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Abstract

As large language models (LLMs) continue to
advance, aligning them with human preferences
has become a critical objective. In this paper,
we introduce stepwise DPO (sDPO), an inno-
vative extension of the recently popularized Di-
rect Preference Optimization (DPO) technique
for alignment tuning. sDPO systematically par-
titions the available preference datasets and
applies them incrementally, rather than utiliz-
ing the entire dataset simultaneously. This step-
wise manner enables the integration of progres-
sively more aligned reference models within
the DPO training framework. Our empirical re-
sults demonstrate that sDPO not only enhances
the alignment precision of reference models
but also significantly improves the overall per-
formance of the final model, surpassing other
prominent LLMs with larger parameter counts.

1 Introduction

Large language models (LLMs) have revolution-
ized the field of natural language processing (NLP)
by undergoing pre-training, supervised fine-tuning,
and alignment tuning, with the latter ensuring the
safety and usefulness of the model. Reinforcement
learning (RL) techniques (Christiano et al., 2017;
Bai et al., 2022), such as proximal policy optimiza-
tion (PPO) (Schulman et al., 2017), are generally
used in this alignment phase.

To address the complicated nature of RL in
LLM training, direct preference optimization
(DPO) (Rafailov et al., 2023) has been popularized
for its simplicity and effectiveness. DPO involves
curating preference datasets using human or strong
AI (e.g., GPT-4 (OpenAI, 2023)) judgement to se-
lect chosen and rejected responses from a pool of
multiple answers to a given question. Then, the
model being trained (i.e., target model) and a sepa-
rate reference model compute log probabilities of
chosen and rejected responses. Finally, the target
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Model Reference Model H4

Mistral-7B-OpenOrca N/A 65.84
Mistral-7B-OpenOrca + DPO SFT Base 68.87
Mistral-7B-OpenOrca + DPO SOLAR-0-70B 67.86
Mistral-7B-OpenOrca + DPO Intel-7B-DPO 70.13

OpenHermes-2.5-Mistral-7B N/A 66.10
OpenHermes-2.5-Mistral-7B + DPO SFT Base 68.41
OpenHermes-2.5-Mistral-7B + DPO SOLAR-0-70B 68.90
OpenHermes-2.5-Mistral-7B + DPO Intel-7B-DPO 69.72

Table 1: DPO results in terms of H4 scores for Mistral-
7B-OpenOrca and OpenHermes-2.5-Mistral-7B with
different reference models. The best results for each
SFT base model are shown in bold.

model is trained by maximizing the difference of
the log probability ratios of the target and the refer-
ence models for the chosen and rejected answers.
However, obtaining these probabilities can be chal-
lenging if one wants to use proprietary models like
GPT-4 as the reference model, since they do not
offer log probabilities for inputs.

Thus, in practice, the reference model is simply
set as the base SFT model (Tunstall et al., 2023;
Intel, 2023b; Ivison et al., 2023), which is a much
weaker alternative with potentially misaligned pref-
erences. Through Eq. 1, we show that the reference
model acts as a lower bound in DPO, i.e., the target
model is optimized to be at least as aligned as the
reference model. Thus, we argue that a reference
model that is already more aligned will serve as a
better lower bound for DPO training, which would
be beneficial for the alignment tuning. One option
would be to utilize the plethora of open source mod-
els (Tunstall et al., 2023; Ivison et al., 2023) that
have already undergone alignment tuning.

Note that the above approach may not be fea-
sible due to the absence of such aligned models,
or the fact that it renounces control over the refer-
ence model, which could lead to safety concerns.
Instead, we propose ‘stepwise DPO’, named sDPO,
where we use the preference datasets (or subsets
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Figure 1: Overview of sDPO where preference datasets are divided to be used in multiple steps. The aligned model
from the previous step is used as the reference and target models for the current step. The reference model is used to
calculate the log probabilities and the target model is trained using the preference loss of DPO at each step.

of a preference dataset) in a step-by-step manner
rather than all at once when undergoing DPO train-
ing. The aligned model in the previous step is used
as the reference model for the current step, which
results in utilizing a more aligned reference model
(i.e., a better lower bound). Empirically, we show
that using sDPO results in a more performant final
aligned model as well.

While concurrent works (Yuan et al., 2024) that
focus on an iterative pipeline of generating new
preference data have been proposed, our method
focuses on utilizing the currently available prefer-
ence datasets. Thus, our approach is complemen-
tary as sDPO can be easily applied to any prefer-
ence data and further combination with concurrent
works would be an exciting future direction.

2 Related Work

2.1 Large Language Models

Recent research has highlighted a "scaling law" in
the field of context-based language models (Ka-
plan et al., 2020; Hernandez et al., 2021; Anil et al.,
2023), showing a proportional relationship between
the size of the model plus the training data and
the resulting performance improvements. Conse-
quently, this has led to the advent of LLMs. In
contrast to earlier models, LLMs can perform in-
context learning, which includes abilities such as
zero-shot learning (Radford et al., 2019) and few-
shot learning (Brown et al., 2020), allowing them
to adapt and perform tasks without the need for
weight adjustments. These emergent abilities of
LLMs, absent in their smaller counterparts, signal
a significant evolution in language model capabili-
ties (Wei et al., 2022).

2.2 Alignment Tuning

LLMs have been recognized to produce text that
may seem linguistically inconsistent to human in-
terpreters because their pretraining is based not
on an understanding of human intentions but on
a broad spectrum of domain-specific knowledge,
as indicated in (Ziegler et al., 2019). In an effort
to rectify this issue and better mirror human in-
tentions, prior research (Ziegler et al., 2019) has
suggested the adoption of Reinforcement Learning
with Human Feedback (RLHF). RLHF seeks to
refine the LLM’s output by constructing a reward
model that aligns with human preferences and ap-
plying reinforcement learning to direct the LLM
towards selections that garner the most favorable
reward metrics. This approach is intended to bol-
ster the safety, decorum, and general excellence
of the responses produced by the LLM. Nonethe-
less, despite showing promising results, RLHF is
confronted with challenges, such as the intricate
handling of an extensive set of hyperparameters
and the necessity to amalgamate several models
(policy, value, reward, and reference models).

To address these issues, there have been pro-
posals for supervised fine-tuning methodologies
such as RRHF (Yuan et al., 2023), RAFT (Dong
et al., 2023), and DPO (Rafailov et al., 2023). These
methods circumvent the intricacies inherent in re-
inforcement learning and have been shown to yield
empirical results on par with RLHF. Notably, the
DPO technique straightforwardly encourages the
LLM to favor positive responses and discourage
negative ones. DPO has been observed to yield
performant learning outcomes, in spite of its un-
complicated training procedure.

Concurrent to our work, Yuan et al. (2024)
have developed an iterative framework for gen-
erating new preference datasets and performing
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DPO training on the resulting datasets. They em-
pirically demonstrated the superiority of their it-
erative framework in terms of AlpacaEval 2.0. In
contrast, our work is complementary to the above
in the sense that we focus on utilizing the current
preference data and does not undergo new data gen-
eration. Thus, our method can also be applied to
Yuan et al. (2024) by changing the DPO training
part to using sDPO instead. Additionally, the eval-
uation used in Yuan et al. (2024) is also different
to ours as we utilize tasks from Open LLM Leader-
board (Beeching et al., 2023), EQ Bench (Paech,
2023) and MT Bench (Zheng et al., 2023) whereas
Yuan et al. (2024) uses AlpacaEval 2.0.

3 Methodology

3.1 Preliminary Investigation on Reference
Models

To gauge the importance of using a well-aligned
reference model in DPO, we perform preliminary
experiments of DPO training with the Ultrafeed-
back dataset (Cui et al., 2023) on Mistral-7B-
OpenOrca (Lian et al., 2023) and OpenHermes-
2.5-Mistral-7B (Teknium, 2023) as the SFT base
model, owing to their excellent performance and
small size. We compare the following reference
models: i) the SFT base model itself, same as the
conventional DPO setup; ii) SOLAR-0-70B (Up-
stage, 2023), a larger and much more performant
model; and iii) Intel-7B-DPO (Intel, 2023a), an
already aligned reference model. The results are
summarized in Table 1.

As the table shows, using Intel-7B-DPO as the
reference model results in the best performance,
even better than using SOLAR-0-70B, which is a
much larger and performant model. Thus, whether
the reference model is pre-aligned or not plays an
important role in the resulting aligned model’s per-
formance. Unfortunately, it is not always possible
to use an open sourced pre-aligned model as the ref-
erence model due to technical and safety concerns.
For instance, such a model may not exist yet or can
be susceptible to various domain-specific harmful-
ness and fairness criteria along with potential data
contamination issues. To circumvent the above, we
propose sDPO, which does not require an external
pre-aligned model but uses more aligned reference
models, built from the SFT base model, as a part
of the training framework.

3.2 Stepwise DPO
In sDPO, we propose to use the available prefer-
ence datasets in a stepwise manner instead of using
them all at once. Essentially, we partition the prefer-
ence data into T chunks and perform DPO training
T times. The trained model from the previous step
is used as the reference and target models, which
means that each of the T DPO training steps func-
tion in a similar manner to the conventional DPO
setup. In doing so, we create and utilize interme-
diary reference models that are more aligned than
those that are used in conventional DPO. The com-
parison of the overall flow of DPO and sDPO is
presented in Figure 1.

Reference model. The reference model is used
to calculate the log probabilities of the preference
dataset. For each step, only a subset of the total
data is used and the reference model is initialized
as Mt−1, i.e, the aligned model from the previous
step. The initial reference model is set as S, the SFT
base model. This results in using a more aligned
reference model than conventional DPO.

Target model. For t > 1, the target model which
is trained using the preference loss of DPO in each
step of sDPO is also initialized as Mt−1 instead
of S. This ensures that the final model trained
with sDPO has been directly trained with the same
amount data as a model trained with DPO.

Mathematical explanation. To gain a deeper un-
derstanding of sDPO, we rearrange the DPO loss
from (Rafailov et al., 2023), as follows:

LDPO(πθ, πref )

= −E(x,yw,yl)∼D

[
log σ

(
β log

πθ(yw|x)
πref (yw|x)

− β log
πθ(yl|x)
πref (yl|x)

)]
= −E(x,yw,yl)∼D

[
log σ

(
β · (γπθ

(x, yw, yl)− γπref
(x, yw, yl)

)]
,

(1)

where D is the preference dataset, x is the ques-
tion, yw and yl are the chosen and rejected answers
respectively, θ is the learnable parameters of the
model, and γπ(x, yw, yl) = log π(yw|x)

π(yl|x) , i.e., the
logratio of the chosen and rejected samples w.r.t.
the policy π. As log σ(·) is a monotonically in-
creasing function and γπref

is fixed before train-
ing, the minimization of LDPO(πθ, πref ) leads to
γπθ

> γπref
on average. Thus, γπref

can be under-
stood as a lower bound defined by the reference
model, of which the target model is trained such
that γπθ

> γπref
. In sDPO, γπref

increases as the
steps progress because the reference model that
defines it is more and more aligned. Hence, γπref

becomes a stricter lower bound as the steps pass,
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Model Size Type H4 (Avg.) ARC HellaSwag MMLU TruthfulQA

SOLAR 10.7B + SFT + sDPO ∼ 11B Alignment-tuned 74.31 71.33 88.08 65.39 72.45
SOLAR 10.7B + SFT + DPO ∼ 11B Alignment-tuned 72.67 69.62 87.16 66.00 67.90

Mixtral 8x7B-Instruct-v0.1 ∼ 47B Alignment-tuned 73.40 70.22 87.63 71.16 64.58
SOLAR-0-70B-16bit ∼ 70B Instruction-tuned 72.93 71.08 87.89 70.58 62.25
Qwen 72B ∼ 72B Pretrained 72.17 65.19 85.94 77.37 60.19
Yi 34B ∼ 34B Pretrained 70.72 64.59 85.69 76.35 56.23
SOLAR 10.7B + SFT ∼ 11B Instruction-tuned 69.51 67.32 85.96 65.95 58.80
Mistral 7B-Instruct-v0.2 ∼ 7B Instruction-tuned 69.27 63.14 84.88 60.78 68.26
Falcon 180B ∼ 180B Pretrained 68.57 69.45 88.86 70.50 45.47
Mixtral 8x7B-v0.1 ∼ 47B Pretrained 67.78 66.04 86.49 71.82 46.78
Llama 2 70B ∼ 70B Pretrained 67.35 67.32 87.33 69.83 44.92
Zephyr ∼ 7B Alignment-tuned 66.36 62.03 84.52 61.44 57.44
Qwen 14B ∼ 14B Pretrained 64.85 58.28 83.99 67.70 49.43
SOLAR 10.7B ∼ 11B Pretrained 64.27 61.95 84.60 65.48 45.04
Mistral 7B ∼ 7B Pretrained 62.40 59.98 83.31 64.16 42.15

Table 2: Performance comparison of applying sDPO or DPO to SOLAR 10.7B + SFT against various top performing
models. Size is shown in units of billions of parameters and type is reported as one of {‘Pretrained’, ‘Instruction-
tuned’, ‘Alignment-tuned’}. Models based on SOLAR 10.7B are shown in purple color. The best scores in each
column are shown in bold.

inducing a curriculum learning from easy to hard
optimization tasks. Thus, the target model is be-
ing trained to learn stricter preferences as the steps
progress in sDPO.

Data partitioning strategy. The method for par-
titioning the preference data into T chunks is also
important in sDPO. One option would be to pool
all the data from different dataset sources and per-
form random sampling. However, we argue that
partitioning the data such that earlier chunks are
comprised of easier preference data would be more
aligned with inducing a curriculum learning of easy
to hard optimization in sDPO.

To that end, we propose to use easy-to-hard data
partitioning by the following method. Using M0,
the initial target model, we calculate the reward ac-
curacy, i.e., the percentage of samples in which
the target model scores higher rewards for pre-
ferred samples, for the different dataset sources.
The dataset sources are sorted in descending order
of the reward accuracy, which are then used as the
T chunks in sDPO. Thus, if we have N dataset
sources, we would have a total of N chunks, where
earlier chunks would contain easier samples as mea-
sured by the reward accuracy.

4 Experiments

4.1 Experimental Setup
Training details. We use a supervised fine-tuned
SOLAR 10.7B (Kim et al., 2023) as our SFT base
model S as it delivers excellent performance with
its uncommon yet relatively small 10.7B size. Note
that we do not need a separate reference model as it

is initialized as Mt−1, the final trained model from
the previous step. We use OpenOrca (Mukherjee
et al., 2023) (∼ 12K samples) and Ultrafeedback
Cleaned (∼ 60K samples) (Cui et al., 2023; Ivi-
son et al., 2023) as our preference datasets. The
training hyper-parameters follow that of Tunstall
et al. (2023). Using the easy-to-hard partitioning,
we use OpenOrca as dataset D1 and Ultrafeedback
Cleaned as dataset D2.

Evaluation. We mainly utilize four log-
probability tasks in the HuggingFace Open LLM
Leaderboard (Beeching et al., 2023): ARC (Clark
et al., 2018), HellaSWAG (Zellers et al., 2019),
MMLU (Hendrycks et al., 2020), TruthfulQA (Lin
et al., 2022). We also report the average scores for
the four tasks, which is denoted as H4. Note that
these tasks do not require the model to actually
generate a new answer to the question. Rather,
the log-probability of a pre-defined answer is
measured instead.

To augment the above potential downside of log-
probability benchmarks, we also incorporate gener-
ation benchmarks such as EQ Bench (Paech, 2023)
and MT Bench (Zheng et al., 2023), where a model
is prompted to generate an answer to a question. As
such, MT Bench and EQ Bench both strongly cor-
relate with the Chatbot Arena ELO (Zheng et al.,
2023; Chiang et al., 2024), one of the most widely
recognized open-world LLM evaluation system.

4.2 Main Results

Evaluation results for applying sDPO to the SFT
base model, along with results for other top-
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Figure 2: Mean γπref
on Ultrafeedback Cleaned dataset

for different reference models S,M1, and M2. Note that
the x-axis is in log scale.

performing models are shown in Table 2. Applying
sDPO on SOLAR 10.7B + SFT further increases
the H4 score to 74.31, an improvement of +4.80.
Notably, ‘SOLAR 10.7B + SFT + sDPO’ outper-
forms other larger models such as Mixtral 8x7B-
Instruct-v0.1, despite the smaller number of param-
eters. This highlights that effective alignment tun-
ing could be the key to unlocking next level perfor-
mance for smaller LLMs. Further, applying sDPO
results in substantially higher score of 72.45 for
TruthfulQA, which demonstrates the effectiveness
of the alignment tuning process. We also present
additional results in Table 4 of Section 4.7 on the
EQ Bench (Paech, 2023), which is a generation
task with high correlation with the Chatbot Arena
ELO (Zheng et al., 2023). The additional results
indicate the superiority of sDPO over DPO in im-
proving generation task performance as well.

4.3 Ablation Studies Against DPO

We also report evaluation results for ablating sDPO
with traditional DPO in Table 2. ‘SOLAR 10.7B
+ SFT + DPO’ uses all the DPO data at once, i.e.,
D1 +D2, same as the conventional DPO training
setup.

We can see that using sDPO over DPO results
in a higher H4 score overall, with noticeable im-
provements in ARC and TruthfulQA scores. There-
fore, we believe sDPO could function as a drop-in
replacement for DPO training with better perfor-
mance.

4.4 Reference Models in sDPO

Effectiveness of sDPO in terms of alignment tun-
ing. In Sec. 3.2, we explain that the reference
models in sDPO are more aligned, resulting in
higher γπref

, i.e., a stricter lower bound. We verify
the above empirically in Figure 2 by comparing the
mean γπref

on the Ultrafeedback Cleaned dataset
for the reference models in steps 1 and 2 of sDPO,
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Figure 3: Loss curve comparison in step 2 of sDPO for
different initializations of the target model.

i.e., S and M1. Note that these two models have not
been trained on the aforementioned dataset. Using
the SFT base model S as the reference model, the
mean of γπref

is −38.60. On the other hand, using
the aligned model M1 from step 1 of sDPO as the
reference model, the mean of γπref

is −25.10, an
increase of 13.50 in log scale. Thus, a single step
of sDPO greatly increases γπref

, which results in a
more performant aligned model as seen in Table 2.

Adopting open source models as reference mod-
els could be dangerous. We also show mean
γπref

of M2, the aligned model from step 2 of
sDPO. Unlike S and M1, M2 is trained on the
Ultrafeedback Cleaned dataset, i.e., M2 is used as
a reference model on data that was already used to
train it. Note that such a case could happen com-
monly when adopting various open source models
as reference models. This is because the datasets
that were used in training those models are often un-
clear and could overlap with the preference datasets
unintentionally. Mean γπref

of M2 is 84.35, which
is staggeringly higher than either S or M1. The
strikingly high value for M2 likely points to over-
fitting of M2 to the Ultrafeedback Cleaned dataset.
Note that utilizing such an absurdly high value
of γπref

as the lower bound in DPO training may
be undesirable. This result highlights the potential
danger of merely adopting open source models as
reference models instead of using sDPO.

4.5 Target Model Initialization in sDPO

One option for target model initialization in sDPO
is to use S, the initial SFT base model, for all
steps. However, such initialization results in the
final model trained with sDPO seeing less data
than using DPO instead. Further, the target model
and the reference model become more and more
different as the steps progress, which is a deviation
from the original DPO setup and risks losing the
theoretical benefits of DPO.



371

Model H4 (Avg.) ARC HellaSwag MMLU TruthfulQA

SOLAR 10.7B + SFT + sDPO 74.31 71.33 88.08 65.39 72.45
SOLAR 10.7B + SFT + sDPO Rand. 72.56 69.20 87.27 65.96 67.81

Table 3: Comparison between the easy-to-hard and random partitioning strategies. ‘SOLAR 10.7B + SFT + sDPO’
uses the easy-to-hard partitioning whereas ‘SOLAR 10.7B + SFT + sDPO Rand.’ denotes sDPO with random
partitioning instead. Easy-to-hard partitioning is better than random partitioning. The best scores are shown in bold.

Model EQ Bench MT Bench

SOLAR 10.7B + SFT + sDPO 68.83 7.43
SOLAR 10.7B + SFT + DPO 61.02 7.35

SOLAR 10.7B + SFT 60.48 7.14

Table 4: Additional results on EQ Bench (Paech, 2023)
and MT Bench (Zheng et al., 2023), both of which are
generation tasks that highly correlate with the Chatbot
Arena ELO (Zheng et al., 2023; Chiang et al., 2024).
The best scores for both benchmarks are shown in bold.

To concretely investigate such potential issues,
we visualize the loss curves for initializing the tar-
get model as S in Figure 3. We observe that the
initial loss value is much higher when compared
to initializing the target model as Mt−1, i.e., the
same as the reference model and adhering to the
DPO convention. As using Mt−1 the target model
means that each step of sDPO is using the same
setup as DPO, the loss curves are much more stable
and desirable. Thus, for stable training, initializing
the target model as Mt−1 was chosen for sDPO.

4.6 Easy-to-Hard Data Partitioning
The effectiveness of the easy-to-hard data parti-
tioning used in sDPO is demonstrated in Table 3.
Note that we use OpenOrca as D1 and Ultrafeed-
back Cleaned as D2. As ‘SOLAR 10.7B + SFT +
sDPO’, which uses the easy-to-hard partitioning,
is more performant than‘SOLAR 10.7B + SFT +
sDPO Rand.’, which uses random partitioning, the
proposed easy-to-hard data partitioning is more
effective for sDPO.

4.7 Additional Results on Generation Tasks
In Table 4, we also report results for EQ
Bench (Paech, 2023) and MT Bench (Zheng et al.,
2023) for the SFT base model and the models ob-
tained by applying DPO and sDPO on the SFT base
model.

For EQ Bench, we use the version without the re-
vision prompt. We note that the EQ Bench requires
the models to generate an answer that can be parsed
with a pre-defined template for evaluation, which

could be said to measure distinct capabilities of
LLMs from the log-probability benchmarks shown
in Table 2. While applying DPO only mildly im-
proves the performance from the SFT base model,
applying sDPO improves the performance signifi-
cantly by over +8%, indicating the effectivenss in
which sDPO improves the generation capabilities
compared to DPO.

As for MT Bench, we note that using sDPO
achieves the best score of 7.43 amongst the com-
pared models. Notably, applying sDPO to the SFT
base model improves the MT Bench score by a non-
trivial margin of +0.29. Applying DPO to the SFT
base model also improves the MT Bench score, but
not by more than that of applying sDPO.

5 Conclusion

We propose sDPO, an extension of DPO for align-
ing LLMs. Unlike traditional DPO, sDPO em-
ploys a stepwise approach, using subsets of pref-
erence data sequentially. This method leverages
the aligned model from the previous step as the
reference for the current step, ensuring progres-
sively better alignment. Our experiments demon-
strate that sDPO significantly outperforms conven-
tional DPO in terms of both log-probability bench-
marks such as ARC, HellaSWAG, MMLU, and
TruthfulQA, as well as generation benchmarks such
as EQ Bench and MT Bench. Additionally, sDPO
enhances model alignment, as indicated by higher
mean γπref

values, showing improved alignment
with human preferences. The stepwise nature of
sDPO simplifies the training process and aligns
with curriculum learning principles, facilitating
a structured optimization path. By using existing
preference datasets more effectively, sDPO results
in higher performance and better-aligned language
models. This approach has the potential to trans-
form alignment tuning, offering a robust framework
for future research in LLMs.
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Limitations

While we have demonstrated the effectiveness of
employing easy-to-hard data partitioning of differ-
ent datasets in distinct stages of sDPO, identifying
a more performant strategy for segmenting more in-
tricate preference data collections remains an area
for further exploration.

Furthermore, our experiments predominantly uti-
lized SOLAR 10.7B models, driven by the state-
of-the-art performance at the time of experimen-
tation along with its relatively 10.7 billion param-
eter size. Although as SOLAR 10.7B models are
also based on the Llama-2 architecture with our
results likely to transfer to other similar decoder
only transformer models, more experiments using
other models would be beneficial.

Additionally, as with most research on LLMs,
we operated within our limitations in computa-
tional resources. Although this focus has yielded
significant insights, expanding our experimental
framework to incorporate a broader range of Large
Language Models (LLMs) could potentially unveil
more comprehensive understanding of the strengths
and limitations of sDPO. Such an expansion would
allow for a more robust comparison across different
model architectures and sizes, further enriching our
findings.

Evaluating the efficacy of LLMs is an evolving
challenge in the field. In our study, we primarily
employed tasks from the Huggingface Open LLM
Leaderboard as benchmarks for evaluation along
with EQ Bench and MT Bench. While this pro-
vided comparative results, future research could
benefit from incorporating a wider array of tasks
and benchmarks. These could include tasks that
judge actual human or strong AI preference align-
ment. Such additional evaluation would not only
enhance the validity of our findings but also con-
tribute to the broader discourse on LLM assessment
methodologies.

Ethics Statement

In this study, we strictly adhered to ethical stan-
dards in the conduct of our research. Our exper-
iments were based entirely on open models and
open datasets, ensuring transparency and accessi-
bility. We took meticulous care to avoid any biases
or data contamination, thereby maintaining the in-
tegrity of our research process. The experimental
environment was rigorously designed to be objec-
tive, ensuring that all comparisons conducted were

fair and impartial. This approach reinforces the re-
liability and validity of our findings, contributing
positively to the field while upholding the highest
ethical standards. We confirmed that all the data
used in our experiments were free of licensing is-
sues.
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