
Proceedings of the 31st International Conference on Computational Linguistics: Industry Track, pages 483–495
January 19–24, 2025. ©2025 Association for Computational Linguistics

483

Deploying Multi-task Online Server with Large Language Model

Yincen Qu1, Hengyue Liu2, Kun Wang1, Xiangying Dai1, Hui Zhou1, and Chao Ma2

1Trip.com Group, Shanghai, China
2Independent Researcher

{yc.qu,kun_wang,xy.dai,hzhoug,ma_c}@trip.com

hengyueliu23@gmail.com

Abstract

In the industry, numerous tasks are deployed
online. Traditional approaches often tackle
each task separately by its own network, which
leads to excessive costs for developing and scal-
ing models, especially in the context of large
language models. Although multi-task methods
can save costs through parameter sharing, they
often struggle to outperform single-task meth-
ods in real-world applications. To tackle these
challenges, we present a three-stage multi-task
learning framework for large language mod-
els. It involves task filtering, followed by fine-
tuning on high-resource tasks, and finally fine-
tuning on all tasks. We conducted comprehen-
sive experiments in single-task and multi-task
settings. Our approach, exemplified on differ-
ent benchmarks, demonstrates that it is able to
achieve performance comparable to the single-
task method while reducing up to 90.9% of its
overhead.

1 Introduction

In the industry, numerous natural language pro-
cessing (NLP) tasks are deployed online, and all
tasks are required to serve with punctuality and
high accuracy. As the number of tasks increases,
the demand for resources also grows. Preventing re-
source requirements from growing linearly with the
number of tasks becomes one of the most critical
challenge in cost-saving.

Traditional approaches tackle each task sepa-
rately by its own network and pipeline. This leads
to excessive workloads for development and main-
tenance, as well as increased latency and resource
usage. Moreover, in the context of large language
models (LLMs), it may also lead to excessive costs
for scaling up models for each task. We propose
utilizing multi-task serving to deploy LLMs in-
stead of single-task serving. single-task serving
and multi-task serving are two types of online serv-
ing strategies, and their paradigms are shown in

Figure 1: Two types of online serving strategies. (a) In-
dependent single-task models are trained and deployed
for each task. (b) One multi-task model is trained and
deployed for all tasks.

Figure 1. Compared to single-task serving, multi-
task serving reduces deployment efforts and saves
more memory due to the sharing mechanism, thus
alleviating resource wastage.

However, in real-world applications, multi-task
methods often struggle to match the performance of
single-task methods due to the data imbalance and
task heterogeneity. Data imbalance consistently
leads to overfitting in low-resource tasks. This
occurs because early stopping is not a feasible so-
lution for high-resource tasks; these tasks require
many more epochs to converge. Additionally, het-
erogeneity may result in negative transfer between
tasks. Different tasks require different gradient di-
rection in model optimization, and tasks that are
too divergent may conflict in terms of gradient di-
rection.

In this paper, we propose a three-stage frame-
work: filtering dissimilar tasks, fine-tuning on high-
resource tasks, and fine-tuning on a mixture of all
tasks. The task filtering strategy prevents the neg-
ative transfer between heterogeneous tasks. The
strategy of fine-tuning on high-resource tasks fol-

484

lowed by fine-tuning on the mixture effectively
effectively enables early stop by allowing different
tasks to have different training epochs, thus prevent-
ing overfitting of low-resource tasks or underfitting
of high-resource tasks.

Through an extensive empirical study, we find
that our algorithm achieves closer performance to
the single-task setting compared to other multi-
task baselines. We observed that the improvement
in multi-task performance mainly comes from the
sampling strategy, the task filtering and domain-
specific continual pre-training.

Our main contributions can be summarized as
follows:

(1) We propose a framework for multi-task serv-
ing that utilizes LLMs to facilitate the multi-task
method that simultaneously handles multiple tasks
and achieves comparable performance of that of
the single-task method.

(2) We run a comprehensive set of experiments
that suggest our scheme is practical across different
benchmarks and capable of substituting for tasks
trained in the single-task method. We also per-
formed extensive experiments to gauge the impor-
tance of each of our components, such as task se-
lection and sampling strategy.

(3) Our model was deployed to production to
provide serving for a total of 11 downstream
tasks. Compared to single-task serving, our model
achieves comparable performance. We estimate
that our system can reduce the total serving costs
by up to 90.9% compared to single-task serving.

2 Related Works

Multi-task Learning. Multi-task learning (MTL)
involves training a single model on multiple tasks
simultaneously. Several studies have explored the
effectiveness of MTL in various domains, such
as natural language processing (Jean et al., 2019;
Liu et al., 2019; Wei et al., 2022; Peng et al.,
2023), computer vision (Kendall et al., 2018; Kang
et al., 2020). Recently, T5 (Raffel et al., 2020),
ExT5 (Aribandi et al., 2022) and Muppet (Agha-
janyan et al., 2021) have been proposed to explore
the application of Multi-Task Learning (MTL) tech-
niques in Large Language Models (LLMs). How-
ever, they selected different checkpoints for each
task without aiming to train the model to han-
dle tasks simultaneously. Moreover, most of re-
cent works such as FLAN (Chung et al., 2022),
T0 (Sanh et al., 2022), and GPT-3 (Brown et al.,

2020), etc., focused on zero-shot or few-shot per-
formance and neglected to compare with the full
fine-tuning method for single tasks. However, we
found that it is not trivial to surpass single-task
full-parameter fine-tuning method.

Data Imbalance. Due to the prevalence of im-
balanced data distribution, data balancing has at-
tracted increasing attention. Researchers have pro-
posed static sampling to achieve a more balanced
data distribution, which includes class-balanced
sampling (Mahajan et al., 2018), temperature-
scaled sampling (Pires et al., 2019). Previous
works (Kurin et al., 2022; Xin et al., 2022) show
evidence that static sampling approach yield op-
timal results in data rich regime (high-resources).
Recently Chung et al. (2023); Choi et al. (2023)
proposed to prevent model to overfit on the low-
resource language in static sampling during mul-
tilingual pre-training. They focus on the perfor-
mance of similar tasks under data imbalance, such
as translation between different languages and mul-
tilingual pre-training. In our work, we integrated
dissimilar tasks and explored whether data imbal-
ance and heterogeneity could hinder multi-task per-
formance.

3 Preliminaries

3.1 Sampling Strategies

In this section, we present three common sampling
strategies that aim to re-balance the task distribu-
tion. We will utilize these three sampling methods
as baselines for subsequent experiments.

Instance-balanced sampling. Instance-balanced
sampling refers to sampling examples from each
task based on the total size of each task’s dataset.
Specifically, the empirical distributions for differ-
ent tasks are as follows.

pl =
nl∑

l′∈L nl′
(1)

where nl is the data size of task l. Here data points
from task l will be sampled with the probability pl,
which is proportional to the cardinality nl of the
task in the training set.

Class-balanced sampling. Class-balanced sam-
pling refers to sampling examples from each task
with equal probability. In each batch, each example
is sampled uniformly from one of the tasks used
for training.

Temperature-scaled sampling. Temperature-
scaled sampling refers to re-scaling the sampling

485

Figure 2: Pipeline of the proposed method. It starts with domain-specific continual pre-training, where the model
undergoes self-supervised learning using domain-specific data. Next, we perform multi-task fine-tuning on high-
resource tasks. Then, we perform multi-task fine-tuning on all tasks, enabling the model to learn from a mixture of
tasks simultaneously. Finally, the multi-task model is deployed online to serve different tasks.

rates by a temperature τ . It uses a distribution q
defined by exponentiating p.

ql =
p
1/τ
l∑

l′∈L p
1/τ
l′

(2)

When τ = 1, this approach is equivalent to
instance-balanced sampling. As τ increases, the
mixing becomes more uniform across tasks. When
τ → ∞, this approach is equivalent to class-
balanced sampling. In practice, commonly used
values for τ are (1.43, 2, 3.33) (Pires et al., 2019;
Blevins et al., 2022; Conneau et al., 2020; Xue
et al., 2021).

3.2 Problem Setting

Given a set of target tasks L, our framework is dedi-
cated to find the parameters θ of a model F that can
achieve comparable performance to the single-task
model in as many tasks as possible. This differs
slightly from the common goal of multi-task learn-
ing, which aims to achieve high average perfor-
mance across all training tasks. We refer to those
tasks that attain 99% of the full fine-tuning baseline
as qualified tasks and our goal is to deploy as many
qualified tasks as possible with a single model. Be-
sides, in real-world application, we have tasks of
different types, each with varying amounts of train-
ing samples. Thus, we have to take heterogeneity
and data imbalance into consideration.

4 Methodology

Our proposed framework in Figure 2 features a
pipeline that consists of three steps: 1) Task filter-
ing; 2) High-resource task fine-tuning; 3) Tasks

mixture fine-tuning. We provide a detailed break-
down of these steps below.

4.1 Task Filter

4.1.1 Filtered Task

To prevent negative transfer between different tasks,
it’s important to filter out inappropriate tasks. We
found that generation tasks and classification tasks
would hinder each others’ performance in multi-
task training, as evidenced in the experiment sec-
tions. The output of classification tasks is fixed,
whereas the output of generation tasks is flexible.
For instance, the CLUE (Xu et al., 2020) tasks en-
compass single sentence classification, sentence
pair classification, and machine reading compre-
hension. We categorize the single sentence classifi-
cation and sentence pair classification as classifica-
tion tasks, and machine reading comprehension as
generation tasks.

Moreover, we also investigated that whether dif-
ferences in input (such as single sentences or sen-
tence pairs) or output (such as binary classification
or multi-class classification) would further impede
performance. We found that the more similar the
tasks are, the higher the multi-task performance
can be achieved, and the greater the number of
qualified tasks becomes.

4.1.2 Unified Tasks

In order to train a unified model for various tasks,
we cast all of the collected tasks into a format called
“text-to-text.” This format requires the model to be
fed with some text for context and then generate
output text for individual tasks. To indicate the
specific task, we add a task-specific text prefix to

486

the original input sequence prior to inputting it into
the model.

4.2 Multi-task Fine-tuning

For tasks with imbalanced data, we utilize the multi-
task learning approach to balance the performance
of all tasks. However, the aforementioned sam-
pling strategies are not ideal, as they sample all
tasks with a constant probability throughout the
entire training process, leading to over-fitting of
low-resource tasks, while high-resource tasks still
require learning.

We divide the tasks into two groups: high-
resource and low-resource tasks. Since we have a
variety of tasks with different training saturation
steps, it is unfeasible to categorize them based on
the amount of training data as in Choi et al. (2023).
Instead, we categorize tasks based on the training
saturation steps in the single-task setting. If a task
achieves overfitting in fewer than 5 epochs, we re-
fer to it as a "low-resource task." If a task achieves
overfitting after more than 5 epochs, we refer to it
as a "high-resource task."

For these task groups, we perform two-stage
training, including high-resource task fine-tuning
and tasks mixture fine-tuning.

(1) High-resource task fine-tuning. For high-
resource tasks, we utilize the method of instance-
balanced sampling to train them, given that they
each have a similar amount of training data.

(2) Tasks mixture fine-tuning. After fine-
tuning the model on high-resource tasks, we pro-
ceed to fine-tune it on the full mixture of tasks. We
utilize temperature-scaled sampling and impose
an artificial limit on dataset size to train all down-
stream tasks simultaneously. We set an artificial
limit (K) on the dataset size to prevent over-fitting.
The adjusted distribution of different tasks is as
follows.

pl =
min(nl,K)∑

l′∈L min(nl′ ,K)
(3)

ql =
p
1/τ
l∑

l′∈L p
1/τ
l′

(4)

5 Experiments

In the following sections, we apply our proposed
training method to CLUE (Xu et al., 2020) tasks
and our domain application tasks. In the CLUE
experiments, we show that inappropriate sampling

strategy will lead to multi-task performance degra-
dation and different tasks taxonomies also hinder
multi-task performance. In the domain-related ap-
plication tasks, we scale up the number of tasks, all
of which are related to the customer service field,
and show that our method remains equally effective
in the real-world applications.

5.1 CLUE Tasks

5.1.1 Experiment Setup
The CLUE benchmark (Xu et al., 2020) is synthetic,
consisting of six classification datasets: CWSC,
TNEWS, CSL, AFQMC, IFLYTEK, and OCNLI.
We provide details and references in Appendix B.
For each task, we used accuracy rate as the primary
evaluation metric. We reported the macro-average
accuracy across all tasks within the benchmark. In
the multi-task setting, we also provided the count of
qualified tasks, which are defined as those achiev-
ing 99% of the performance of their single-task
counterparts. To measure the parameter and com-
putational efficiency, we introduced a ratio: the
number of qualified tasks divided by the number
of models deployed. This ratio is 1 for the single-
task baseline, as it deploys one model per task. For
multi-task models, the ratio is calculated as 1 di-
vided by the number of qualified tasks. This metric
is labeled as "overhead" in the header of Table 1.

In the experiment, we take the 7B Qwen2 (Yang
et al., 2024) and 8B LLaMA3 (Touvron et al., 2023)
as the base model. We present a comparative anal-
ysis of our two-stage sampling method against
five benchmark approaches: few-shot prompt-
ing, single-task fine-tuning, instance-balanced
sampling, class-balanced sampling, and Uni-
Max (Chung et al., 2023). In the case of few-
shot prompting, we prepend five random train-
ing instances (qi, ai)i as the example to guide the
model’s input.

5.1.2 Main Results
Table 1 shows the experimental results on the
CLUE benchmark. We observed that an inappropri-
ate sampling strategy would hinder the multi-task
performance. The few-shot method performed the
worst, suggesting that it is not yet capable of di-
rectly replacing current fine-tuning methods, par-
ticularly for multi-class classification tasks. Our
2-stage sampling strategy achieved the best perfor-
mance among all sampling approaches, delivering
the highest number of qualified tasks. Compared to
our method without the two-stage training process,

487

Models Methods CWSC
(Accuracy)

TNEWS
(Accuracy)

CSL
(Accuracy)

AFQMC
(Accuracy)

IFLYTEK
(Accuracy)

OCNLI
(Accuracy)

Avg. Num. Overhead

LLaMA

Single-task 70.22 58.71 87.06 73.98 58.39 79.23 71.26 6 100%
Few-shot 65.07 13.82 62.10 46.80 14.57 54.47 42.81 0 -

Instance-balanced 68.75 56.20 85.02 73.52 59.13 80.05 70.44 3 33.3%
Class-balanced 69.12 57.39 83.34 74.05 59.33 80.66 70.64 3 33.3%

UniMax 68.01 56.55 84.65 74.75 57.56 82.42 70.65 2 50.0%
ours 70.06 57.31 87.51 74.68 58.79 80.83 71.53 5 20.0%

ours (w/o 2-stage) 70.22 56.32 87.03 73.03 60.11 81.91 71.76 4 25.0%

Qwen

Single-task 71.69 60.16 83.54 74.12 58.31 86.52 72.39 6 100%
Few-shot 65.44 22.84 66.62 53.54 17.63 73.00 49.85 0 -

Instance-balanced 68.75 59.51 82.81 74.44 59.56 82.76 71.30 3 33.3%
Class-balanced 71.69 58.20 85.56 74.12 58.54 80.01 71.35 4 25.0%

UniMax 70.59 59.63 82.74 74.14 59.68 83.37 71.69 4 25.0%
ours 71.32 59.59 86.03 74.56 58.86 83.67 72.33 5 20.0%

ours (w/o 2-stage) 71.32 58.32 86.60 74.18 59.36 82.99 72.13 4 25.0%

Table 1: Main results on 6 tasks and the average performance across them. The performance is evaluated on the
development set. "Avg." refers to the macro average per-task performance of downstream tasks. "Num." refers to
the amount of the qualified tasks. All metrics for tasks are multiplied by 100. Shaded numbers indicate that they
attain 99% of the single-task fine-tuning baseline.

the two-stage training only marginally improves
average performance. However, it significantly
increases the number of qualified tasks. We hy-
pothesize that this enhancement is due to the high-
resource task training helps to balance the diverse
training steps across various tasks.

Moreover, we noted that LLaMA’s macro-
average performance on Chinese tasks is inferior
to that of Qwen, likely due to insufficient training
on Chinese corpora. Given that Qwen has been
pre-trained on Chinese corpora, it demonstrates su-
perior multi-task performance in Chinese. Conse-
quently, in Section 5.2, we carry out additional ex-
periments to assess the performance of the generic
model in comparison to the model that has under-
gone domain-specific pre-training.

5.1.3 Taxonomy Impact

In this section, we investigate the impact of taxon-
omy granularity on multi-task performance. We in-
troduced the machine reading comprehension task
CMRC into our task mixture, and trained a multi-
task model with this expanded dataset. Unlike the
original set of six classification tasks, CMRC, as a
generation task, has a flexible output format. From
the Table 2, we found that training generation and
classification tasks concurrently significantly im-
pacts the overall performance. It is particularly
notable that the performance of the classification
tasks not only lags behind their single-task coun-
terparts but also fails to match the performance
of the multi-task model that was trained only on
classification tasks.

To delve deeper into whether task similarity can

enhance performance, we categorized the tasks into
groups based on differences in input and output
types: single-sentence, sentence-pair, binary clas-
sification, and multi-class classification. A more
detailed presentation of the tasks and their results
is provided in Appendix D. From Table 9, we no-
ticed that increased task similarity correlates with
improved performance. However, the "overhead"
metric does not decrease, as the number of models
also rises. To meet our objective of cost saving, a
lower overhead metric is desirable. Consequently,
we decided against further subdividing these tasks
into more similar categories.

Methods Generation Classification Avg. Num.
Single-task 51.27 72.39 69.37 7
instance-balanced 47.61 70.64 (71.30) 66.82 1 (3)
class-balanced 52.94 70.58 (71.35) 68.02 2 (4)
ours 48.79 71.87 (72.33) 68.57 3 (5)

Table 2: Taxonomy impact of on generation and clas-
sification CLUE tasks. The number in brackets refers
to the multi-task performance trained solely with the
classification tasks.

5.2 Application Tasks
In this section, we expand from a six-task setting to
the setting with dozens of tasks, to verify whether
task filtering and sampling methods would affect
the multi-task performance.

5.2.1 Experiment Setup
We tested with 17 classification tasks, which are all
related to the domain of customer service. The de-
tails of these tasks are demonstrated in Appendix C.
We also reported macro average performance, the

488

number of qualified tasks, and the overhead metrics
for each method.

We took Qwen2 7B as the base model. We pro-
vided a comparison of our method with 5 baseline
methods, as in the previous section. In addition, we
performed domain-specific continual pre-training
on Qwen2 to obtain Qwend. The details of the
continual pre-training will be demonstrated in the
Appendix E. We report the multi-task performance
of the generic model Qwen and Qwend to further in-
vestigate whether domain pre-training can enhance
multi-task performance.

5.2.2 Application Results
Table 3 shows the experimental results on the indus-
try benchmark. We found that when task number in-
creases, inappropriate sampling strategy has more
obvious effect on the multi-task performance. Our
method outperforms other sampling baselines by
consistently enhancing both the macro-average per-
formance and the number of qualified tasks. With
an overhead of only 9.1% compared to the single-
task approach, our method can potentially reduce
the serving cost by up to 90.9% relative to the
single-task method.

We observed that Qwend exhibits relatively high
performance compared to Qwen. Specifically,
Qwend demonstrates a higher average performance
than Qwen. Furthermore, any sampling method
with Qwend results in a greater number of qualified
tasks than with Qwen. We attribute these improve-
ments to domain adaptation. Given the substan-
tial disparity between customer service conversa-
tions and the general domain text corpora utilized
by original LLMs, incorporating domain-specific
knowledge through continuous pre-training signifi-
cantly aids in downstream task performance. More-
over, the amount of required updates for each task
is reduced, leading to less conflict in gradient di-
rections when training tasks concurrently.

5.2.3 Taxonomy Impact
Consistent with our previous experiment, we incor-
porated a generation task into our task mixture and
trained them jointly with Qwend. From Table 4,
we found that regardless of the sampling strategy
employed, both classification and generation tasks
experienced a significant decline in performance
compared to their single-task counterparts. This
suggests that the negative impact is indeed present,
likely due to the substantial differences between
the tasks.

Models Methods Avg. Num. Overhead

Qwen

Single-task 88.64 17 100%
Few-shot 49.68 0 -

Class-balanced 85.34 5 20.0%
Instance-balanced 85.82 5 20.0%

Unimax 86.33 8 12.5%
ours 87.19 9 11.1%

Qwend

Single-task 89.65 17 100%
Few-shot 54.27 0 -

Class-balanced 85.29 5 20.0%
Instance-balanced 86.05 6 16.7%

Unimax 86.91 8 12.5%
ours 87.74 11 9.1%

Table 3: Main results on 17 application tasks. "Avg."
refers to the macro average performance. "Num." refers
to the amount of the qualified tasks.

We then categorized the classification tasks into
three types: binary classification, ordinal classifi-
cation, and multi-class classification, and trained
separate models for each category. From Table 5,
we also observed that performance improved with
the more granular categorization of tasks. How-
ever, since this approach required multiple models
for these tasks, the overhead metric did not show
improvement.

Methods Generation Classification Avg. Num.
Single-task 57.13 88.64 86.89 18
class-balanced 54.17 84.97 (85.29) 83.26 3 (5)
instance-balanced 52.58 85.09 (86.05) 83.28 3 (6)
ours 53.69 85.42 (87.74) 83.67 6 (11)

Table 4: Taxonomy impact on generation and classifica-
tion application tasks.

Methods Binary Ordinal Multi. Avg. Num. Overhead
Single-task 87.62 95.49 94.05 89.65 17 100%
instance-balanced 87.43 94.19 92.34 89.09 9 16.67%
class-balanced 87.12 95.25 93.77 89.25 10 16.67%
ours 87.46 95.21 93.48 89.43 10 14.29%

Table 5: Taxonomy impact on binary, ordinal and multi-
class classification application tasks.

6 Conclusion

In this work, we demonstrated the benefits of task
filtering and two-stage multi-task training for multi-
task optimization in the presence of task imbalance
and heterogeneity. Through a variety of experimen-
tal setups, we show that inappropriate sampling
and task selection strategies may hinder the over-
all multi-task performance. Our method, though
straightforward, is a viable alternative to models
trained with the single-task approach, potentially
resulting in substantial cost savings.

489

References
Armen Aghajanyan, Anchit Gupta, Akshat Shrivastava,

Xilun Chen, Luke Zettlemoyer, and Sonal Gupta.
2021. Muppet: Massive multi-task representations
with pre-finetuning. In Proceedings of the 2021 Con-
ference on Empirical Methods in Natural Language
Processing, EMNLP 2021, Virtual Event / Punta
Cana, Dominican Republic, 7-11 November, 2021,
pages 5799–5811. Association for Computational
Linguistics.

Vamsi Aribandi, Yi Tay, Tal Schuster, and et al. 2022.
Ext5: Towards extreme multi-task scaling for transfer
learning. In The Tenth International Conference on
Learning Representations, ICLR 2022, Virtual Event,
April 25-29, 2022. OpenReview.net.

Terra Blevins, Hila Gonen, and Luke Zettlemoyer. 2022.
Analyzing the mono- and cross-lingual pretraining
dynamics of multilingual language models. In Pro-
ceedings of the 2022 Conference on Empirical Meth-
ods in Natural Language Processing, EMNLP 2022,
Abu Dhabi, United Arab Emirates, December 7-11,
2022, pages 3575–3590. Association for Computa-
tional Linguistics.

Tom B. Brown, Benjamin Mann, Nick Ryder, and et al.
2020. Language models are few-shot learners. In Ad-
vances in Neural Information Processing Systems 33:
Annual Conference on Neural Information Process-
ing Systems 2020, NeurIPS 2020, December 6-12,
2020, virtual.

Dami Choi, Derrick Xin, Hamid Dadkhahi, Justin
Gilmer, Ankush Garg, Orhan Firat, Chih-Kuan Yeh,
Andrew M. Dai, and Behrooz Ghorbani. 2023. Order
matters in the presence of dataset imbalance for multi-
lingual learning. In Advances in Neural Information
Processing Systems 36: Annual Conference on Neu-
ral Information Processing Systems 2023, NeurIPS
2023, New Orleans, LA, USA, December 10 - 16,
2023.

Hyung Won Chung, Xavier Garcia, Adam Roberts,
and et al. 2023. Unimax: Fairer and more effec-
tive language sampling for large-scale multilingual
pretraining. In The Eleventh International Confer-
ence on Learning Representations, ICLR 2023, Ki-
gali, Rwanda, May 1-5, 2023. OpenReview.net.

Hyung Won Chung, Le Hou, Shayne Longpre, and et al.
2022. Scaling instruction-finetuned language models.
CoRR, abs/2210.11416.

Alexis Conneau, Kartikay Khandelwal, Naman Goyal,
and et al. 2020. Unsupervised cross-lingual repre-
sentation learning at scale. In Proceedings of the
58th Annual Meeting of the Association for Compu-
tational Linguistics, ACL 2020, Online, July 5-10,
2020, pages 8440–8451. Association for Computa-
tional Linguistics.

Tri Dao, Daniel Y. Fu, Stefano Ermon, Atri Rudra,
and Christopher Ré. 2022. Flashattention: Fast and
memory-efficient exact attention with io-awareness.

In Advances in Neural Information Processing Sys-
tems 35: Annual Conference on Neural Information
Processing Systems 2022, NeurIPS 2022, New Or-
leans, LA, USA, November 28 - December 9, 2022.

Sébastien Jean, Orhan Firat, and Melvin Johnson. 2019.
Adaptive scheduling for multi-task learning. CoRR,
abs/1909.06434.

Bingyi Kang, Saining Xie, Marcus Rohrbach, Zhicheng
Yan, Albert Gordo, Jiashi Feng, and Yannis Kalan-
tidis. 2020. Decoupling representation and classifier
for long-tailed recognition. In 8th International Con-
ference on Learning Representations, ICLR 2020,
Addis Ababa, Ethiopia, April 26-30, 2020. OpenRe-
view.net.

Alex Kendall, Yarin Gal, and Roberto Cipolla. 2018.
Multi-task learning using uncertainty to weigh losses
for scene geometry and semantics. In 2018 IEEE
Conference on Computer Vision and Pattern Recog-
nition, CVPR 2018, Salt Lake City, UT, USA, June
18-22, 2018, pages 7482–7491. Computer Vision
Foundation / IEEE Computer Society.

Taku Kudo and John Richardson. 2018. Sentencepiece:
A simple and language independent subword tok-
enizer and detokenizer for neural text processing. In
Proceedings of the 2018 Conference on Empirical
Methods in Natural Language Processing, EMNLP
2018: System Demonstrations, Brussels, Belgium,
October 31 - November 4, 2018, pages 66–71. Asso-
ciation for Computational Linguistics.

Vitaly Kurin, Alessandro De Palma, Ilya Kostrikov, Shi-
mon Whiteson, and Pawan Kumar Mudigonda. 2022.
In defense of the unitary scalarization for deep multi-
task learning. In Advances in Neural Information
Processing Systems 35: Annual Conference on Neu-
ral Information Processing Systems 2022, NeurIPS
2022, New Orleans, LA, USA, November 28 - Decem-
ber 9, 2022.

Xiaodong Liu, Pengcheng He, Weizhu Chen, and Jian-
feng Gao. 2019. Multi-task deep neural networks for
natural language understanding. In Proceedings of
the 57th Annual Meeting of the Association for Com-
putational Linguistics, pages 4487–4496, Florence,
Italy. Association for Computational Linguistics.

Dhruv Mahajan, Ross B. Girshick, Vignesh Ra-
manathan, and et al. 2018. Exploring the limits of
weakly supervised pretraining. In Computer Vision
- ECCV 2018 - 15th European Conference, Munich,
Germany, September 8-14, 2018, Proceedings, Part
II, volume 11206 of Lecture Notes in Computer Sci-
ence, pages 185–201. Springer.

Zhiyuan Peng, Vachik S. Dave, Nicole McNabb, and
et al. 2023. Entity-aware multi-task learning for
query understanding at walmart. In Proceedings
of the 29th ACM SIGKDD Conference on Knowl-
edge Discovery and Data Mining, KDD 2023, Long
Beach, CA, USA, August 6-10, 2023, pages 4733–
4742. ACM.

https://doi.org/10.18653/V1/2021.EMNLP-MAIN.468
https://doi.org/10.18653/V1/2021.EMNLP-MAIN.468
https://doi.org/10.18653/V1/2022.EMNLP-MAIN.234
https://doi.org/10.18653/V1/2022.EMNLP-MAIN.234
http://papers.nips.cc/paper_files/paper/2023/hash/d346609ec2fefd3938c898a0dda4a480-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/d346609ec2fefd3938c898a0dda4a480-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/d346609ec2fefd3938c898a0dda4a480-Abstract-Conference.html
https://doi.org/10.48550/ARXIV.2210.11416
https://doi.org/10.18653/V1/2020.ACL-MAIN.747
https://doi.org/10.18653/V1/2020.ACL-MAIN.747
https://arxiv.org/abs/1909.06434
https://doi.org/10.1109/CVPR.2018.00781
https://doi.org/10.1109/CVPR.2018.00781
https://doi.org/10.18653/V1/D18-2012
https://doi.org/10.18653/V1/D18-2012
https://doi.org/10.18653/V1/D18-2012
http://papers.nips.cc/paper_files/paper/2022/hash/4f301ae934f396086bfefd1139039dbd-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/4f301ae934f396086bfefd1139039dbd-Abstract-Conference.html
https://doi.org/10.18653/v1/P19-1441
https://doi.org/10.18653/v1/P19-1441
https://doi.org/10.1007/978-3-030-01216-8_12
https://doi.org/10.1007/978-3-030-01216-8_12
https://doi.org/10.1145/3580305.3599816
https://doi.org/10.1145/3580305.3599816

490

Telmo Pires, Eva Schlinger, and Dan Garrette. 2019.
How multilingual is multilingual BERT? In Proceed-
ings of the 57th Annual Meeting of the Association for
Computational Linguistics, pages 4996–5001, Flo-
rence, Italy. Association for Computational Linguis-
tics.

Colin Raffel, Noam Shazeer, Adam Roberts, and et al.
2020. Exploring the limits of transfer learning with a
unified text-to-text transformer. J. Mach. Learn. Res.,
21:140:1–140:67.

Samyam Rajbhandari, Jeff Rasley, Olatunji Ruwase,
and Yuxiong He. 2020. Zero: memory optimizations
toward training trillion parameter models. In Pro-
ceedings of the International Conference for High
Performance Computing, Networking, Storage and
Analysis, SC 2020, Virtual Event / Atlanta, Georgia,
USA, November 9-19, 2020, page 20. IEEE/ACM.

Victor Sanh, Albert Webson, Colin Raffel, and et al.
2022. Multitask prompted training enables zero-shot
task generalization. In The Tenth International Con-
ference on Learning Representations, ICLR 2022,
Virtual Event, April 25-29, 2022. OpenReview.net.

Mohammad Shoeybi, Mostofa Patwary, Raul Puri,
Patrick LeGresley, Jared Casper, and Bryan Catan-
zaro. 2019. Megatron-lm: Training multi-billion
parameter language models using model parallelism.
CoRR, abs/1909.08053.

Hugo Touvron, Louis Martin, Kevin Stone, and et al.
2023. Llama 2: Open foundation and fine-tuned chat
models. CoRR, abs/2307.09288.

Tianwen Wei, Jianwei Qi, and Shenghuan He. 2022.
A flexible multi-task model for BERT serving. In
Proceedings of the 60th Annual Meeting of the As-
sociation for Computational Linguistics (Volume 2:
Short Papers), pages 785–796, Dublin, Ireland. As-
sociation for Computational Linguistics.

Derrick Xin, Behrooz Ghorbani, Justin Gilmer, Ankush
Garg, and Orhan Firat. 2022. Do current multi-task
optimization methods in deep learning even help? In
Advances in Neural Information Processing Systems
35: Annual Conference on Neural Information Pro-
cessing Systems 2022, NeurIPS 2022, New Orleans,
LA, USA, November 28 - December 9, 2022.

Liang Xu, Hai Hu, and et al. 2020. CLUE: A Chinese
language understanding evaluation benchmark. In
Proceedings of the 28th International Conference
on Computational Linguistics, pages 4762–4772,
Barcelona, Spain (Online). International Committee
on Computational Linguistics.

Linting Xue, Noah Constant, Adam Roberts, Mihir Kale,
and et al. 2021. mt5: A massively multilingual pre-
trained text-to-text transformer. In Proceedings of
the 2021 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies, NAACL-HLT 2021,
Online, June 6-11, 2021, pages 483–498. Association
for Computational Linguistics.

Hyper-parameter CLUE Application
Learning rate 3e-5 3e-5
Batch Size 1 1
Gradient accumulation 8 8
Epoch (stage 1) 1 1
Epoch (stage 2) 10 10
K 20000 8000
τ 2 3.33

Table 6: Hyper-parameters used in our experiments.

An Yang, Baosong Yang, Binyuan Hui, and et al. 2024.
Qwen2 technical report. CoRR, abs/2407.10671.

Sha Yuan, Hanyu Zhao, Zhengxiao Du, and et al. 2021.
Wudaocorpora: A super large-scale chinese corpora
for pre-training language models. AI Open, 2:65–68.

A Experiment Setting

For a fair comparison, we have capped the training
steps for different sampling methods at 15,000. The
hyper-parameters (e.g. learning rate, mini-batch
size, etc) used in our experiments are summarized
in Table 6.

B CLUE Benchmark

Chinese Winograd Schema Challenge (CWSC).
The CWSC dataset is designed for anaphora and
coreference resolution. The model is asked to de-
termine if a pronoun and a noun phrase whithin a
sentence refer to the same entity. It’s a binary clas-
sification task. It mirrors similar English datasets
and consists of sentences carefully selected from
36 modern Chinese literary works. Their anaphora
relations are meticulously annotated by linguists,
resulting in a collection of 1,838 questions.

TouTiao Text Classification (TNEWS).
TNEWS consists of Chinese news from TouTiao,
comprising 73,360 titles in total. Each title
is assigned a label among 15 different news
categories, such as finance, technology and sports.
The goal of this task is to predict which category
the title belongs to.

IFLYTEK. The IFLYTEK is a Chinese multi-
class classification dataset, comprising 17,332 de-
scriptions of mobile applications. The objective
is to categorize each description into one of the
119 available categories, including but not limited
to food, car rental, and education. A data filter-
ing method akin to that employed for the TNEWS
dataset has been utilized in this process.

https://doi.org/10.18653/v1/P19-1493
https://doi.org/10.1109/SC41405.2020.00024
https://doi.org/10.1109/SC41405.2020.00024
https://openreview.net/forum?id=9Vrb9D0WI4
https://openreview.net/forum?id=9Vrb9D0WI4
https://arxiv.org/abs/1909.08053
https://arxiv.org/abs/1909.08053
https://doi.org/10.48550/ARXIV.2307.09288
https://doi.org/10.48550/ARXIV.2307.09288
https://doi.org/10.18653/v1/2022.acl-short.89
http://papers.nips.cc/paper_files/paper/2022/hash/580c4ec4738ff61d5862a122cdf139b6-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/580c4ec4738ff61d5862a122cdf139b6-Abstract-Conference.html
https://doi.org/10.18653/v1/2020.coling-main.419
https://doi.org/10.18653/v1/2020.coling-main.419
https://doi.org/10.18653/V1/2021.NAACL-MAIN.41
https://doi.org/10.18653/V1/2021.NAACL-MAIN.41
https://doi.org/10.48550/ARXIV.2407.10671

491

Chinese Scientific Literature (CSL). CSL
dataset comprises abstracts from Chinese scientific
papers and their associated keywords, sourced from
various core journals across natural and social sci-
ences. This dataset includes artificially generated
keywords using the tf-idf method, which are com-
bined with genuine keywords. The task involves
identifying whether the provided keywords for a
given abstract are authentic to the paper. This pri-
marily assesses the models’ capacity to determine
if the keywords accurately encapsulate the content
of the document.

Ant Financial Question Matching Corpus
(AFQMC). AFQMC originates from Ant Tech-
nology Exploration Conference (ATEC) Developer
competition. It presents a binary classification chal-
lenge designed to determine if two given sentences
share a similar meaning.

Original Chinese Natural Language Inference
(OCNLI). OCNLI is a natural language infer-
ence dataset using a similar methodology to the
MNLI dataset. It consists of 56,000 inference pairs
across five different categories: news, government
documents, fiction, TV transcripts, and telephone
transcripts. The source material for the premises is
Chinese, and hypotheses were authored by univer-
sity students specializing in linguistics. The level
of agreement among the annotators is comparable
to that of MNLI.

Chinese Machine Reading Comprehension
(CMRC). CMRC is a machine reading compre-
hension dataset that is based on span extraction.
It comprises approximately 19,071 questions, all
of which are human-annotated and sourced from
Wikipedia passages. Each entry in the CMRC
dataset includes a context, a question, and the cor-
responding answer. The answers are segments of
text extracted directly from the context.

Taxonomy Task Metrics |D|
Classification

Single Sentence
CWSC acc. 947

TNEWS acc. 49,726
IFYTEK acc. 11,425

Sentence Pair
CSL acc. 19,836

AFQMC acc. 6,564
OCNLI acc. 50,437

Generation
Reading Comprehension CMRC EM. 10,143

Table 7: Examples of different tasks. |D| refers to the
number of training instances.

C Application Tasks

Reservation Cancellation (RC). Reservation
cancellation refers to the hotel canceling a con-
firmed booking and not allowing guests to check-in.
This is a binary classification problem where the
input is a conversation, and we need to determine
whether there is a booking cancellation mentioned
in the conversation. Depending on the source of
the input, which can be either from a phone call or
an online chat, the task of reservation cancellation
is considered as two separate tasks. The source
of phone call is referred to as RC-A (Automatic
speech recognition), while the source of online chat
is referred to as RC-I (Instant messaging).

Unforseen Circumstances (UC). Unforseen cir-
cumstances refers to unforeseeable and uncontrol-
lable circumstances that prevent guests from check-
ing in after the hotel has confirmed a reservation.
This is a binary classification problem where the
input is a conversation, and we need to determine
whether there is a mention of unforeseeable cir-
cumstances in the conversation. Depending on the
source of the input, which can be either from a
phone call or an online chat, unforseen circum-
stances is considered as two separate tasks. The
source of phone call is referred to as UC-A (Au-
tomatic speech recognition), while the source of
online chat is referred to as UC-I (Instant messag-
ing).

Poaching Guests (PG). Poaching guests refers
to persuading or forcing guests to book hotels and
pay bills through alternative channels. This is a
binary classification problem where the input is a
conversation, and we need to determine whether
there is a mention of poaching guests in the con-
versation. Depending on the source of the input,
which can be either from a phone call or an online
chat, poaching guests is considered as two separate
tasks. The source of phone call is referred to as
PG-A (Automatic speech recognition), while the
source of online chat is referred to as PG-I (Instant
messaging).

Insult Detection (ID). Insult detection is a bi-
nary classification task that determines whether a
customer service representative is insulting the cus-
tomer. The input for this task is the historical con-
versation between the customer and the customer
service representative.

492

Complaint Sentiment Analysis (CSA). Com-
plaint sentiment analysis refers to analyzing
whether a customer is likely to post negative feed-
back on public platforms. The input is the cus-
tomer’s historical conversations, and the output is
a binary classification indicating whether the con-
versation is likely to result in negative publicity.

No Room upon check-in (NR). No room upon
check-in refers to determining whether a customer
has encountered a situation where there is no avail-
able room upon their arrival at the hotel. The input
is the customer’s historical conversations, and the
output is a binary classification. Depending on the
source of the input, which can be either from a
phone call or an online chat, no room upon check-
in is considered as two separate tasks. The source
of phone call is referred to as NR-A (Automatic
speech recognition), while the source of online chat
is referred to as NR-I (Instant messaging).

Hotel Shuttle (HS). Hotel shuttle is a binary clas-
sification task that determines whether a hotel pro-
vides shuttle service, where the input is the conver-
sation between the guest and the hotel.

Invoice and Deposit Matters (IDM). Invoice
and deposit issues matters is a binary classification
task. The input for this task is the conversation
between the guest and the output is a binary clas-
sification indicating whether the guest requires an
invoice or not.

Customer Service Quality Rating (CSQR).
Customer service quality rating task involves eval-
uating the caliber of service provided during cus-
tomer interactions. For this purpose, the input data
comprises historical conversations between cus-
tomer service agents and their clients. The task’s
output is categorized into four distinct levels, num-
bered from 1 to 4.

Scoring Extreme Emotion (SEE). Scoring ex-
treme emotion involves rating the level of customer
agitation based on the dialogues. The resulting
score ranges from 1 to 5, reflecting the intensity of
their emotional state.

Review Text Classification (RTC) is a multi-
label multi-class classification problem for catego-
rizing reviews, where the input is the multi-lingual
review texts and the output includes categories re-
lated to the review, such as hotel facilities, service
attitude, etc.

Car Services Classification (CSC). Car services
classification is a multi-label multi-class classifi-
cation task, where the input is the historical con-
versation of a customer when taking a taxi, and
the output is the categories of taxi-related issues
mentioned by the customer.

Email Categorization (EC). Email categoriza-
tion refers to classifying incoming emails based
on their content. By categorizing the emails, they
can be assigned to different business lines for pro-
cessing. This is a multi-classification task where
the input is the email content, and the output is the
category of the email.

Conversation Summarization (CS) . In the task
of conversation summarization, the input consists
of the historical dialogues between customer and
service agents, and the goal is to produce a concise
summary.

Taonomy Task Metrics |D|
Classification

Binary

RC-A acc. 17,059
RC-I acc. 6,056
UC-A acc. 1,950
UC-I acc. 8,624
PG-A acc. 2,341
PG-I acc. 2,108
ID acc. 6,884

CSA acc. 5,011
NR-A acc. 40,397
NR-I acc. 19,726
HS acc. 1,328

IDM acc. 1,200

Ordinal
CSQR acc. 2,489
SEE acc. 9,314

Multiclass
RTC acc. 8,447
CSC acc. 8,168
EC acc. 6,564

Generation
Summarization CS EM. 1,822

Table 8: Examples of different tasks. |D| refers to the
number of training instances.

D CLUE Taxonomy Impact

For our CLUE dataset, we divided them into two
combinations: single-sentence and sentence-pair
classification, binary and multi-class classifica-
tion. The single-sentence classification includes
the CWSC, TNEWS, and IFLYTEK tasks, while

493

Taxonomy Methods CWSC
(Accuracy)

TNEWS
(Accuracy)

CSL
(Accuracy)

AFQMC
(Accuracy)

IFLYTEK
(Accuracy)

OCNLI
(Accuracy)

Avg. Num. Overhead

- Single-task 71.69 60.16 83.54 74.12 58.31 86.52 72.39 6 100%

SS
Instance-balanced 70.96 60.42 87.16 74.03 59.13 82.38 72.34 4 50.0%

Class-balanced 73.16 59.60 87.40 74.63 59.44 83.64 72.97 5 33.3%
ours 73.14 60.18 87.49 74.32 59.92 83.41 73.08 5 33.3%

BM
Instance-balanced 68.01 60.06 87.10 74.31 59.29 84.79 72.25 4 50.0%

Class-balanced 73.16 60.10 86.46 70.86 59.60 84.18 72.39 4 50.0%
ours 72.97 59.91 86.44 73.79 59.90 84.01 72.83 5 33.3%

Table 9: Results on 6 tasks with different dividing strategy.

the sentence-pairs classification includes the OC-
NLI, CSL, and AFQMC tasks. The binary classi-
fication includes the CWSC, CSL, and AFQMC
tasks, and the multi-class classification includes
the TNEWS, OCNLI, and IFLYTEK tasks. We
refer to the division strategy of Single-sentence and
Sentence-pairs as "SS", and the division strategy of
Binary classification and Multi-class classification
as "BM".

We report the detailed performance of each task
in Table 9. As before, we also report the macro
average performance, the number of qualified tasks,
and the overhead. Since we have multiple models
for the same benchmark, the calculation method
for the "overhead" metric is slightly different from
the previous one; we calculate the "overhead" by
dividing 1 by the maximum number of qualified
tasks per model.

E Continual Pre-training

We continually pre-train the open-source founda-
tion model on pre-processed domain-specific cor-
pus. The following paragraphs illustrate the pre-
training process, covering data sourcing, data pro-
cessing, tokenization, and pre-training strategy.

Data sourcing. We have collected domain-
specific and general data, and mixed them together
to enhance the model’s general and domain-specific
knowledge. Specifically, in our domain, we collect
proprietary data such as customer service training
materials, introductions to tourist attractions and
businesses, and domain-related dialogues. Addi-
tionally, we also sample partial data from WuDao-
Corpora (Yuan et al., 2021) as general data to sup-
plement general knowledge. This produces an ap-
proximately 150 GB collection of the pre-training
corpus.

Data processing. We establish a comprehensive
data processing pipeline to enhance pre-training
data quality. This pipeline comprises four modules:
document-wise filtering, line-wise corrections, ex-

act deduplication, ML-based filtering, and fuzzy
deduplication. Figure 3 outlines the full data pro-
cessing pipeline. After cleaning the original data,
we obtain approximately 20 billion tokens of the
domain-specific corpus.

Figure 3: Pipeline of data processing.

Tokenization. We add more domain-specific
phrases as new tokens for faster training and in-
ference. We utilize the Byte-Pair Encoding (BPE)
algorithm implemented in Sentencepiece (Kudo
and Richardson, 2018) to train a domain-specific
tokenizer with a vocabulary size of 13,000. We
subsequently merge the domain-specific tokenizer
into the original tokenizer by taking the union
of their vocabularies. Specifically, the vocab-
ulary size of the tokenizer has increased from
125,696 to 127,008. The compression rate in our
domain-specific corpus has decreased from 0.6458
to 0.6104.

Pre-training strategy. We utilize the self-
supervised learning approach, i.e. causal language
modeling, to pre-train our model on the processed
corpus. Causal language models refer to mod-
els that are trained to predict the next word in
a sentence based on the preceding context, capa-
ble of capturing the causal relationships between
words and generating coherent text. For efficiency,
we utilize Megatron (Shoeybi et al., 2019) and
DeepSpeed (Rajbhandari et al., 2020) as founda-
tional frameworks, and have integrated flash atten-
tion (Dao et al., 2022).

494

F Few-shot Prompt

We conducted few-shot experiments in the 6 clas-
sification tasks, which are CWSC, TNEWS, IFLY-
TEK, CSL, AFQMC, and OCNLI. Specifically, we
design prompts tailored for each task, as shown in
Figures 4- 9.

Figure 4: Prompt for CWSC.

Figure 5: Prompt for TNEWS.

Figure 6: Prompt for IFLYTEK.

Figure 7: Prompt for CSL.

495

Figure 8: Prompt for AFQMC.

Figure 9: Prompt for OCNLI.

	Introduction
	Related Works
	Preliminaries
	Sampling Strategies
	Problem Setting

	Methodology
	Task Filter
	Filtered Task
	Unified Tasks

	Multi-task Fine-tuning

	Experiments
	CLUE Tasks
	Experiment Setup
	Main Results
	Taxonomy Impact

	Application Tasks
	Experiment Setup
	Application Results
	Taxonomy Impact

	Conclusion
	Experiment Setting
	CLUE Benchmark
	Application Tasks
	CLUE Taxonomy Impact
	Continual Pre-training
	Few-shot Prompt

