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Abstract

Low-Rank Adaptation (LoRA) is a popular
technique for parameter-efficient fine-tuning
of Large Language Models (LLMs). We study
how different LoORA modules can be merged to
achieve skill composition—testing the perfor-
mance of the merged model on a target task that
involves combining multiple skills, each skill
coming from a single LoRA. This setup is favor-
able when it is difficult to obtain training data
for the target task and when it can be decom-
posed into multiple skills. First, we identify
practically occurring use-cases that can be stud-
ied under the realm of skill composition, e.g.
solving hard math-word problems with code,
creating a bot to answer questions on propri-
etary manuals or about domain-specialized cor-
pora. Our main contribution is to show that
concatenation of LoRAs (CAT), which opti-
mally weights LoRAs that were individually
trained on different skills, outperforms exist-
ing model- and data- merging techniques; for
instance on math-word problems, CAT beats
these methods by an average of 43% and 12%
respectively. Thus, this paper advocates model
merging as an efficient way to solve composi-
tional tasks and underscores CAT as a simple,
compute-friendly and effective procedure.” '

1 Introduction

Large Language Models (LLMs) have demon-
strated impressive capabilities in conversational
tasks and general-purpose applications, such as
writing emails or answering common questions.
However, these general purpose LLMs may have re-
stricted performance on tasks where specific skills
and knowledge is required. We primarily focus on
skill composition tasks, that necessitate the integra-
tion of multiple skills.

*Code and data are available at https://github.com/
aksh555/LoRA-Soups.
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Many industrial applications fit in this frame-
work. Consider a company that manufactures ovens
and is trying to design a chatbot to answer cus-
tomer queries about its working and specifics. Di-
rectly using a frontier LLM (like gpt-40) would
fail since it lacks knowledge about the company’s
product. The ideal solution here would be to design
an instruction dataset consisting of question-answer
pairs about this product and fine-tuning an LLM
on it. However, such a data collection and anno-
tation procedure is expensive. Another possible
solution is to fine-tune an LLLM on a collection
of product manuals and then impart it chat abili-
ties by further fine-tuning on an instruction-tuning
dataset like Alpaca (Taori et al., 2023). We refer to
this method as DATA-MIX. Besides this approach
being sequential, it suffers from catastrophic for-
getting (Kirkpatrick et al., 2017). Whenever the
company creates a new product, they need to redo
fine-tuning on this data mixture or create a new
question-answer dataset for the former method.

In this paper, we study model merging as an alter-
native approach. Given a model that is fine-tuned
on the manuals and one that possesses question-
answering capabilities, we optimally combine their
weights to obtain a model that can answer product-
specific questions. This approach is more efficient
since we merge skill-specific fine-tuned models
without any additional data collection or training
from scratch. Among the multiple techniques to
perform model merging, our framework specifi-
cally builds on LoRAi(Hu et al., 2021), a fine-
tuning technique that consists of adding a low-rank
update to a few layers in the model. In this con-
text, model merging consists of combining LoRA
weights from different models.

Given LoRAs trained on specialized domains
(biology, math, code, reading comprehension,
question-answering), is it possible to merge them to

See Appendix A for a review of the LoORA method.
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Figure 1: Comparison of Learnable Concatena

effectively solve a new problem that requires a com-
bination of these domains? We underline that most
settings we consider are out-of-domain since the
specialized LoRAs have been trained on datasets
that are very different from the target task. To our
knowledge, this is the first paper exhibiting model
merging is superior to data mixing for binary skill
composition problems.
Our key contributions are summarized:

— In section 3, we analyze practical applications in
domains spanning code, science, robustness, and
in-house use cases under the purview of binary
skill composition.

— We introduce Learnable Concatenation (CAT),

a LoRA merging technique that involves a sim-

ple weighted average of the encompassed skill

LoRAs.

In section 5, we perform a comprehensive eval-

uation of several baselines and demonstrate that

CAT achieves better binary skill composition

than both existing model merging methods and

data mixing.

2 Related Work

Merging methods.  The traditional approach
to learning multiple skills/tasks simultaneously is
joint training on a mixture of task datasets (Caru-
ana, 1997). As data collection for specialized tasks
and training large models from scratch get more
expensive; coupled with the rapid expansion in

tion (CAT) with Linear and DATA-MIX methods.

the availability of well-trained open-source mod-
els — model merging has emerged as a convenient
way of building powerful models from existing
ones (Goddard et al., 2024; Leroo-Al, 2024). The
richly studied simplest way of merging by averag-
ing model weights (Utans, 1996; Smith and Gash-
ler, 2017; Garipov et al., 2018; Izmailov et al.,
2018) paved the way to linear weight averaging
(Wortsman et al., 2022). Expanding on weight aver-
aging, Task Arithmetic (Ilharco et al., 2022) involv-
ing the creation and combination of task vectors
facilitated multi-task learning. While this weight
interpolation was heavily used for merging image
generation models, recent methods like TIES (Ya-
dav et al., 2024) and DARE (Akiba et al., 2024)
reset redundant parameters, resolve sign conflicts,
and exclusively merge parameters that exhibit sign-
consistency, and SLERP (White, 2017) by spheri-
cal linear interpolation build upon this for language
models. In these methods, the coefficients govern-
ing the model merging are determined by trial-error.
In contrast to this, CAT learns these coefficients
layer-wise cheaply.

LoRA merging methods. Recently, the vision
community witnessed the widespread application
LoRAs (Buehler and Buehler, 2024a; Feng et al.,
2024; Luo et al., 2024; Mugeeth et al., 2024; Wu
et al., 2023; Zhong et al., 2024; Yang et al., 2024a)
as an effective approach to multi-task learning and
composing styles and subjects (Shah et al., 2023).
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Many of these utilize Mixture of Experts (MoE)
(Buehler and Buehler, 2024a; Feng et al., 2024;
Luo et al., 2024; Wu et al., 2023) based archi-
tectures having input-dependent learnable routers.
These models have been primarily used in the con-
text of multitask learning. In this work, we study
LoRA model merging for skill composition tasks.

LoRA merging for multitask learning and com-
positionality. Prior works (Gu et al., 2024; Shah
et al., 2023; Yang et al., 2024b) have investigated
LoRA merging in computer vision where each skill
is a visual concept or style and the objective is
image generation. On the other hand, natural lan-
guage tasks are more challenging since identifying
the skills needed for solving a task is not always
clear. On natural language tasks, most prior works
(Buehler and Buehler, 2024a; Feng et al., 2024;
Luo et al., 2024; Mugeeth et al., 2024; Wu et al.,
2023) merged LoRAs with the objective of multi-
task learning. In this setting, the individual LoRA
modules are trained on (potentially) independent
tasks and the merged model is tested on the orig-
inal tasks. A successful model retains the skills
of each individual LoRA. Differently, Huang et al.
(2023) devise LoraHub, a strategy to merge LoRAs
for cross-task learning. By finetuning LoRAs on
FLAN (Longpre et al., 2023), they achieve perfor-
mance equivalent to few-shot prompting on some
Big-Bench Hard (BBH) tasks (Suzgun et al., 2022).
Closer to our work, Akiba et al. (2024) merge spe-
cialized LMs in Japanese and in math (Cobbe et al.,
2021) to solve word-math problems in Japanese
(Shi et al., 2022). Though this can be viewed as
a skill composition task, they focus on studying
only one such task, and their contribution is an
evolutionary algorithm for merging models.

3 Skill Composition

Most of the downstream tasks used to evaluate
LLMs require mastering multiple skills to be
solved. Skill here refers to specific capabilities that
the LLM needs for customization to downstream
use cases. These skills can be acquired from knowl-
edge source like textbooks and manuals or from
foundational datasets designed for arithmetic, cod-
ing, etc. For instance, achieving high score in the
GSM8k benchmark (Cobbe et al., 2021) requires
good commonsense reasoning and arithmetic skills.
In this paper, we focus on downstream tasks where
composition can be ensured and isolated, and we
mainly focus on tasks that require two skills. Skill

composition is challenging because, not only does
the model need to “know” the different skills, but
it also needs to understand the appropriate context
for applying each skill. We present some skill com-
position examples of practical interest in Figure 2.

Hard math-word problems. Prior works no-
ticed that when fine-tuning LLMs on GSM-8k
(Cobbe et al., 2021), the resulting model performs
poorly on GSM-Hard (Gao et al., 2023), that gath-
ers similar problems but with more complex arith-
metic operations. The program-aided approach
(Gao et al., 2023) is one solution to address this
issue: The model takes in a math word problem,
mathematically reasons, and then outputs a corre-
sponding Python function whose return value is the
answer to the problem. For this, the model must
excel in mathematical skills to first reason about
the problem and also coding skills to translate its
reasoning to code. Therefore, to improve the accu-
racy on GSM-Hard, we set the first skill to be math
reasoning and the second skill to be coding.

QABot on proprietary manuals. While general-
purpose chatbots are useful, an institution or cor-
poration may desire to have a specialized question-
answering bot/assistant that addresses domain-
specific questions. Examples of this case may be a
university that wants a bot that answers questions
about quantum physics or a refrigerator retailer
that wants a bot to answer questions about their
device. The traditional approach may fall short
as fine-tuning a chat model on a specialized docu-
ment may cause loss in its conversational abilities.
Another solution would be to obtain an instruction-
tuning dataset that covers the specialized material
but this is very expensive. On the other hand, model
merging seems to be a convenient solution to ad-
dress this problem: we train one LoRA on a general
instruction-tuning dataset and another one on the
specialized document.

Reading comprehension on technical documents.
Medical reports and law contracts are very chal-
lenging to read for non-specialist users: they are
usually very long and involve a myriad of technical
jargon. Having a model that can read these docu-
ments and answer questions would be very useful.
For this reason, we train one LoRA to acquire the
reading comprehension skill and another LoRA on
the domain-specific documents.

Robustness to variations in prompt format. Re-
cently, a few works (Mizrahi et al., 2024; Sclar
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S0 ===
QA </
Instruction: Grandma Jones baked 5 apple pies. She
cuts each pie into pieces ans set the 5 pies on
on the buffet table for the guests. After the guests had
eaten their pieces, there were 14 pieces of pie remaining.

Math-word problems using code

Question: How many pieces were taken by the guests?

Solution:

m Open-Book reading comprehension

a consequence of LKBI haploinsufficiency might be
responsible for the development of harmatomatous
polyps. PJS polyps from all patients showed generalized
membrane and cytoplasmic localizations of beta-catenin
along the mucosal endothelium.

UNGEONS Closed-Book

IRAGONS QA bot

Context: Recent functional genetic studies have pointed
out that LKBI plays a physiological role in

Question: What are the proficiencies of a
Barbarian in terms of armor, weapons, and
saving throws?

and activation of the pathway as

Solution: A Barbarian is proficient in light
armor, medium armor, shields, simple

Q ion: What is the physi

role of LKB1 involved

in Peutz-Jeghers syndrome?

weapons, martial weapons, and has saving
throws for Strength and Constitution.

Solution: controlling the Wnt-signaling pathway

Figure 2: Examples of binary skill composition tasks.

Format 1
Sentence: "a person working alone in a large kitchen’.
How many words contain the letter ‘o’ in the sentence?
Answer

Format 2
SENTENCE- "a person working alone in a large kitchen’.
How many words contain the letter "o’ in the sentence? ANSWER

Format 3
SENTENCE[JIll *a person working alone in a large kitchen’.
How many words contain the letter o’ in the sentence? <sep> ANSWER|JIIN

Format 4

SENTENCE\n

’a person working alone in a large kitchen’.

How many words contain the letter "o’ in the sentence?
ANSWER\n

Figure 3: Different prompt formats — varying descrip-
tors, separators, and spaces for the same task example.

et al., 2024) reported performance differences of
up to 76 accuracy points due to subtle changes in

prompt formatting when using Llama-2-13B (Tou- (b)

vron et al., 2023). This sensitivity remains when
increasing model size, the number of few-shot ex-
amples, or performing instruction tuning. We inves-
tigate whether model or data mixing is a solution
to this problem. Therefore, we set the first skill to
be the dataset with format ¢ and the second skill
to be the dataset with format j and evaluate on a
dataset with format k, where i, j, k € {1,...,10}
and ¢ # j # k. Figure 3 shows an example.

3.1 Merging methods

Figure 1 details the various merging methods in the
literature and the proposed CAT method.

Data mixing (DATA-MIX). The naive approach
for solving these tasks is to train on a mixture of
datasets containing different skills. We fine-tune
a single model with LoRA weights (A, B) where
A, B € R¥F (rank is kr (and not r) in order to
ensure a fair comparison with the other merging
methods) on the concatenation of datasets and thus
simultaneously teach the & skills to the model.

Model merging. Here, we train one model per
skill and then merge all of them to solve the com-
positional task. We distinguish two main classes of
LoRA merging: Linear and Concatenation.

Concatenation of LoRAs. Here AW'! =
oy B1A] + abByAJ, where o, ol € [0,1] are
merging coefficients for layer [. We refer to this
method as concatenation of LoRAs. We study two
variants that differ in their merging coefficients def-
inition:

(a) Learnable concatenation (CAT) (introduced
in this paper): in this variant, we set o, o as
trainable parameters. This distinguishes us from
other methods like TIES, DARE, LoRA Hub
that learn static values for every layer [ of the
network. Once the LoORA modules are separately
trained, we add a step where we only train the
merging coefficients on a small mixture of the
datasets.

Mixture of Experts (MoE) (Buehler and
Buehler, 2024a; Feng et al., 2024; Luo et al.,
2024; Mugeeth et al., 2024; Wu et al., 2023): the
main difference of this method compared to the
previous ones is that the merging coefficients are
input-dependent. Indeed, we have a trainable
router parameter W! € R?*2 which computes
the logits h!(x) = W!Tz. Then, the merging
coefficients are defined as:
Rt (x)1 ehl(:lc)g

I _
h @ 4 h @2 Y27 ghl@) 4 hl(@)e

o =

Linear merging of LoRAs. Here AW' =
(@} By +akBs)(al A1 4 b A3)T. We note that all
these methods use the same static weights (o, )
for every layer [. Compared to the concatenation
of LoRAs, this method involves additional cross-
terms. We study three variants that apply a series
of preprocessing steps on the LoRA parameters
before applying the update.

(a) TIES (Yadav et al., 2024): prune the smallest
values of (A, By) for k € {1, 2} and retain the
top values based on the specified density frac-
tion A € [0, 1]. Next, calculate the majority sign
mask from the pruned LoRA weights by sum-
ming all their parameter values and storing the
sign of this sum. Lastly, the LoORA weights are
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multiplied by weights (a4, «2). Finally, apply

the linear merging update based on the stored

majority sign. (A, aq, ag) are hyper-parameters.

(b) DARE (Yu et al., 2023a): first randomly prune

the values of the LoRA parameters (A, By,) for

k € {1,2} based on a density A € [0, 1]. Then,

rescale the pruned LoRA weights by 1/\. Fi-

nally, apply the linear merging update.

(c) LoRA Hub (Huang et al., 2023): this method
was primarily proposed to select and assign
weights to the constituent LoORA modules that
would help solve an unseen test task. Here
(a1, ) are learned from a few (5) examples
from the target task in a gradient-free manner.

Most of these aforementioned methods have been

introduced in the literature for solving the multitask

problem, i.e. to perform well simultaneously on k

skills, when tested independently.

4 Experimental details
Our base model is Llama-7b (Touvron et al., 2023).

DATA-MIX. Training a model on a mixture of
datasets in §5.3, §5.2 is not straightforward, as
different examples have different masking schemes,
which makes standard data mixing fail. Hence,
we perform continual training by fine-tuning for 3
epochs on the chapter/manual, merge the weights
with the pre-trained model weights, followed by 1
epoch of fine-tuning on the instruction-following
dataset similar to Wu et al. (2024).

CAT. We freeze the trained LoRA skill modules
and train o , oy on a dataset made by selecting the
minimum of 5% of the data points from both skill
1 and skill 2. This additional step only runs for 1
epoch with a learning rate of 1e—4. Further details

are discussed in §B.1 and §B.2.

5 Experiments

5.1 Hard math-word problems with code

Evaluation setup. We evaluate the ability to solve
hard math-word problems using code.

Baselines. Base (Llama-7b with 8-shot PAL);
Skill LoRAs: Math (trained on MetaMathQA (Yu
et al., 2023b)), Code (trained on Code Alpaca
(Chaudhary, 2023)). DATA-MIX (trained on [Meta-
MathQA ; Code Alpaca]); LoRA Merging: TIES,
DARE, MoE, LoRAHub.

Results. Figure 4 illustrates that finetuning on the
concatenation of MetaMathQA and Code-Alpaca —

2111 21.83

2
15.77
14.18 B

g
g 10
<

5

0

Base Co d Mat th DATA L RA CAT TIES DARE MoE Codel U lama

y (%)

Figure 4: Performance on GSM8k-Hard.

No Code Code

5.91% 8.04% (+36%)
14.18% (+140%)  21.11% (+257 %)

No Math
Math

Table 1: Super-linear improvement with CAT.

which corresponds to the DATA strategy is effec-
tive since the accuracy increases by 32% over Math
(from 14.18% — 18.8%) and the model effectively
exploits the synergies between natural and program-
ming language (Xu et al., 2023). CAT is the best
method; Figure 7 of Appendix shows a qualitative
example comparing CAT to the next best method
DATA. Despite being fine-tuned on a smaller code
dataset i.e. Code Alpaca, CAT matches the perfor-
mance of Code Llama - Python 7b (Roziere et al.,
2023) that is specialized for Python. Additionally,
CAT demonstrates super-linear improvement (Ta-
ble 1). Super-linear improvement means that the
set of problems we can solve with model merging
is larger than the sum of the number of problems
solved by the math model and the number of prob-
lems solved by the code model. This concept is
independent of the absolute performance of the
individual models. Correspondingly, here the im-
provement when fine-tuning on both math and code
with respect to the base model (257%) is superior
to the sum of the improvements on code only (36%)
and math only (140%). For example, CAT solves
21% of the problems, meaning that at least 5%
of the problems (union of both is 16%) it solves
are not solved by either of the individual models.
The solution to these problems must therefore arise
from combining the knowledge of both models.

5.2 Building specialized question-answering
bots (QABots)

Evaluation setup. We test the closed-book
question-answering capability (i.e. no access to
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Accuracy (¢

Base ManualAlpaca DATA Lora CAT TIES DARE MoE Retrieval Chat
Hub +retrieval |

Figure 5: Performance on closed-book game QA.

the manual about which questions are asked) by
testing on the nuanced Dungeons & Dragons game
manual. Details on the preparation of the dataset
and judging are discussed in §B.3, §C.2. In con-
trast to subsection 5.3, this is closed-book QA as
we have access to the context during inference.

Baselines. Skill LoRAs: Manual (trained on game
manual), Instruction-following (trained on Alpaca).
We include two additional baselines: retrieval
using langchain based RetrievalQAChain
using (1) Llama-7b and (2) Llama2-7b-chat
models. Here the documents are embedded using
sentence-transformers/all-MinilM-L6-v2

and stored in a FAISS vector store. These are
open-book but included to get an upper bound.

Results. From Figure 5, we observe that CAT
beats most merging and data mixing but we note
the scope for improvement compared to the more
expensive retrieval methods.

5.3 Reading comprehension on technical
documents

Evaluation setup. We test the open-book
question-answering ability (i.e. context is acces-
sible to the model) on BioASQ by choosing the
“factoid” subset of questions to align with the for-
mat of questions seen in SQUAD (Rajpurkar et al.,
2018). Since the ground truth answers in BioASQ
are very long and sometimes contain more details
than what is provided in the context, we observe
low results in exact matching and F1 scores (see
§C.3 Table 2). To alleviate this issue, we use GPT-4
as a judge (Zheng et al., 2024): given the answers
generated by a pair of models, we ask it to score the
two in terms of relative correctness to the gold ref-
erence answer, and report the ELO rating (Elo and
Sloan, 1978) (see §C.3 for prompts and details).

en
as being covalently conjugated to PICL

52 ause )
200 . ,ag 1 Question: How many of the human PML isoforms are
cytosolic?

SQUAD: ‘Not in context’ B4

MoE: PMLI, PMLII and PMLVI accumulate in the
50 g cytoplasm following arsenic treatment, whereas
K PMLIIL PMLIV and PMLV do not. £

[ M, 7 2, o, S %, CAT: Three
4, 7o, & %, %, 20
i S S 3 %, e gy, g, "

Model

(b) CAT vs. MoE vs.
(a) ELO Ratings of various SQuAD solving a BioASQ
models. question.

Figure 6: Quantitative and qualitative results on reading
comprehension task.

Results. Figure 6a shows that CAT obtains the
best ELO rating. Evidently, the question-answering
skill is more useful than having domain knowl-
edge as SQuUAD fairs 6x better compared to text-
book. From Figure 6b we see the lack of biomed-
ical knowledge hurting SQuAD; CAT gives well-
formed answers compared to MoE which is indeed
able to understand the context but just copies text.

5.4 Robustness to prompt format changes

Evaluation setup. We choose the task of counting
the number of words having a particular letter in
the given sentence from Super-Naturallnstructions
(Wang et al., 2022). Following the grammar over
descriptors, separators, and spaces defined in
(Sclar et al., 2024), we sample 7 prompt formats
(see Figure 3 for some examples of format varia-
tions — as simple as spacing, casing).

Results. Figure 10 reports the performance of each
model when evaluating on 4 out-of-distribution for-
mats (Formats 3, 7, 8 and 10). Figures 10a, 10b and
10c respectively display the single and merged mod-
els when trained on Formats 1&4, Formats 1&2 and
Formats 2&4. DATA-MIX performs worse than the
individual models. Regarding the merged models,
the results are variable. When finetuning on For-
mats 1&4 (Figure 10a), the performance of CAT
does not vary across target formats and remains
high. On Formats 1&2 (Figure 10b), TIES is the
best model since it performs as the single model
when evaluated on Formats 3 and 10. CAT and
DARE perform worse and only obtain a decent per-
formance when evaluated on Format 3. Lastly, on
Formats 2 & 4, merging fails since all the models
perform poorly. Thus, we show that model merging
is an approach to attaining robustness to prompt
formatting changes. We study CAT for prompt
robustness on other tasks in subsection C.4.
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5.5 Ablations

Learning the weights of CAT. We analyze the
impact of learning the weights to be assigned to
each skill. As discussed in section 4, we learn
the merging coefficients. Figure 9 shows how that
“learned” CAT beats “static” CAT in the Math-Code
and the QAbot experiments by 2% and 8% respec-
tively. Here, we simply average — aﬁ, alz =0.5.

6 Conclusion

We conclude that when obtaining training data is
challenging, decomposing a task into its underlying
skills and concatenating individual skill LoRAs
is a promising approach. We demonstrate several
practical use cases that can be treated as such binary
skill composition problems. An exciting future
direction is to investigate the efficacy of CAT on
tasks encompassing more than two skills. This
would give an interesting alternative to the current
paradigm where we train large-scale models on
large data mixtures.
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A Review on LoRA

All the methods we study for solving composition
skill problems are based on LoRA (Hu et al., 2021),
which is defined as follows. During finetuning, the
update of the weights are constrained to be a low-
rank decomposition i.e. the update is Wy + AW,
where AW = BAT, for Wy pre-trained weights,
B € R and A € R trainable parameters,
and r < d.

LoRA presents several advantages compared to
standard finetuning. First, it is more parameter-
efficient i.e., it uses a lower number of trainable pa-
rameters and has a lower memory usage i.e., fewer
parameters need to be stored and processed which
lowers the memory footprint. More importantly, it
is more modular i.e. LoORA’s method of isolating
additional parameters makes it easier to manage
adaptations and switch between different fine-tuned
tasks. It is possible to load and apply different sets
of low-rank adaptations without needing to retrain
the entire model from scratch for each new task.
For these reasons, we focus on LoRA-based meth-
ods to solve skill composition problems. We detail
them in the next section.

B Additional experimental details

B.1 Hyperparameters.

For skill fine-tuning, we set the LoRA rank r = 32,
LoRA alpha = 64, LoRA dropout = 0.05 and
the target modules to be {"q_proj", "v_proj",
"k_proj", "up_proj","down_proj"}. We
finetune the individual LoRAs using AdamW
(Loshchilov and Hutter, 2017) for 3 epochs, with a
learning rate 3e—4, 100 warmup steps, a linear de-
caying schedule, batch size in {4, 8} and gradient

accumulation 4. We set the precision to float16.

The (A, aq, a2) hyperparameter values for TIES,
DARE are chosen by doing a sweep over A €
[0,1], 1 € [1,2], 2 € [1,2] in increments of 0.2
and we report the best results. At inference time,
we generate answers in an autoregressive fashion
setting temperature to 0.01, max_new_tokens to
200, with nucleus sampling probability top_p as
0.95. For LoRA Hub, we used at least 5 few-shot
examples for learning the weights. We followed
the implementation of mergoo (Leroo-Al, 2024)
for MoE which is based on recent MoE for LoRAs
(Feng et al., 2024; Buehler and Buehler, 2024b).

B.2 Training details & computing resources.

We run our experiments on the following GPUs de-
pending on their availability on our compute clus-
ter: NVIDIA RTX A6000, NVIDIA RTX A5000,
and NVIDIA A100. Mainly, for the most extensive
large-scale fine-tuning of five textbooks for read-
ing comprehension, we train the models in a dis-
tributed multi-GPU environment using DeepSpeed
on 2 A100 GPUs. This takes about 2 days.

For reading comprehension, we use a sequence
length of 2048, while for question-answer we found
that using smaller lengths in {20,100} worked bet-
ter at memorizing minute details.

In all data and LoRA merging methods, we do 1-
shot prompting to ensure the output is of consistent
format. The best model is chosen as the one that
does best on the validation set.

B.3 Datasets introduced.

For the QABot task, we create two new datasets
consisting of 95 examples (45 from the biology text-
book chapter 16 and 50 from the rules of Dungeon
& Dragons manual). We extract text contents from
these to prepare the training corpus. This amounts
to 8169 tokens in the case of biology and 25427
tokens for the game. To obtain question-answer
pairs, we provide page-level content in the context
and use the Question-Answer generation prompt
shown in Figure 11 to prompt GPT-4 (Achiam et al.,
2023). This is followed by a manual inspection to
ensure valid and appropriate questions.

C Additional experiments

C.1 Math-word problems.

Since this setting requires training over smaller
scale data than reading comprehension and QABot,
we conducted an evaluation to assess the robustness
of the reported accuracy metric of the CAT method.
We obtain 21.63 £ 1.07 when testing with 3 differ-
ent seeds. which is still greater than DATA-MIX
(18.8).

C.2 QABot

For judging, we use accuracy as the metric using
the QA judge prompt in Figure 11 . We evaluate the
QABot task on a sompler setting using a university
textbook.

Biology textbook QA. In the simpler setting of a
chapter from a university biology textbook, we see
that the base Llama model that has been instruction
fine-tuned on Alpaca is able to obtain 43%, which
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Question: Gunter is trying to count the jelly beans in
a jar. He asks his friends how many they think are in
the jar. One says 9926805. Another says 20 more
than half the first one. A third says 25% more than the
first one. What is their average guess?

DATA m error

1 def solution():
4 guesses = [9926805, (9926805/2) + 20, (9926805/2) + 20 +
< 9926805]
3 total_sum = 0
for guess in guesses:
total_sum += guess
] average_guess = total_sum / len(guesses)
return average_guess

CAT

 def solution():

H guesses = [9926805, (9926805/2) + 20, 1.25 * 9926805]
3 total = 0

1 for guess in guesses:

5 total += guess

3 average = total/3

4 return average

Figure 7: CAT vs. DATA solving a GSM-Hard problem.

DATA makes frequent coding errors.

Accuracy (%)

Biology Alpaca DATA  CAT

TIES DARE  MoE Retrieval Chat
“+retrieval

Figure 8: QABot on biology chapter.

math-+code qabot
33

Accuracy (%)
o
5
L
o
E

Figure 9: Performance of learned vs static CAT.

Model F1 score
textbook (5-shot) 0.041
SQuAD 0.047
TIES 0.04
DARE 0.037
MoE 0.037
DATA 0.044
CAT 0.028

Table 2: F1 scores on BioASQ.

is enhanced by DATA-MIX which injects domain
knowledge to 54%.

C.3 Reading comprehension

The corpus of textbooks used to impart biomedical
knowledge contains 1417501 tokens.

As discussed in subsection 5.3, since the gold
reference answers in BioASQ are quite descriptive
unlike the simpler/concise answers for the QABot
datasets, the naive F1 based scoring is unable to
reflect the true performance of models Table 2. we
observed that when asked to score a model indi-
vidually, scores from GPT-4 do not capture the
fine-grained details or consider relative generations
from other models. Hence, we resort to pairwise
scoring similar to LMSys. Using this scheme gives
us more reliable scores. For ELO computation, we
start with an initial rating of 200, base 10, scale
400, and K -factor 4. We bootstrap the ELO ratings
5,000 times to ensure stable results.

C.4 Prompt robustness

Prompt format robustness. In Figure 10, we
see different merging methods working well for
different format pairs trained. While we do not see
a clear strategy that would guarantee robustness,
it indicates that merging methods are capable of
attaining robustness. Achieving this is a very desir-
able phenomenon as this would eliminate the need
to prompt engineer by trying diverse formatting
choices.

Prompt robustness on commonsense QA tasks
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(a) Format 1&4 (b) Format 1&2
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(c) Format 2&4
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B DATA-MIX [ CAT B TIES B DARE H MoE

Figure 10: Performance of single LoRAs and merged models trained on format pairs mentioned and tested on
different formats.

Method

Base Llama 7B
Avg{prompt_1, prompt_2}
DATA-MIX

CAT

PIQA

79.8
74.59
82.65
83.27

SIQA HellaSwag WinoGrande

48.9 76.1 70.1
77.1 81.85 81.2
75.9 78.81 79.6
78.8 84.71 80.43

Table 3: Performance of CAT, DATA-MIX, and the average performance compared on 2 prompt versions of
commonsense QA datasets.

Reading comprehension judge prompt

Please act as an impartial judge and evaluate the
quality of the answers.

Question-answer judge prompt

Question-answer generation prompt

<QUESTION PROMPT>

You are an expert in generating
questions. Based on the given Context,
please generate a question whose
answer lies in the Context. The
question should be to the point and
must entail a definite, concise answer
in the Context. Focus on specific
points and details such that only
someone who understands the Context
well can answer.

Context: {context}

<ANSWER PROMPT>

You are an expert at reading
comprehension. Given the Context,
please respond to the Question based
on the information in the Context. The
answer should at max be one sentence
long. Output only the exact answer.

You will receive five items: Context, Question,
Gold Answer, Choice 1, and Choice 2. Your task is
to assess which among Choice 1 and Choice 2 in
terms of CORRECTNESS. You MUST read and understand
the Context and assess the Choice answers with
respect to the information in the Context. To help

you with evaluation, we provide the Gold Answer.

The Gold Answer has been checked by experts and is
100% correct. Use it as a reference for spotting
CORRECTNESS errors.

You should give a score from @ to 3 for CORRECTNESS

to Choice 1 and Choice 2. Half points are allowed.

Then you must say which choice was better.

Here is the Context:
{context}

Here is the Question:
{question}

Here is the Gold Answer:
{answer}

Here is Choice 1:
{choicel}

Here is Choice 2:
{choice2}

Please present your scores as follows:
Choice 1: x/3

Choice 2: x/3

Choice _ is better

Please act as an impartial judge and evaluate
the quality of the answers.

You will receive four items: Context, Question,
Gold Answer, and System Answer. Your task is to
assess the System Answer in terms of CORRECTNESS.
You MUST read and understand the Context and
assess the System Answer with respect to the
information in the Context. To help you with
evaluation, we provide the Gold Answer. The
Gold Answer is an approximately correct answer.
Use it as a reference for spotting CORRECTNESS
errors but you should judge based on the provided
Context.

You should give a score from @ to 2 for
CORRECTNESS to the System Answer.

Here is the Context:
{context}

Here is the Question:
{question}

Here is the Gold Answer:
{gold_answer}

Here is the System Answer:
{system_answe}

Here is Choice 2:
{choice2}

Please present your scores as follows:
Score: x
\

Figure 11: Prompts used to generate questions/judge answers using GPT-4.
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