to un-
derstand why reducing the vocabulary size led to
better scores in these areas. Second, our indus-
trial application was limited to the medical domain
and Japanese adaptation. To confirm the general
effectiveness of vocabulary reduction, further ex-
periments are needed in other domains where spe-
cialized terminology is critical, such as legal tasks,
as well as in other languages, including Chinese,
French, and low-resource languages.

References
2024. Pubmed baseline dataset. https://

ftp.ncbi.nlm.nih.gov/pubmed/baseline/. Ac-
cessed: 2024-8-07.

Marah Abdin et al. 2024. Phi-3 technical report: A
highly capable language model locally on your phone.
Preprint, arXiv:2404.14219.

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot,

https://ftp.ncbi.nlm.nih.gov/pubmed/baseline/
https://ftp.ncbi.nlm.nih.gov/pubmed/baseline/
https://arxiv.org/abs/2404.14219
https://arxiv.org/abs/2404.14219


778

Ashish Sabharwal, Carissa Schoenick, and Oyvind
Tafjord. 2018. Think you have solved question
answering? try arc, the ai2 reasoning challenge.
Preprint, arXiv:1803.05457.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian,
Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias
Plappert, Jerry Tworek, Jacob Hilton, Reiichiro
Nakano, Christopher Hesse, and John Schulman.
2021. Training verifiers to solve math word prob-
lems. Preprint, arXiv:2110.14168.

Gabrielle Cohn, Rishika Agarwal, Deepanshu Gupta,
and Siddharth Patwardhan. 2023. EELBERT: Tiny
models through dynamic embeddings. In Proceed-
ings of the 2023 Conference on Empirical Methods in
Natural Language Processing: Industry Track, pages
451–459, Singapore. Association for Computational
Linguistics.

Alexis Conneau, Kartikay Khandelwal, Naman Goyal,
Vishrav Chaudhary, Guillaume Wenzek, Francisco
Guzmán, Edouard Grave, Myle Ott, Luke Zettle-
moyer, and Veselin Stoyanov. 2020. Unsupervised
cross-lingual representation learning at scale. In Pro-
ceedings of the 58th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 8440–
8451, Online. Association for Computational Lin-
guistics.

Tim Dettmers, Mike Lewis, Younes Belkada, and Luke
Zettlemoyer. 2024. Llm.int8(): 8-bit matrix multi-
plication for transformers at scale. In Proceedings
of the 36th International Conference on Neural In-
formation Processing Systems, NIPS ’22, Red Hook,
NY, USA. Curran Associates Inc.

Abhimanyu Dubey et al. 2024. The llama 3 herd of
models. Preprint, arXiv:2407.21783.

Philip Gage. 1994. A new algorithm for data compres-
sion. C Users J., 12(2):23–38.

Leo Gao, Jonathan Tow, Baber Abbasi, Stella Biderman,
Sid Black, Anthony DiPofi, Charles Foster, Laurence
Golding, Jeffrey Hsu, Alain Le Noac’h, Haonan Li,
Kyle McDonell, Niklas Muennighoff, Chris Ociepa,
Jason Phang, Laria Reynolds, Hailey Schoelkopf,
Aviya Skowron, Lintang Sutawika, Eric Tang, An-
ish Thite, Ben Wang, Kevin Wang, and Andy Zou.
2024. A framework for few-shot language model
evaluation.

Mandy Guo, Zihang Dai, Denny Vrandečić, and Rami
Al-Rfou. 2020. Wiki-40B: Multilingual language
model dataset. In Proceedings of the Twelfth Lan-
guage Resources and Evaluation Conference, pages
2440–2452, Marseille, France. European Language
Resources Association.

Suchin Gururangan, Ana Marasović, Swabha
Swayamdipta, Kyle Lo, Iz Beltagy, Doug Downey,
and Noah A. Smith. 2020. Don’t stop pretraining:
Adapt language models to domains and tasks. In
Proceedings of the 58th Annual Meeting of the
Association for Computational Linguistics, pages

8342–8360, Online. Association for Computational
Linguistics.

Tahmid Hasan, Abhik Bhattacharjee, Md. Saiful Is-
lam, Kazi Mubasshir, Yuan-Fang Li, Yong-Bin Kang,
M. Sohel Rahman, and Rifat Shahriyar. 2021. XL-
sum: Large-scale multilingual abstractive summariza-
tion for 44 languages. In Findings of the Association
for Computational Linguistics: ACL-IJCNLP 2021,
pages 4693–4703, Online. Association for Computa-
tional Linguistics.

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou,
Mantas Mazeika, Dawn Song, and Jacob Steinhardt.
2021. Measuring massive multitask language under-
standing. In International Conference on Learning
Representations.

Gabriel Ilharco, Marco Tulio Ribeiro, Mitchell Worts-
man, Ludwig Schmidt, Hannaneh Hajishirzi, and Ali
Farhadi. 2023. Editing models with task arithmetic.
In The Eleventh International Conference on Learn-
ing Representations.

Qiao Jin, Bhuwan Dhingra, Zhengping Liu, William
Cohen, and Xinghua Lu. 2019. PubMedQA: A
dataset for biomedical research question answering.
In Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing and the
9th International Joint Conference on Natural Lan-
guage Processing (EMNLP-IJCNLP), pages 2567–
2577, Hong Kong, China. Association for Computa-
tional Linguistics.

Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B.
Brown, Benjamin Chess, Rewon Child, Scott Gray,
Alec Radford, Jeffrey Wu, and Dario Amodei. 2020.
Scaling laws for neural language models. Preprint,
arXiv:2001.08361.

Kentaro Kurihara, Daisuke Kawahara, and Tomohide
Shibata. 2022. JGLUE: Japanese general language
understanding evaluation. In Proceedings of the Thir-
teenth Language Resources and Evaluation Confer-
ence, pages 2957–2966, Marseille, France. European
Language Resources Association.

Tomasz Limisiewicz, Jiří Balhar, and David Mareček.
2023. Tokenization impacts multilingual language
modeling: Assessing vocabulary allocation and over-
lap across languages. In Findings of the Association
for Computational Linguistics: ACL 2023, pages
5661–5681, Toronto, Canada. Association for Com-
putational Linguistics.

Stephanie Lin, Jacob Hilton, and Owain Evans. 2022.
TruthfulQA: Measuring how models mimic human
falsehoods. In Proceedings of the 60th Annual Meet-
ing of the Association for Computational Linguistics
(Volume 1: Long Papers), pages 3214–3252, Dublin,
Ireland. Association for Computational Linguistics.

Zhenyan Lu, Xiang Li, Dongqi Cai, Rongjie Yi,
Fangming Liu, Xiwen Zhang, Nicholas D. Lane,
and Mengwei Xu. 2024. Small language mod-
els: Survey, measurements, and insights. Preprint,
arXiv:2409.15790.

https://arxiv.org/abs/1803.05457
https://arxiv.org/abs/1803.05457
https://arxiv.org/abs/2110.14168
https://arxiv.org/abs/2110.14168
https://doi.org/10.18653/v1/2023.emnlp-industry.43
https://doi.org/10.18653/v1/2023.emnlp-industry.43
https://doi.org/10.18653/v1/2020.acl-main.747
https://doi.org/10.18653/v1/2020.acl-main.747
https://arxiv.org/abs/2407.21783
https://arxiv.org/abs/2407.21783
https://doi.org/10.5281/zenodo.12608602
https://doi.org/10.5281/zenodo.12608602
https://aclanthology.org/2020.lrec-1.297
https://aclanthology.org/2020.lrec-1.297
https://doi.org/10.18653/v1/2020.acl-main.740
https://doi.org/10.18653/v1/2020.acl-main.740
https://doi.org/10.18653/v1/2021.findings-acl.413
https://doi.org/10.18653/v1/2021.findings-acl.413
https://doi.org/10.18653/v1/2021.findings-acl.413
https://openreview.net/forum?id=d7KBjmI3GmQ
https://openreview.net/forum?id=d7KBjmI3GmQ
https://openreview.net/forum?id=6t0Kwf8-jrj
https://doi.org/10.18653/v1/D19-1259
https://doi.org/10.18653/v1/D19-1259
https://arxiv.org/abs/2001.08361
https://aclanthology.org/2022.lrec-1.317
https://aclanthology.org/2022.lrec-1.317
https://doi.org/10.18653/v1/2023.findings-acl.350
https://doi.org/10.18653/v1/2023.findings-acl.350
https://doi.org/10.18653/v1/2023.findings-acl.350
https://doi.org/10.18653/v1/2022.acl-long.229
https://doi.org/10.18653/v1/2022.acl-long.229
https://arxiv.org/abs/2409.15790
https://arxiv.org/abs/2409.15790


779

Alexandra Sasha Luccioni, Sylvain Viguier, and Anne-
Laure Ligozat. 2024. Estimating the carbon footprint
of bloom, a 176b parameter language model. J. Mach.
Learn. Res., 24(1).

Jonas Pfeiffer, Ivan Vulić, Iryna Gurevych, and Sebas-
tian Ruder. 2021. Unks everywhere: Adapting multi-
lingual language models to new scripts. In Proceed-
ings of the 2021 Conference on Empirical Methods in
Natural Language Processing, pages 10186–10203,
Online and Punta Cana, Dominican Republic. Asso-
ciation for Computational Linguistics.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, and Peter J. Liu. 2020. Exploring the limits
of transfer learning with a unified text-to-text trans-
former. J. Mach. Learn. Res., 21(1).

Satoshi Sekine. 2003. Development of a question an-
swering system focused on an encyclopedia. In Pro-
ceedings of the 9th Annual Meeting of Japanese Asso-
ciation for Natural Language Processing (NLP2003),
pages 637–640. In Japanese.

Rico Sennrich, Barry Haddow, and Alexandra Birch.
2016. Neural machine translation of rare words with
subword units. In Proceedings of the 54th Annual
Meeting of the Association for Computational Lin-
guistics (Volume 1: Long Papers), pages 1715–1725,
Berlin, Germany. Association for Computational Lin-
guistics.

Jovan Stojkovic, Esha Choukse, Chaojie Zhang, Inigo
Goiri, and Josep Torrellas. 2024. Towards greener
llms: Bringing energy-efficiency to the forefront of
llm inference. Preprint, arXiv:2403.20306.

Zihan Wang, Karthikeyan K, Stephen Mayhew, and Dan
Roth. 2020. Extending multilingual BERT to low-
resource languages. In Findings of the Association
for Computational Linguistics: EMNLP 2020, pages
2649–2656, Online. Association for Computational
Linguistics.

Alex Warstadt, Amanpreet Singh, and Samuel R. Bow-
man. 2019. Neural network acceptability judgments.
Transactions of the Association for Computational
Linguistics, 7:625–641.

Adina Williams, Nikita Nangia, and Samuel Bowman.
2018. A broad-coverage challenge corpus for sen-
tence understanding through inference. In Proceed-
ings of the 2018 Conference of the North American
Chapter of the Association for Computational Lin-
guistics: Human Language Technologies, Volume
1 (Long Papers), pages 1112–1122, New Orleans,
Louisiana. Association for Computational Linguis-
tics.

Linting Xue, Aditya Barua, Noah Constant, Rami Al-
Rfou, Sharan Narang, Mihir Kale, Adam Roberts,
and Colin Raffel. 2022. ByT5: Towards a token-free
future with pre-trained byte-to-byte models. Transac-
tions of the Association for Computational Linguis-
tics, 10:291–306.

An Yang et al. 2024. Qwen2 technical report. Preprint,
arXiv:2407.10671.

Chengyue Yu, Lei Zang, Jiaotuan Wang, Chenyi
Zhuang, and Jinjie Gu. 2024. CharPoet: A Chinese
classical poetry generation system based on token-
free LLM. In Proceedings of the 62nd Annual Meet-
ing of the Association for Computational Linguistics
(Volume 3: System Demonstrations), pages 315–325,
Bangkok, Thailand. Association for Computational
Linguistics.

Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali
Farhadi, and Yejin Choi. 2019. Hellaswag: Can a
machine really finish your sentence? In Proceedings
of the 57th Annual Meeting of the Association for
Computational Linguistics.

George Kingsley Zipf. 1942. The unity of nature,
least-action, and natural social science. Sociometry,
5(1):48–62.

Appendix

A Fine-Tuning Settings and
Hyperparameters

In our experiments, we used the following settings
and hyperparameters for fine-tuning (see Table ??).

Hyperparameter Value
Global Batch Size (GBS) 32
Sequence Length 8192
Learning Rate (LR) 5e-5
Warmup Ratio 0.03

GPU
NVIDIA H100

(80GB)
Number of GPUs 8

Table 5: Training Hyperparameters

B Comparison with Quantization

In addition to our vocabulary reduction exper-
iments, we evaluated the effectiveness of 8-bit
quantization, a widely used method for reducing
GPU memory consumption (Dettmers et al., 2024).
Quantization reduces the precision of the model
weights from 16-bit floating-point numbers to 8-bit
integers, significantly decreasing memory usage
while aiming to preserve model performance. To
compare our vocabulary reduction method with
quantization, we applied 8-bit quantization to the
Llama-3 model and evaluated its performance on
the same downstream tasks. Table ?? presents
the results of the quantized model alongside the
vocabulary-reduced models.

https://doi.org/10.18653/v1/2021.emnlp-main.800
https://doi.org/10.18653/v1/2021.emnlp-main.800
https://www.anlp.jp/proceedings/annual_meeting/2003/pdf_dir/C7-6.pdf
https://www.anlp.jp/proceedings/annual_meeting/2003/pdf_dir/C7-6.pdf
https://doi.org/10.18653/v1/P16-1162
https://doi.org/10.18653/v1/P16-1162
https://arxiv.org/abs/2403.20306
https://arxiv.org/abs/2403.20306
https://arxiv.org/abs/2403.20306
https://doi.org/10.18653/v1/2020.findings-emnlp.240
https://doi.org/10.18653/v1/2020.findings-emnlp.240
https://doi.org/10.1162/tacl_a_00290
https://doi.org/10.18653/v1/N18-1101
https://doi.org/10.18653/v1/N18-1101
https://doi.org/10.1162/tacl_a_00461
https://doi.org/10.1162/tacl_a_00461
https://arxiv.org/abs/2407.10671
https://doi.org/10.18653/v1/2024.acl-demos.30
https://doi.org/10.18653/v1/2024.acl-demos.30
https://doi.org/10.18653/v1/2024.acl-demos.30
http://www.jstor.org/stable/2784953
http://www.jstor.org/stable/2784953


780

We examined whether our vocabulary reduction
method is superior to the quantization method. Ba-
sically, in most tasks, the vocabulary reduction
method performed worse than the quantized model.
However, in TruthfulQA and XL-Sum, the vocab-
ulary reduction method was superior.

C Qwen

C.1 Vocabulary Reduction on Qwen-1.5-1.8B

In addition to our experiments with Llama3, we
also evaluated the impact of vocabulary reduc-
tion on another small language model, Qwen-1.5-
1.8B (Yang et al., 2024), which has a significantly
larger source vocabulary size of 151,936 tokens.
This allowed us to assess whether our findings gen-
eralize to models with very large vocabularies.

We reduced the vocabulary of Qwen-1.5 to half
(76k), one-quarter (38k), one-eighth (19k), and
one-sixteenth (9.5k) of the source size using BPE
tokenization on the English Wikipedia dataset. The
performance of the vocabulary-reduced Qwen mod-
els was then evaluated on the same downstream
tasks as before (Table ??).

For Qwen-1.5, the impact of vocabulary reduc-
tion was more pronounced than in Llama3. In tasks
like MNLI, accuracy decreased significantly with
vocabulary reduction, suggesting that Qwen’s per-
formance on MNLI is more dependent on precise
token distinctions. Conversely, tasks such as Hel-
laSwag, which rely more on contextual reasoning,
showed less sensitivity to the reduced vocabulary
size.

Interestingly, Qwen also demonstrated improve-
ments in the TruthfulQA task after vocabulary re-
duction. As with Llama-3, reducing the vocabulary
may have limited the model’s ability to generate
ambiguous or misleading tokens, supporting the
concept of "inverse scaling" in tasks that require
truthfulness.

Fine-tuning the vocabulary-reduced Qwen mod-
els led to improvements in tasks like HellaSwag
and XL-Sum, where contextual understanding is
crucial. However, MNLI continued to show lim-
ited recovery even after fine-tuning, indicating that
certain tasks in Qwen are particularly sensitive to
token reduction.

C.1.1 Inference Time and GPU Memory
Consumption

In addition to accuracy evaluation, we measured the
impact of vocabulary reduction on inference time

152k 76k 38k 19k 9.5k
Vocabulary Size

0

5

10

15

20

25

M
em

or
y 
Fo
ot
pr
in
t (
GB

)

Figure 7: Graph of peak GPU memory footprint during
inference on 5,000 summarization tasks.

and GPU memory consumption for the Qwen-1.5
models. Similar to our observations with Llama3,
reducing the vocabulary size led to a decrease in
GPU memory footprint due to the smaller embed-
ding layer (Figure 7).

Furthermore, we observed that the inference
speed was slightly slower with the original 152k vo-
cabulary size, but among the models with reduced
vocabularies, the inference speed remained largely
unchanged (Figure 8).

C.2 Overall

These findings indicate that vocabulary reduction
can offer significant efficiency gains in terms of
memory footprint for models with very large vo-
cabularies like Qwen-1.5. However, the trade-offs
between efficiency and task performance are more
pronounced in Qwen compared to Llama3, partic-
ularly for tasks that rely heavily on precise token
distinctions like MNLI. Therefore, careful con-
sideration is required when applying vocabulary
reduction to such models to ensure that efficiency
gains do not come at the cost of unacceptable per-
formance degradation in critical tasks. Overall, our
experiments with Qwen-1.5 confirm that while vo-
cabulary reduction is a generally applicable method
for embedding layer compression, its impact varies
depending on the model architecture and the spe-
cific tasks. Models with extremely large vocabular-
ies may experience more significant performance
drops in certain tasks, underscoring the need for
task-specific evaluations when considering vocabu-
lary reduction.



781

Model CoLA MNLI MNLI-m GSM8K ARC Hella
Swag MMLU Truthful

QA
XL

Sum
Llama-3 (128k) .471 .542 .538 .498 .590 .820 .651 .439 .905
Llama-3 (128k, 8bit) .414 .541 .540 .491 .599 .821 .647 .432 .905
8k-init .259 .499 .503 .289 .398 .586 .616 .490 .872
8k-ft .275 .491 .510 .347 .542 .773 .594 .436 .908
16k-init .378 .545 .546 .382 .446 .656 .628 .449 .882
16k-ft .428 .426 .427 .368 .549 .780 .597 .423 .907
32k-init .419 .511 .511 .434 .516 .727 .635 .447 .902
32k-ft .380 .537 .542 .379 .559 .789 .609 .432 .907
64k-init .387 .535 .531 .463 .519 .750 .619 .436 .903
64k-ft .422 .540 .547 .384 .565 .790 .600 .429 .903

Table 6: Performance comparison between vocabulary reduction and 8-bit quantization across various tasks.

Model CoLA MNLI MNLI-m GSM8K ARC Hella
Swag MMLU Truthful

QA
XL

Sum
Qwen-1.5 (152k) .140 .463 .492 .344 .375 .615 .456 .394 .879
Qwen-1.5-chat .138 .496 .519 .300 .390 .602 .445 .405 .
9.5k-init .064 .362 .368 .239 .303 .441 .395 .429 .855
9.5k-ft .073 374 .382 .175 .335 .523 .394 .417 .888
9.5k-ft-ta .026 .384 .401 .208 .332 .503 .396 .420 .889
19k-init .085 .364 .370 .266 .326 .402 .411 .433 .867
19k-ft .026 .375 .385 .188 .329 .550 .412 .405 .892
19k-ft-ta .026 .409 .422 .221 .341 .533 .415 .416 .892
38k-init .038 .348 .362 .278 .334 .549 .413 .408 .855
38k-ft .089 .362 .373 .227 .345 .567 .408 .403 .893
38k-ft-ta .105 .361 .361 .243 .366 .551 .415 .409 .891
76k-init .125 .485 .509 .220 .340 .541 .429 .406 .858
76k-ft .064 .455 .475 .209 .350 .562 .430 .389 .893
76k-ft-ta .044 .506 .509 .222 .371 .553 .423 .413 .885

Table 7: Performance of Qwen-1.5 models with different vocabulary sizes across various tasks.

D Evaluation of Vocabulary Reduction
Using Characters per Token (CPT)

In the main text, we evaluated the impact of vo-
cabulary reduction on inference speed to assess
performance in practical deployment environments.
However, there are other benchmarks that can pro-
vide additional insights into the effects of vocab-
ulary reduction. One such metric is Characters
per Token (CPT) (Limisiewicz et al., 2023), which
measures token efficiency. To evaluate the impact
of vocabulary reduction on token efficiency, we
constructed tokenizers with vocabulary sizes rang-
ing from 1,000 to 128,000 tokens, increasing in
increments of 4,000.

As a specific experiment, we built a BPE tok-
enizer using a sample of the English Wikipedia
dataset and calculated the CPT on test data. This

experiment allowed us to systematically evaluate
how vocabulary size affects token efficiency.

We used the metric Characters per Token (CPT)
to measure token efficiency. The formula for CPT
is defined as:

CPT =
Total Number of Characters

Total Number of Tokens

A higher CPT indicates better token efficiency, as
fewer tokens are used to represent more charac-
ters, while a lower CPT indicates worse efficiency
because more tokens are required.

As shown in Figure 9, the results demonstrate
that token efficiency improves rapidly as the vocab-
ulary size increases up to approximately 32,000
tokens, after which the improvements begin to
plateau. This suggests that beyond a certain vocab-
ulary size, the benefits of additional tokens dimin-



782

152k 76k 38k 19k 9.5k
Vocabulary Size

0.0

0.2

0.4

0.6

0.8

1.0
Av

er
ag

e 
In
fe
re
nc

e 
Ti
m
e 
pe

r S
am

pl
e

Figure 8: Graph of average inference time per sample
during inference on 5,000 summarization tasks.

0
16
00
0

32
00
0

48
00
0

64
00
0

80
00
0

96
00
0

11
20
00

12
80
00

vocab size

0

1

2

3

4

CP
T

Figure 9: Characters per Token (CPT) as a function of
vocabulary size. The graph shows that CPT increases
rapidly up to a vocabulary size of around 32,000 to-
kens, after which the rate of improvement slows down
significantly.

ish, and increasing the vocabulary further yields
minimal gains in token efficiency.

This analysis complements our main findings by
highlighting that while larger vocabularies can im-
prove token efficiency up to a point, the trade-offs
between vocabulary size and practical deployment
considerations like inference speed and memory
usage must be carefully balanced.

E Evaluated Tasks

We evaluated our models on several English lan-
guage tasks that assess different aspects of linguis-
tic understanding, reasoning, and knowledge ap-
plication. All evaluations were conducted using
the lm-evaluation-harness (Gao et al., 2024)
toolkit. The number of few-shot examples and the
evaluation metrics used for each task are specified
below:

• CoLA (Corpus of Linguistic Acceptability):

Tests the model’s ability to judge the grammat-
ical acceptability of English sentences, eval-
uating its understanding of linguistic rules
and syntax (Warstadt et al., 2019). We used
4-shot prompting, and the performance was
measured using the Matthews correlation co-
efficient (MCC).

• MNLI (Multi-Genre Natural Language Infer-
ence): Evaluates the model’s ability to per-
form natural language inference across mul-
tiple genres. The task involves determining
whether a given hypothesis is entailed by, con-
tradicts, or is neutral with respect to a pro-
vided premise (Williams et al., 2018). We
used 4-shot prompting, and accuracy was the
evaluation metric.

• GSM8K: A dataset of grade school math
word problems designed to test the model’s
mathematical reasoning and problem-solving
skills (Cobbe et al., 2021). We used 5-shot
prompting, and the performance was evalu-
ated using the flexible extraction method.

• TruthfulQA: A benchmark designed to evalu-
ate the model’s ability to generate truthful and
accurate answers, assessing its tendency to
produce hallucinations or misinformation (Lin
et al., 2022). We used zero-shot prompting,
and the metric used was multiple-choice accu-
racy (mc2).

• ARC (AI2 Reasoning Challenge): Aimed at
evaluating the model’s science reasoning abil-
ities at the middle school level. It requires
the application of scientific knowledge and
reasoning to select the correct answer from
multiple choices (Clark et al., 2018). We used
25-shot prompting, and the normalized accu-
racy (acc_norm) was used as the evaluation
metric.

• HellaSwag: Measures the model’s ability to
perform commonsense reasoning and under-
stand context by selecting the most plausible
continuation of a given situation (Zellers et al.,
2019). We used 10-shot prompting, and the
normalized accuracy (acc_norm) was used for
evaluation.

• MMLU (Massive Multitask Language Under-
standing): Covers a wide range of knowledge
domains and evaluates the model’s ability to



783

apply this knowledge accurately in answer-
ing questions (Hendrycks et al., 2021). We
used 5-shot prompting, and accuracy was the
evaluation metric.

• XL-Sum: A dataset for extreme summariza-
tion of news articles, where the model must
create concise summaries that capture the
essence of the articles. We used the En-
glish version (XLSum-en) for our evalua-
tions (Hasan et al., 2021). We used 2-shot
prompting, and the BERTScore was used as
the evaluation metric.

• PubMedQA: A biomedical question-
answering dataset designed to test the model’s
ability to comprehend and answer questions
based on biomedical literature (Jin et al.,
2019). We used 2-shot prompting, and
accuracy was the evaluation metric.

• JSQuAD: A Japanese reading comprehen-
sion dataset derived from the SQuAD dataset,
adapted for evaluating a model’s ability to
understand and answer questions based on
Japanese texts (Kurihara et al., 2022). We
used 2-shot prompting, and accuracy was the
evaluation metric.

• NIILC: A dataset designed to test knowledge-
based reasoning in Japanese. The model must
apply its knowledge to answer questions span-
ning various topics (Sekine, 2003). We used
2-shot prompting, and accuracy was the eval-
uation metric.

• XLSum-JA: A Japanese version of the
XL-Sum dataset for summarization tasks,
where the model generates concise sum-
maries of Japanese news articles (Hasan et al.,
2021). We used 2-shot prompting, and the
BERTScore was used as the evaluation met-
ric.


	Introduction
	Reduce Method
	Experiments
	GPU Memory Footprint and Inference Time
	Task Performance
	Vocabulary Reduction Only (*-init)
	Fine-Tuning (*-ft)
	Task Arithmetic (*-ft-ta)

	Industry Application
	Medical Domain Adaptation
	Multilingual Adaptation


	Related Works
	Conclusion and Limitations
	Fine-Tuning Settings and Hyperparameters
	Comparison with Quantization
	Qwen
	Vocabulary Reduction on Qwen-1.5-1.8B
	Inference Time and GPU Memory Consumption

	Overall

	Evaluation of Vocabulary Reduction Using Characters per Token (CPT)
	Evaluated Tasks

