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Abstract

Recent advances in language models (LMs)
has driven progress in information retrieval
(IR), effectively extracting semantically rel-
evant information. However, they face chal-
lenges in balancing computational costs with
deeper query-document interactions. To tackle
this, we present two mechanisms: 1) a light
and effective multi-vector retrieval with se-
quence compression vectors, dubbed SCV and
2) coarse-to-fine vector search. The strengths
of SCV stems from its application of span com-
pressive vectors for scoring. By employing a
non-linear operation to examine every token
in the document, we abstract these into a span-
level representation. These vectors effectively
reduce the document’s dimensional representa-
tion, enabling the model to engage comprehen-
sively with tokens across the entire collection
of documents, rather than the subset retrieved
by Approximate Nearest Neighbor. Therefore,
our framework performs a coarse single vector
search during the inference stage and conducts
a fine-grained multi-vector search end-to-end.
This approach effectively reduces the cost re-
quired for search. We empirically show that
SCYV achieves the fastest latency compared to
other state-of-the-art models and can obtain
competitive performance on both in-domain
and out-of-domain benchmark datasets.

1 Introduction

Information retrieval (IR) is the task of finding
a set of relevant documents from an indexed col-
lection for a given query (Manning et al., 2008).
Recently, in modern Retrieval-Augmented Gener-
ation (RAG) models (Shi et al., 2024; Anantha
and Vodianik, 2024; Baek et al., 2023; Jeong et al.,
2024), an effective neural IR is crucial for sourc-
ing accurate and relevant clues in real-time, sig-
nificantly improving the quality and contextual
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appropriateness of generated content. Neural IR
can be largely divided into two categories; single-
vector retrieval and multi-vector retrieval. The for-
mer approach (Karpukhin et al., 2020; Formal et al.,
2021) relies on a single vector representation ex-
tracted from a document and calculates the rele-
vance score with representations pooled from both
queries and documents. In contrast, multi-vector re-
trieval methods such as ColBERT, GTR, COIL, and
CITADEL (Khattab and Zaharia, 2020; Ni et al.,
2022; Gao et al., 2021; Li et al., 2023) show promis-
ing performance by representing document text as
token collections rather than single vectors.

However, Khattab and Zaharia (2020) requires
indexing all tokens in a collection of documents,
leading to significant memory and computational
burdens. To reduce this burden, a multi-stage re-
trieval approach is adopted. In the first stage, in-
dexing and searching for relevant documents given
the query are performed using approximate near-
est neighbor (ANN) (Macdonald and Tonellotto,
2021). In the second stage, the top-k results are
output by re-ranking, which is trained based on the
extracted documents. Gao et al. (2021); Li et al.
(2023) have further improved multi-vector retrieval
methods by computing the score between the query
and the document using semantically relevant to-
kens in the document rather than all the tokens,
thus eliminating the stage of performing ANN.

As another research effort in the stream of multi-
vector retrieval approaches, we begin by asking
the following questions: 1) Can we make single-
stage retrieval possible in a multi-vector retrieval
approach? Multi-stage retrieval requires additional
ANN training for clustering based on the trained
model for queries and documents at the token re-
trieval stage, the ANN training necessitates optimiz-
ing the number of clusters and requires high com-
puting power proportional to the number of tokens
in the collection. 2) Can we achieve lightweight in-
dexing while minimizing the loss of contextual in-
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formation? Prior studies (Gao et al., 2021; Li et al.,
2023) have managed to implement lightweight in-
dexing by removing document tokens that do not
directly match those in the query and by employ-
ing an inverted index. Nevertheless, pruning tokens
based solely on exact matches or indexed words
limits the ability to leverage the full semantic rich-
ness of all document tokens. Although Li et al.
(2023) compensates for the loss of semantic con-
text through the use of a routing algorithm, it still
demands considerable engineering effort and de-
tailed optimization.

We introduce a retrieval framework that utilizes
a sequence compressive vector (SCV), processed
through a coarse-to-fine vector search in end-to-
end strategy. Our key idea involves transforming
encoded representations of document tokens into
span-level embeddings of arbitrary width, thereby
compressing the sequence length. As our model
performs indexing based on span representations
of documents rather than at the token-level re-
trievers, the index size and the associated compu-
tational latency are significantly reduced. Since
the lightweight index can perform million-scale re-
trieval with GPUs, this framework can load single-
and multi-vector indexes simultaneously. Accord-
ingly, our framework performs a coarse-to-fine vec-
tor search by initially finding a sufficient number
of candidate documents with single-vector retrieval
and then directly outputting the top-k relevant doc-
uments through multi-vector retrieval, using only a
trained model without an external retrieval module
at inference time.

Additionally, we enhance our model by employ-
ing reranking using a cross-encoder (Urbanek et al.,
2019). Our experimental results show that the pro-
posed method outpaces the inverted list approach
by a factor of 1.1. The SCV model delivers per-
formance comparable to CoIBERT and sets a new
standard for the base-sized models with reranking.
Our contributions can be summarized in threefold:

* We introduce an efficient multi-vector re-
triever that utilizes tokens compression to
span representations.

* The coarse-to-fine vector search framework
can process through an end-to-end strategy in
a single stage.

* Our approach is 207 times faster than Col-
BERT and 4.6 times faster than CITADEL.
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Figure 1: Sequence Compressive Vectors architecture
overview.

2 Method

2.1 Preliminaries

The input query is denoted as @ = {q1, g2, -, ¢n },
and the document as D = {dj,ds, ..., d;, }, with
the span sequence generated from document to-
kens represented by S = {s1, s2, ..., s;}. The n,
m, and [ are the length of the query, document,
and span, respectively. Span sequence is produced
using a sliding window algorithm, which main-
tains context information by allowing overlap of
adjacent tokens when extracting tokens within the
window. The width of the window is denoted by
W € {2,4,8,16}, and the interval at which the
window moves across tokens, skipping them at a
fixed rate, is referred to as 0 < rate < 1, rate € R.
The overall size of the span sequence is determined
by the following equation:
+ 1-‘

I m—W

N [(1 — rate)W

2.2 Model Structure

SCV retriever is a multi-vector retrieval model as
illustrated in Figure 1. It compresses token infor-
mation of the document by extracting fixed length
spans and allowing the model to train span embed-
dings. Pre-trained language model (PLM) (Devlin
et al., 2019; Sanh et al., 2020), is used to encode
the input sequence of the query, h,, = PLM(q;),
and the document, hy, = PLM(d;), where the lan-
guage encoders are shared. Special tokens of [Q]
and [D] are prefixed to the query and the docu-
ment, respectively, to differentiate between query
and document inputs. Given a document token vec-
tor, hy,, the span level representation is computed
as hy = ¢(h,), where ¢ is a span compressive
vector operation. We discuss this operation further
in detail in Chapter 2.3.
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Figure 2: SCV Encoder for Span Representation.

Our model leverages the full contextualized rep-
resentations of query tokens and document spans.
Within the SCV encoder, the compressed document
span representations engage with the query token
vector via a MaxSim (Khattab and Zaharia, 2020),
which is used to calculate the document score. This
process is articulated in the equation below:

Z max hih,, 2)

where h,, and hy, denote the last-layer contex-
tualized token embeddings of a query and span
embeddings of a document.

Popular retrieval models (Gao et al., 2021; Li
et al., 2023) use vectors of a CLS special token in
query and document, respectively, to provide high
level semantic matching between the query and
document. We further leverage the [CLS] vector
similarity, representing the aggregate sequence of
both the query and document as follows.

Vs = Wclshq + bcls (3)
Va, Wclshd + bcls

cls

2.3 Sequence Compressive Vectors

We introduce an end-to-end retrieval framework de-
signed for multi-vector retrieval, which compresses
token sequences from documents as depicted in
Figure 2. For example, the process begins with
the input sequence being encoded with contextu-
alized token representations through an encoder.
With W = 3, the model utilizes the sliding win-
dow method to extract token representations, sub-
sequently compressing these into span-level infor-
mation through diverse pooling techniques.

The core idea of SCV lies in the span represen-
tation, hg, with the compression ratio influenced

by W and rate, as outlined in Equation 1. A feed-
forward neural network with an activation func-
tion is used to encode lexical information. This
encoded information is subsequently concatenated
with pooled vectors from document tokens, result-
ing in the span representation, hg, for span k:

¢(hg)

Vcomp =

= GELU(FFNN (V¢omp))
g% g% g™ g% hy

g® = FFNN(hg,)

g° = FFNN(hg,, )

max .
W)’ A w) o

g"=g'og"’
g° = GELU(FFNN([g*; g°]))
o= max(attn(hd[j:jw] ’ hd[j;j+W] )hd[jij+W])

“

where o denotes element-wise multiplication, h**™
and h™® are pooled vectors for sum and max pool-
ing, respectively. « represents a salient word using
an attention mechanism (Bahdanau et al., 2015),
which is highlighted for the most relevant parts of
the sequence, and max pooling over words in each
span. Max operation involves taking the most im-
portant feature (Kim, 2014) and sum operation cap-
tures the global intensity of features across the span
is relevant (Tian et al., 2017). The above formula
generalizes the span representation that includes
the start and end boundary representations of the
span, as well as the representation of salient words
within the span.

2.4 Training

We train SCV using loss of negative log likeli-
hood based on similarity score of f(Q,.S) of Equa-
tion 2 for a query ¢, a positive sample d*, and
a set of negative samples N = {d; ,d;,...,dg},
where B is the batch size. Our strategy involves
contrastive learning with a focus on negative
sample utilization. We utilize in-batch negatives
(ib) (Karpukhin et al., 2020), pre-batch negatives
(pb) (Kim et al., 2022), and hard negatives (hb) gen-
erated by BM25 (Robertson and Zaragoza, 2009)
that are widely used in the retrieval tasks.

exp(f(g,d7))
exp(f(4:d%))+2be Ny N uNy, XP(F(9:d;))

p 5)
where the numbers of negatives are | Nj,|= B — 1,
|Npb|= B, and |Nyy|= H, H is a hyper-parameter
for the number of hard negatives.

L=—log
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We enhance the training of span representation-
based retrieval scores between queries and docu-
ments by employing multi-task learning with the
single vector retriever. Multi-vector retrieval model
calculates SCV loss Lgcy and token-level all-to-
all retriever loss L%, respectively, according to
Equation 5. Meanwhile, the single vector retrieval
computes its loss L5 by performing a dot-product
with the score from Equation 3, and the total loss
is obtained by summing all contributions.

The final loss equation is as follows:

L= Lscv + Liok + Ly (6)

where « is used to scale loss of the single vector
retriever.

In addition, we augment question synthetic data
by prompting MS MARCO passages to GPT-4 !
to enhance representations of span embeddings.
Question generation is sequentially conducted to
the passages, producing approximately 180k ques-
tions, while ensuring that the development set of
MS MARCO remains unseen. We perform lexical
filtering and cleaning for the generated questions.

2.5 Coarse-to-fine Vector Search

Even though sequence compression reduces the
storage requirements, searching documents still
results in increased computation proportional to
the index size, leading to latency. To facilitate
faster search times, we execute an coarse-to-fine
vector search using a single model, as follows:
The SCV model calculates dot product using the
CLS token vectors for queries and documents
and conducts multi-task learning. During infer-
ence time, based on the CLS token vectors trained
in this manner, we first perform single-vector
retrieval to extract the top-/N documents, with
N € {10000, 20000, 50000, 100000}, followed by
multi-vector retrieval using the extracted document
vectors to produce the top-k final search results.
Our framework is end-to-end process and light and
fast as it performs model scoring without the need
for the external retrieving such as ANN. Following
the aforementioned process, we optionally apply
re-ranking to enhance the search quality.

"https://platform.openai.com/docs/models/gpt-4-and-gpt-
4-turbo

TREC DL 19 Index | Latency

Models

nDCG@10 R@lk | (GB) | (ms/query)

Models trained with only BM25 hard negatives
BM25 0.506 0.739 | 0.67 X
DPR-768 0.611 0.742 26 1.28
COIL-tok 0.660  0.809 | 52.5 | 46.8
ColBERT 0.694 0.830 | 154 178
CITADEL 0.687 0.829 | 78.3 3.95
SCv 0.645 0.712 30 0.86
Models trained with further methods

coCondenser 0.674 0.820 26 1.28
ColBERT-v2 0.744 0.882 29 122
ColBERT-PLAID 0.744 0.882 | 22.1 55
CITADEL+ 0.703  0.830 | 26.7 3.21

Table 1: In-domain evaluation on TREC DL 2019. Per-
formance reference is made to CITADEL, and latency
includes the total time for query encoding and search.

3 Experimental Results

We train our model using the passage ranking
dataset from MS MARCO 2. For in-domain eval-
uation, we use the MS MARCO development set
and TREC DL 2019, and for out-of-domain evalu-
ation, we assess performance on the BEIR bench-
mark (Thakur et al., 2021). The MS MARCO devel-
opment set contains 6,980 queries, while the TREC
DL 2019 evaluation set provides annotations for
43 queries. The BEIR benchmark comprises 18
retrieval tasks across 9 domains, and we evaluate
using 13 datasets following previous studies (San-
thanam et al., 2022a; Li et al., 2023).

As our evaluation metric, we employ nDCG@10,
and Recall@1000 for MS MARCO, along with
nDCG@ 10 for BEIR. We use a script of BEIR ? to
evaluate datasets.

Experimental settings We initialize using
DistilBERT-base (Sanh et al., 2019) as our back-
bone model. The experimental environment for
training, indexing, and retrieval utilizes a Tesla
A100 GPU, with an optimized batch size set
to 630. Evaluation during training is conducted
with in-batch predictions of size 1k, and check-
points are saved at the step showing the best per-
formance. The SCV model is trained using the
AdamW (Loshchilov and Hutter, 2017) optimizer,
with a learning rate of 5e — 5 and linear schedul-
ing. Hard negatives are sampled from the top 1000
BM2S5 results (Gao et al., 2023), and each query

*https://github.com/microsoft/MS
Ranking
3https://github.com/beir-cellar/beir

MARCO-Passage-
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Methods AA CF DB Fe FQ HQ NF NQ Qu SF SD TC T2 Avg.
BM25 0.315 0.213 0313 0.753 0.236 0.603 0.325 0.329 0.789 0.665 0.158 0.656 0.367 | 0.440
DPR-768 | 0.323 0.167 0.295 0.651 0.224 0441 0.244 0410 0.750 0.479 0.103 0.604 0.185 | 0.375
ColBERT | 0.233 0.184 0.392 0.771 0317 0.593 0.305 0.524 0.854 0.671 0.165 0.677 0.202 | 0.453
GTR 0.511 0.215 0.392 0.660 0.349 0.535 0308 0.495 0.881 0.600 0.149 0.539 0.215 | 0.452
CITADEL | 0.503 0.191 0.406 0.784 0.298 0.653 0.324 0.510 0.844 0.674 0.152 0.687 0.294 | 0.486
SCV 0464 0.139 0.351 0.675 0.272 0.535 0315 0425 0774 0.656 0.135 0.668 0.262 | 0.436

Table 2: nDCG@10 on BEIR. Dataset Legend (Li et al, 2023): AA=ArguAna,

CF=Climate-FEVER,

DB=DBPedia, Fe=FEVER, FQ=FiQA, HQ=HotpotQA, NF=NFCorpus, NQ=NaturalQuestions, Qu=Quora,
SF=SciFact, SD=SCIDOCS, TC=TREC-COVID, T2=Touché.

uses 1 positive and 1 negative sample. The dimen-
sion size for both the CLS token layer and the SCV
output layer is set to 128. During training, the width
of span embeddings (V) is set to 8, while for in-
dexing, it is adjusted to 16 for MS MARCO and
remains at 8 for BEIR. The sliding overlap rate
(rate) is 0.2, the dimension size for span embed-
dings is 384, and the dropout rate is set to 0.1. In
Chapter 2.5, it is mentioned that inference is per-
formed with NV set to 10k. All hyper-parameters
are optimized.

3.1 Results

Results on MS MARCO Table 1 presents the
performance on in-domain datasets along with in-
dex storage size and search latency. The compari-
son models utilize BM25 hard negatives or include
further pre-training, hard-negative mining, and dis-
tillation for training, such as coCondenser (Gao
and Callan, 2022), ColBERT-v2 (Santhanam et al.,
2022c¢), and ColBERT-PLAID (Santhanam et al.,
2022b). The experimental results show that while
our SCV method achieves comparable performance
to other models on TREC DL 19 using only BM25
hard negatives. In contrast, SCV’s index size is a
more compact 30GB, close to DPR-768, and re-
duces the size by approximately 5.13 times com-
pared to ColBERT.

SCV achieves a latency of 0.86 ms/query, mak-
ing it the fastest among the multi-vector retrieval
models, and approximately 3.7 times, 64 times,
141.8 times, and 207 times faster than CITADEL+,
ColBERT-PLAID, ColBERT-v2, and ColBERT, re-
spectively. Furthermore, our framework is approx-
imately 1.5 times faster than the single vector re-
triever DPR-768. Most RAG or question answering
pipeline services use single vector retriever due
to processing speed issues. We expect that our ap-
proach can provide a faster and more accurate re-
trieval model for these systems.

Models Size TREC DL 19
nDCG@10
Reranking models
monoBERT (Nogueira et al., 2019) | 110M 0.723
SimLM (Wang et al., 2023) 110M 0.741
ListT5 (Yoon et al., 2024) 220M 0.718
SCV+CE 220M 0.744
Ranking models with LLM
RankLLaMA (Ma et al., 2024) 7B 0.756
RankLLaMA 13B 0.760
RankVicuna (Pradeep et al., 2023) 7B 0.668
PRP (Qin et al., 2024) 20B 0.727

Table 3: In-domain Reranking evaluation on TREC DL
2019. Performance reference is made to RankLLaMA.

Results on BEIR We conduct an out-of-domain
evaluation using the BEIR benchmark. Table 2
presents the zero-shot evaluation results on BEIR
for retrieval models, including those extended with
re-ranking. The experimental outcomes demon-
strate that the SCV significantly outperforms a
single-vector retriever and is competitive with
multi-vector retrievers. SCV utilizes a compressed
representation of span to generate multi-vector
from token sequences, we expect its performance
to fall between that of DPR and ColBERT. Accord-
ing to the experimental results, SCV shows scores
close to the ColBERT, as we expected and specif-
ically achieves higher scores on the AA, NF, and
T2 datasets.

Results with Reranker To further enhance per-
formance, we conducted reranking using the cross-
encoder (CE) version ms-marco-MiniLM-L-6-v2
based on the SCV retrieval results. In contrast, all
comparison models in Table 3 performed rerank-
ing based on BM25 retrieval results. The SCV+CE
pipeline achieved an nDCG of 0.744 on TREC DL
19, showing an improvement of 0.099 in nDCG
compared to the SCV retriever in Table 3. This
result is 0.21 higher than monoBERT, indicating
that retrieving relevant candidates during the re-
764



trieval stage positively impacts reranking. More-
over, it is evident that reranking using the proposed
method outperforms relatively recent studies such
as SimLM and ListT5.

Unlike the previous experimental setup, the re-
sults in the following row are based on rerank-
ing using LLMs. The LLM approach involves
decoder-only variations, with model sizes includ-
ing 7B, 13B, and 20B. In reranking, RankLLLaMA-
13B demonstrated the best performance, followed
by RankLLaMA-7B and the PRP model. Overall,
LLM-based models exhibited higher performance
compared to methods using small language mod-
els (SLM) as the backbone, but the differences
in model size were quite significant. Despite PRP
having the largest scale with a model size of 20B
among the LLM-based methods, it showed rela-
tively lower performance and lacked competitive-
ness against SLM backbone models. Therefore, in
in-domain retrieval, a well-tuned combination of
small retrieval and ranking models remains com-
petitive compared to LLM-based ranking models.

4 Related Works

Modern RAG with Retriever Recently, with the
advent of LLMs, there has been significant devel-
opment and study related to RAG pipelines. Study
on the RAG framework includes not only methods
to enhance LLM performance but also attempts
to refine performance based on retrieval results.
This includes methods for summarizing retrieved
results (Kim et al., 2024) and creating new retrieval
results (Asai et al., 2024). Shao et al. (2023) gener-
ates responses by re-retrieving chunks based on the
retrieved chunks and generated results. Shi et al.
(2024) enhances the retriever to improve the perfor-
mance of the LM based on the RAG structure.

Neural Information Retrieval Deep language
models have significantly influenced neural infor-
mation retrieval. A prevalent method involves pro-
cessing the query-document pair with BERT, using
the output of BERT’s [CLS] token to determine a
relevance score (Karpukhin et al., 2020). (Khat-
tab and Zaharia, 2020) represents document text
as a collection of token rather than a single vec-
tor and apply late interaction between the docu-
ment and the query, implementing a late interaction
mechanism between the document and the query.
This method enables comprehensive semantic and
lexical matching between queries and documents,
reaching state-of-the-art performance across nu-

merous benchmarks. Yet, the scalability of their
non-linear scoring function faces challenges when
extended to millions of documents. Alternative
strategies (Gao et al., 2021; Li et al., 2023; Lee
et al., 2023) simplify the multi-vector retrieval by
focusing on retrieving only the most relevant to-
kens for ranking candidates, effectively pruning the
document tokens.

Span Representation Span representation has
primarily been utilized in information extraction
tasks for processing documents. (Lee et al., 2017)
enables end-to-end coreference resolution by ex-
tracting span representations and ranking span
pairs. Performance improves significantly when
BERT is adapted to whole word masking, lead-
ing to the development of SpanBERT (Joshi et al.,
2020), which trains the model by setting the mask
token unit to spans. SpanBERT helps to span-based
approaches. In nested named entity recognition
tasks (Zhu et al., 2023; Zhu and Li, 2022; Wan
et al., 2022; Zhang et al., 2023), span representa-
tion is employed to address the problem by han-
dling the range of chunks that are entities through
span-based modeling and attaching entity tags.

5 Conclusion

In this paper, we propose an end-to-end multi-
vector retrieval framework utilizing sequence com-
pression, named SCV. Our method achieves a la-
tency of 0.8 ms/query when querying a million-
scale index, which is 207 times faster than Col-
BERT and 4.6 times faster than the fastest multi-
vector retriever, CITADEL, on GPUs. While SCV
records performance comparable to other multi-
vector retrieval models, its major strength lies in
its very small latency. Leveraging this advantage
for re-ranking, SCV achieves state-of-the-art re-
sults among other SLM-based ranking models and
shows promise among re-ranking methods. Our
model minimizes information loss in the document
sequence by fully utilizing token information to cre-
ate span representations. Compressing token vec-
tors has a strong potential of more efficiently and
effectively model retrieval tasks.

Finally, in the modern RAG, additional modules
are configured, including not only retrieval and
generation but also the use of retrieval, retrieval
summarization, and iterative retrieval. We believe
that as more of these components are added, the
speed of retrieval becomes increasingly important
in real-world services.
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6 Limitations

The proposed RAG system is designed to be more
suitable for practical service use, focusing on the
speed of the RAG system. As a result, there may be
a slight performance decline compared to existing
SOTA models. However, implementing this algo-
rithm into an operational system is not technically
difficult, so there is potential to maximize its us-
ability based on the code that will be released in
the future.
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A Appendix
A.1 Applied Hyperparameters

value
Backborn DistilBERT-base
Optimizer AdamW
learning_rate 5.0e-5
Dropout 0.05
Ir_scheduler cosine
Epoch 10
sequence_len 512
Batch size 630
Random Seed 1004
BM25 TOP n 1000

Table 4: Applied hyperparameter settings.

A.2 Details of Experimental Environments

The hyperparameter settings used in this study can
be found in 4. The model essentially adopts the
DistilBERT-base model, and experiments were con-
ducted based on the top 1000 search results re-
trieved by BM25. The batch size was set to 630,
utilizing the maximum size available on an A100
GPU. Specific learning rates and token sizes are
provided in Table 4.

A.3 Coarse-to-fine Search Overview

SCV employs multi-task learning to jointly train
single-vector and multi-vector retrieval. During
the indexing phase, the [CLS] token vector is
stored with span-level vectors for each document
in the collection. At inference time, the SCV model
retrieves the stored single vector and span vec-
tors for each document, loading them into mem-
ory. An overview of this process is presented in
Fig. 4, specifically in the On memory section. In the
Process section, the [CLS] token vector of each
document, loaded into memory, is used to compute
similarity with the [CLS] vector of the encoded
query. The top N relevant document IDs are then se-
lected. Without additional gathering operations, the
system directly computes the maximum similarity
between query token vectors and document span
vectors, ultimately producing the top K relevant
document IDs. This approach eliminates the need
for intermediate gathering operations, enabling a
coarse-to-fine retrieval process. It efficiently identi-
fies candidate relevant documents at a coarse level
and performs fine-grained token- and span-level re-
trieval based on these candidates in an end-to-end
manner. Compared to traditional two-stage meth-
ods, SCV offers a simpler and faster way to retrieve
relevant documents.

A.4 Prompt template

We use GPT-4 for question augmentation. The
prompt used for augmentation is shown in Figure 3,
and passages from MSMARCO are randomly sam-
pled and input along with the prompt.

# Num. of Q | nDCG@100 Recall@100
w/o aug. 0.305 0.267
50k 0.301 0.265
100k 0.275 0.253
150k 0.315 0.278
200k 0.300 0.266

Table 5: Ablation for question augmentation

A.5 Ablation for Query Augmentation

To make the model more robust by learning diverse
expressions for the retriever’s positive samples, we
perform question augmentation using GPT-4. Ta-
ble 5 shows the performance changes with the use
of augmented questions. We create augmentation
amounts of 50k, 100k, 150k, and 200k, and among
these, using 150k results in the best performance.

A.6 Reranking Result for QOut-of-domain

In Table 6, we measure the reranking performance
on out-of-domain data using the BIER benchmark.
Leveraging the advantage of SCV’s rapid latency,
we perform a re-ranking on the top-1000 retrieval
results. Compared to BM25+CE using the same
re-ranking model, our approach exhibits superior
performance, indicating its efficacy in identifying
candidate documents for zero-shot scenarios.

The experimental results show that the perfor-
mance of the SCV retrieval stage is 0.436 accord-
ing to Table 2, and reranking improves the score by
0.073. Although it shows a lower average score
compared to HYRR or RankT5-large, it is im-
proved compared to BM25+CE, which uses the
same ranking model CE.
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Please provide a high-quality answer to the part I requested. Take a deep breath and
think slowly. Create as many questions as possible, over 20, using only the content
included in the input document. Base the questions on when, where, what, why, who
(or what), and how’. Gradually think and create questions of various types such as
’comparison, fact verification, quantity, keyword, conversational, domain-specific’, etc.
For question generation, use [G] as a delimiter to insert one question at a time, and
indicate whether the answer to the generated question can be found in the input paragraph
with [sufficientlaveragelinsufficientinone]. To summarize the request, everything is in
Korean, and the task is to create questions dependent on the given document. You are
a child with a lot of knowledge. You can think of a wide variety of questions for a
single entity. So, create various questions that can be made from the above document
for me. Focus on questions that people would ask via web search or phone calls. Avoid
vague questions that ask about articles or pronouns like ’this’ or ’that’. And only create
questions whose answers can be found in the given document. I will enter the document
as [D].

[D]: {Input passage}

Figure 3: Prompt template design for question generation.

Methods AA CF DB Fe FQ HQ NF NQ Qu SF SD TC T2 Avg.
BM25+CE 0.311 0.253 0409 0.819 0.347 0.707 0350 0.533 0.825 0.688 0.166 0.757 0.271 | 0.495
HYRR 0.344 0.272 0.385 0.868 0.408 0.706 0.379 0.532 0.861 0.734 0.183 0.796 0.368 | 0.526
RankT5-large | 0.330 0.215 0442 0.832 0.445 0.710 0.381 0.614 0.831 0.750 0.181 0.807 0.440 | 0.524
SCV+CE 0.508 0.240 0.452 0.804 0.365 0.691 0.339 0570 0.826 0.673 0.164 0.720 0.267 | 0.509
Table 6: nDCG@10 on BEIR. Dataset Legend is same to Table 2.
Coarse Retrieval Fine Retrieval
(All-docs) (K-docs)
/—\ Filter: top-N doc ids m\v

Process ) \ \

8.

LJUJI

Doc,

Spans | \

) LI ]‘

SCV structure

On memory

—
Doc,,

Figure 4: Coarse-to-fine search overview. In the figure, yellow boxes represent the vectors of a single-vector retriever,
while red boxes denote the vectors of individual spans. The empty boxes outlined in blue indicate token-level vectors
for SCV but are not used during model runtime. The green box illustrates the abstract structure of the Q Encoder for
questions, and the blue box represents the D Encoder for documents.
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