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Abstract

Current benchmarks for evaluating Vision Lan-
guage Models (VLMs) often fall short in thor-
oughly assessing these models’ abilities to un-
derstand and process complex visual and tex-
tual content. They typically focus on sim-
ple tasks that do not require deep reasoning
or the integration of multiple data modali-
ties to solve an original problem. To ad-
dress this gap, we introduce the PARROT-
360V Benchmark, a novel and comprehensive
benchmark featuring 2487 challenging visual
puzzles designed to test VLMs on complex vi-
sual reasoning tasks. We evaluated leading
models—GPT-4o, Claude-3.5-Sonnet, and
Gemini-1.5-Pro—using PARROT-360V to as-
sess their capabilities in combining visual clues
with language skills to solve tasks in a manner
akin to human problem-solving. Our findings
reveal a notable performance gap: state-of-the-
art models scored between 28% to 56% on
our benchmark, significantly lower than their
performance on popular benchmarks. This un-
derscores the limitations of current VLMs in
handling complex, multi-step reasoning tasks
and highlights the need for more robust evalua-
tion frameworks to advance the field.

1 Introduction

Vision Language Models (VLMs) have shown re-
markable capabilities in integrating visual and tex-
tual data, excelling in tasks like image captioning
and object recognition (Wang et al., 2024).

The aspiration to create artificial intelligence that
can seamlessly integrate into daily life—solving
problems, performing tasks, and providing expert
knowledge—has long been a driving force in tech-
nological advancement (Mintz and Brodie, 2019).
Recent developments in VLMs have brought us
closer to this vision, showcasing impressive abili-
ties in understanding and generating both textual
and visual data (Yang et al., 2024a). Models like
GPT-4o, Claude-3.5-Sonnet, and Gemini-1.5-Pro

have set new standards in the field while show-
casing high performance for vision-related bench-
marks.

The rapid evolution of these models has sparked
concerns. There is a growing fear that AI could
replace human labor (Eloundou et al., 2024). These
fears are often based on hypothetical scenarios
rather than current capabilities. Despite these ap-
prehensions, it’s crucial to assess whether these
models truly perform at critically claimed levels,
especially in complex tasks that mirror real-world
challenges.

Our benchmark, PARROT-360V, contributes
to evaluating leading VLMs by focusing on step-
by-step visual reasoning tasks. We aim to iden-
tify gaps between reported capabilities and actual
performance, offering insights into specific areas
where these models may underperform.

2 Why A New Benchmark?

Many commonly used benchmarks such as
MMMU by Yue et al. (2024), ChartQA by Masry
et al. (2022), and AI2D by Kembhavi et al. (2016)
have been designed to evaluate VLMs on tasks
that are limited in scope, such as basic image-text
alignment or single-step reasoning. These bench-
marks are typically straightforward, and models
can at times overfit to the datasets, resulting in mis-
leadingly high-performance scores (Samuel et al.,
2024). We aim to adequately test models on puz-
zles that require the skills of image-text alignment,
multi-step reasoning, and sequential logic handling.
In particular order, they correspond to sub-tasks
that are critical for real-world decision-making (Tu
et al., 2024) and the analysis steps required.

2.1 Challenges In Reproducibility For VLMs

Reproducibility is a significant challenge in evalu-
ating vision-based tasks, especially when dealing
with VLMs (Yang et al., 2024b). Unlike purely
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textual models, vision models rely on visual input,
which can be subject to variability in data prepro-
cessing, annotation, and context (Wu et al., 2024).
This makes it difficult to replicate the exact condi-
tions under which a model achieves specific results
for other benchmarks.

A lack of standardization in how input images
are processed or prompts are structured can lead
to discrepancies in model outputs when evaluated
across different platforms or test environments
(Anagnostidis and Bulian, 2024). Moreover, exist-
ing benchmarks, which often focus on answering
a question posed in the text within an image or
on top of the content depicted in it (a graph), do
not adequately capture the abilities of the model.
The output for a question is heavily skewed by the
size of the data it was trained on. Rather bench-
marking for VLMs should evaluate perception, and
ability to use that information. And move away
from the emphasis of answering multiple choice
questions from an image, which could have easily
been represented as a question in text (Yue et al.,
2024).

2.2 A Fairer Evaluation Paradigm
To ensure fairer comparisons, a benchmark should
not just test how much knowledge a model has
absorbed but should also evaluate how well it can
perceive and follow instructions based on the visual
inputs provided. This is where our PARROT-360V
shines, as it requires models to integrate visual per-
ception with textual reasoning, testing their ability
to interpret, reason, and solve complex problems
step by step, rather than regurgitating memorized
knowledge (Duan et al., 2023).

This shift in focus is crucial for evaluating VLMs
in a way that reflects their actual capabilities in real-
world scenarios, where their performance must rely
on accurate perception and decision-making rather
than simply having been trained on vast quantities
of data and determining its strengths towards being
employed for automation involving visual tasks
(Schwartz et al., 2023).

The PARROT-360V benchmark represents a
step forward in addressing key challenges in re-
producibility, data bias, and unfair comparisons in
the field of VLMs. It provides a rigorous and fair
benchmark for evaluating vision models based on
their perceptual and reasoning abilities by employ-
ing Chain-of-Thought (CoT) (Wei et al., 2022) to
plan how the model is going to solve the current
puzzle, offering a clearer picture of how these mod-

Figure 1: Sample from the PARROT-360V Dataset.

els would perform in real-world applications (Wei
et al., 2023).

3 PARROT-360V Dataset

The PARROT-360V Benchmark dataset was care-
fully curated by scraping Jumble puzzles from the
internet to challenge VLMs in solving complex
jumbles (Redblock.ai, 2024). Each scraped puz-
zle combines various elements representing an in-
stance of gameplay, as shown in Figure 3, which
serves as the input puzzle to the VLM. Furthermore,
we extract additional features from the solved puz-
zle to obtain the ground truth labels, as shown in
Figure 4.

The dataset corresponds to an established col-
lection of puzzles, all of which are of the same
format, with each containing a different set of
clues/jumbled words, and a bonus clue with a visual
component (associated with a cartoon) as shown in
Figure 1. The dataset is intended to evaluate not
only language understanding but also visual per-
ception and reasoning, making it a more rigorous
test for these models.
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Field Description
Date The date the puzzle was published.
PDF File Path The location of the puzzle in PDF format.
Question Screenshot A visual representation of the puzzle’s clues.
Answer Screenshot A screenshot of the correct solution for comparison

purposes.
Clues (Clue_1 to Clue_4) The four scrambled words presented as clues in the

puzzle.
Answers (Answer_1 to Answer_4) The correct solutions to the jumbled clues.
Visual Clue A scrambled phrase or word that is solved using char-

acters from the answers.
Puzzle Answer The correct solution to the bonus clue is derived from

the characters circled in the answers.

Table 1: Structure of the PARROT-360V Dataset, detailing the fields contained in each puzzle entry.

3.1 Data Structure
Each puzzle in the PARROT-360V dataset consists
of the following features:

• Regular Clues: These are scrambled words
given as clues within the puzzle image, which
the models must unscramble to find the correct
words, and extract characters circled charac-
ters to form a bonus clue.

• Visual Clue: A cartoon or image that contains
a visual hint. The models must interpret this
image or other relevant information to form a
bonus answer.

• Answer Constraints: The models are re-
quired to piece together specific letters (often
circled in the image) from the unscrambled
words to form the bonus answer.

The dataset contains 2487 samples, with 14 dis-
tinct features from the release date of the puzzle to
the annotated answers as text within the dataset, as
described in table 1.

4 PARROT-360V Benchmarking Setup

We applied our benchmark on three state-of-the-
art VLMs—GPT-4o, Claude-3.5-Sonnet, and
Gemini-1.5-Pro. Requiring the models to inte-
grate both visual and textual information to arrive
at correct answers, the evaluation environment is
designed to simulate a realistic puzzle-solving en-
vironment:

• Input: Images of jumbled word puzzles, in-
cluding visual clues (circled letters, and car-
toon characters).

• Task: The models are required to solve the
scrambled words, interpret the visual clues,
and synthesize the final solution by forming
bonus answers from the circled letters in the
puzzle. While framing context from the posed
question about the cartoon (as shown in the
algorithm 1).

• Metrics: We measured the correctness of
their responses and the proportion of hallu-
cinations, where the model incorrectly used
characters that were not part of the given
clues. Additionally, we calculated each
model’s overall performance across multi-
ple dimensions—accuracy, sequential perfor-
mance (evaluation of intermediate steps in-
volved), and hallucination rate.

To mitigate the issue of potential data contam-
ination, we ensured that the setup used was en-
tirely novel and tested the models for real-world
tasks, that cannot be reproduced by simply using
its knowledge base. Rather we prompt the VLM to
explicitly/step-by-step address the required tasks:
identify characters, plan how it is going to handle
the bonus clue, and solve the entire puzzle.

One of the core challenges presented by the
PARROT-360V benchmark is for VLMs to identify
the circled letters within the image clues as shown
in Figure 1 for a model. These letters are crucial
for solving the bonus clue, and failure to correctly
identify these letters often results in hallucinations
or incorrect answers from the models.

In addition to recognizing circled characters,
models are expected to interpret visual information
from the cartoon or accompanying image (Figure
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Algorithm 1 TASK: Solve Jumble Puzzle
Input: Image containing jumbled words W1,W2,W3,W4, circled letter positions, bonus section, and
a visual clue.
Output: Unscrambled words U1, U2, U3, U4, reasoning behind the bonus answer B
Planning Phase:
Recognize that each word needs to be unscrambled and circled letters extracted to form the bonus
clue.
Execution Phase:
for i = 1 to 4 do

Unscramble Wi to get Ui

Extract the circled letter from Ui at position Pi

end for
Concatenate circled letters to form bonus clue C
Unscramble C to get the bonus answer B while considering the posed question and visual clue.

1). This requires not only extracting individual
characters but also understanding the broader con-
text of the image to form a coherent solution to
the puzzle. These puzzles that require visual under-
standing, multi-step reasoning, and sequential logic
challenge the perception that current VLMs excel
in complex, real-world tasks. This plays a critical
role in understanding the limitations of these mod-
els in tasks that go beyond simple image-text QA
(Yue et al., 2024).

4.1 Metrics

To quantify the models’ performance on PARROT-
360V, we developed a scoring system that assigns
weights to each component of the puzzle. The
scoring system is designed to reflect the importance
of each task and to penalize omissions or incorrect
answers appropriately.

Scoring components each puzzle consists of:

• Four Scrambled Words: Each worth 10
points. (There are four scrambled words/clues,
within each puzzle thus a candidate can score
40 points at the most in this section.)

• Synthesizing Answers to Extract Key Char-
acters: Worth 10 points. (Each unscrambled
clue serves as a distinct answer. Certain char-
acters are circled within these answers; con-
catenating these circled characters provides
the final bonus clue.)

• Solution to the Puzzle: Worth 20 points. (Us-
ing the extracted characters and interpreting
the cartoon, VLMs gather and synthesize in-
formation to solve the puzzle.)

The total possible points for each puzzle are 70
points.

4.2 Scoring Methodology

For each VLM’s attempt at solving a puzzle, we
applied the following evaluation criteria:

• Correct Answer: If the model’s answer
matches the labeled correct answer exactly
(case-insensitive), it receives full points for
that component1.

• No Answer or Incorrect Answer: If the model
provides no answer or an incorrect answer, it
receives a penalty of -5 points for that compo-
nent.

• Negative Score Adjustment: If the total points
earned for a puzzle are negative due to penal-
ties, the score is clipped to zero.

• Normalization: The total points earned are
divided by the total possible points (70) to
obtain a performance score between 0 and 1,
rounded to two decimal places.

Let:

• Wi be the weight for component i.

• Ai is the model’s answer for component i.

• Ci be the correct answer for component i.

• T be the total possible points (70).

1Clue or One of the sequential tasks involved in solving
the given puzzle.
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Model MMMU Mathvista AI2D ChartQA Average Performance
GPT-4o 0.69 0.64 0.94 0.86 0.78
Claude 3.5 Sonnet 0.68 0.68 0.95 0.91 0.80
Gemini 1.5 Pro 0.62 0.64 0.81 0.81 0.72

Table 2: Performance of different models across various benchmarks.

For each component:

Pi =

{
Wi if Ai is exactly Ci,

−5 if Ai is incorrect or missing.

Total Points Earned:

Ptotal =
∑
i

Pi (1)

Clipped Total Points Earned:

Padjusted = max(0, Ptotal) (2)

Performance Score:

PARROT360VScore =
Padjusted

T
(3)

Hallucination within PARROT-360V bench-
marking is relates to the frequency with which
models introduced information not present in the
input. The hallucination rate is the error rate, i.e.
the proportion of incorrect predictions given by a
VLM:

HallucinationRate = 1−(PARROT360Vscore)
(4)

5 Results

The evaluation of GPT-4o, Claude-3.5-Sonnet,
and Gemini-1.5-Pro on our benchmark highlights
the significant limitations of existing benchmarks
in capturing true multimodal reasoning abilities.
Unlike tasks found in common benchmarks like
MMMU, MathVista, or ChartQA (as shown in
the table 2), PARROT-360V places special empha-
sis on complex, multi-step reasoning involving vi-
sual puzzles. This difference is reflected in the
sharp decline in performance when these models
are tested on our benchmarking dataset.

On benchmarks such as MMMU and Math-
Vista, GPT-4o and Claude-3.5-Sonnet achieved
high scores of 0.69 and 0.72, respectively (Table 2),
mainly because these tasks focus on simple image-
text alignment or basic reasoning. In these tests,

Figure 2: Performance of State-of-The-Art VLMs on
PARROT-360V

the image often serves merely as a backdrop to
a question that could just as easily be presented
as pure text, reducing the need for genuine visual
understanding.

PARROT-360V, by contrast, involves complex
tasks like word unscrambling, bonus clue extrac-
tion, and interpreting visual elements, all requiring
deep integration of visual and textual information.
GPT-4o’s accuracy dropped significantly to 0.57,
Claude-3.5-Sonnet’s to 0.50, and Gemini-1.5-Pro’s
to 0.28 (Figure 2) in this more challenging setup,
demonstrating how existing benchmarks fail to re-
flect the complexity required for real-world tasks.

5.1 Visual Perception Failures

In tasks such as identifying circled letters within
the puzzle which is an image (Figure 1), all three
candidate models struggled. For instance, Gemini-
1.5-Pro exhibited a high hallucination rate of 72%,
largely due to its inability to accurately recognize
and use visual inputs. This stands in contrast to
simpler benchmarks like AI2D, where models face
straightforward visual questions with limited need
for complex image interpretation (Kembhavi et al.,
2016). Often the models also failed to synthesize
visual scrambled text effectively. The challenge
of extracting circled letters and forming a correct
bonus clue required higher-order detail in reason-
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ing, which is not typically tested in conventional
benchmarks.

5.2 Hallucination Issues

All three VLMs exhibited frequent hallucinations
during evaluation, particularly when trying to de-
rive answers from visual cues. While tasks in
ChartQA or MathVista are often solved by ap-
plying memorized data or pattern recognition, Our
benchmark exposed the models’ limitations in han-
dling dynamic, real-time visual information. GPT-
4o had a hallucination rate of 43%, Claude-3.5-
Sonnet with 50%, and Gemini-1.5-Pro with 72%
as shown in the figure 2, thus proving how heavily
models depend on structured data rather than real
reasoning from raw inputs.

6 Discussion

When we compared the results of our proposed
benchmark to existing benchmarks like MMMU,
ChartQA, MathVista, and AI2D, it became clear
that these benchmarks don’t truly test a model’s
ability to reason through complex, real-world vi-
sual problems. In benchmarks like MMMU, mod-
els often achieve high scores (e.g., GPT-4o scoring
0.69 as shown in table 2) because the tasks typically
involve static image-text alignment or basic pattern
recognition. These benchmarks don’t require the
models to think but rather to retrieve memorized in-
formation or recognize patterns from training data.
In essence, they reduce the challenge to answering
questions that could just as easily be text-based.

In contrast, our framework challenges the mod-
els with multi-step reasoning and visual puzzles
that demand a higher level of understanding. Mod-
els can’t just rely on large datasets or pre-learned
patterns; they need to synthesize information from
both text and images. For example, tasks like iden-
tifying circled letters in images and using them
to solve a bonus clue are far more reflective of
real-world complexity than simple image-caption
matching. When we saw models like Gemini-1.5-
Pro struggle with hallucinations (72% rate as seen
in figure 2), it was a clear indication that they’re not
truly equipped for these kinds of tasks—yet these
are the tasks that matter when it comes to applying
AI in fields like healthcare or automation.

One of the biggest takeaways from PARROT-
360V was that the models performed signifi-
cantly worse on our benchmark—with perfor-
mance scores as low as 28% for Gemini-1.5-

Pro—compared to traditional benchmarks (Figure
2). In short, current benchmarks are giving us an
incomplete and often inflated view of what these
models can do. The models’ performance drop on
PARROT-360V proves that while they might ex-
cel at answering questions from pre-learned data,
they struggle when it comes to reasoning through
complex, multi-step visual tasks. To move forward,
we need benchmarks like our PARROT-360V that
challenge these models to think and reason, not just
recognize or recall.

7 Conclusion

With PARROT-360V, we aim to push the bound-
aries of how we evaluate VLMs by focusing on
real-world tasks that demand visual perception,
multi-step reasoning, and instruction-following.
We saw that traditional benchmarks are not enough.
They tend to focus on simpler tasks like image-
text alignment and QA, which doesn’t truly chal-
lenge the models’ ability to understand and process
both visual and textual data together. In contrast,
PARROT-360V makes models tackle tasks that re-
quire actual reasoning and visual integration, such
as solving word puzzles with visual clues.

Our findings reveal that GPT-4o (56%), Claude-
3.5-Sonnet (50%), and Gemini-1.5-Pro (28%)
struggle on our benchmark when handling com-
plex, real-world tasks. This performance gap un-
derscores the need for a more reliable benchmark,
which PARROT-360V aims to provide.

8 Limitations

While PARROT-360V introduces a fresh approach
to evaluating VLMs, we recognize that there are
areas where further refinement can enhance its ro-
bustness. One aspect we’ve observed is the task
complexity. Puzzles within the proposed bench-
marking dataset are intentionally challenging, and
designed to test multi-step reasoning and visual
perception. However, there are instances where the
complexity may obscure whether a model’s failure
is due to genuine reasoning difficulties or simply
the task’s intricacy. As we move forward, main-
taining the right balance in task difficulty will help
ensure we accurately measure a model’s reasoning
capabilities.

Another focus is visual perception, as models
must interpret visual clues and recognize circled
letters. We aim to separate perception from rea-
soning to ensure fair evaluation. Lastly, to address
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data contamination, we will regularly update the
benchmark with new tasks to test models on unseen
data.
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A Scraping And Puzzle Curation

Figure 3: Snapshot of the Puzzle.

Figure 4: Snapshot of the Solved puzzle.
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