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Abstract

Using tools by Large Language Models (LLMs)
is a promising avenue to extend their reach
beyond language or conversational settings.
The number of tools can scale to thousands
as they enable accessing sensory information,
fetching updated factual knowledge, or tak-
ing actions in the real world. In such set-
tings, in-context learning by providing a short
list of relevant tools in the prompt is a vi-
able approach. To retrieve relevant tools, var-
ious approaches have been suggested, rang-
ing from simple frequency-based matching
to dense embedding-based semantic retrieval.
However, such approaches lack the contextual
and common-sense understanding required to
retrieve the right tools for complex user re-
quests. Rather than increasing the complexity
of the retrieval component itself, we propose
leveraging LLM understanding to generate a
retrieval query. Then, the generated query is
embedded and used to find the most relevant
tools via a nearest-neighbor search. We inves-
tigate three approaches for query generation:
zero-shot prompting, supervised fine-tuning on
tool descriptions, and alignment learning by it-
eratively optimizing a reward metric measuring
retrieval performance. By conducting extensive
experiments on a dataset covering complex and
multi-tool scenarios, we show that leveraging
LLMs for query generation improves the re-
trieval for in-domain (seen tools) and out-of-
domain (unseen tools) settings.

1 Introduction

Large Language Models (LLMs) have shown great
promise in common sense language understand-
ing, conversational fluency, and reasoning (Bubeck
et al., 2023). Recently, various studies explored
extending such capability beyond language or con-
versational medium to leveraging it for using tools
that are often accessible via Application Program-
ming Interfaces (APIs) (Patil et al., 2023; Qin et al.,
2023a,b; Li et al., 2023a).
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To introduce the tool use capability when dealing
with a large number of APIs, in-context learning
(ICL) provides a scalable method by presenting a
set of available tools within the prompt context, and
using the LL.M for making the final API selection
and argument filling (Hudecek and Dusek, 2023).
In such settings, due to prompt length and compute
limitations, retrieving a short list of relevant APIs
(typically less than 10) from the pool of thousands
of APIs to present in the context is a key step in
the pipeline. The set of retrieved APIs needs to be
high-recall, i.e. it should include all APIs required
for accomplishing the desired goal.

Various retrieval methods have been used for
such task, including bag-of-words and frequency-
based methods such as BM25 and TF-IDF that
are easy to implement and computationally ef-
ficient but lack semantic understanding. Alter-
natively, embedding-based dense retrievers are
generally based on sentence embeddings (e.g.,
SBERT (Reimers and Gurevych, 2019)) and near-
est neighbor search (e.g., cosine similarity) (Izac-
ard et al., 2021; Johnson et al., 2019; Yates et al.,
2021). In the typical dense retrieval setting, an
index is built on API descriptions provided by de-
velopers as keys, and the user’s utterance is used as
the query. The key and queries can be embedded
with a common encoder or separate encoders (aka
dual encoders) (Zhao et al., 2022).

While embedding-based retrieval methods are
more robust to language variations than frequency-
based methods, they still lack contextual and
common-sense understanding compared to the
state-of-the-art LLMs. Moreover, simply relying
on nearest neighbor matching is susceptible to get-
ting mislead by extra information present in the
utterance, especially for cases that require under-
standing the user’s intention, tools, and ambiguities
present in real-world interactions.

In this study, we propose leveraging LLMs to
dynamically generate tool retrieval queries based
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on the user’s utterance, where each query describes
a tool required to accomplish the request. Then,
such queries are used for dense retrieval. Our ap-
proach relies on the common-sense and contextual
understanding of LLMs rather than increasing the
complexities of the retrieval components.

The idea of using LLMs to improve retrieval
has been studied in the literature before. For ex-
ample, using LLMs to generate augmentation data
for enriching the retrieval index (Chowdhury et al.,
2022). Alternatively, to improve the embedding
models feedback from LLMs attention to the re-
trieved items is used to generate supervision signal
to train stronger embeddings for the downstream
task (Rubin et al., 2021; Li et al., 2023b). While
these methods offer advantages over vanilla dense
retrieval, the outcome is a more complex retrieval
layer that still cannot match the commonsense un-
derstanding of LLMs. Instead, in this paper, we
focus on leveraging the LLM’s capability and ex-
plore zero-shot prompting, supervised fine-tuning,
and alignment learning approaches. Based on the
experimental results, LLM-generated queries sub-
stantially improve tool retrieval in settings where
a dataset of tools is available at the training time
(in-domain) and when interacting with unseen tools
(out-of-domain).

2 Problem Settings
2.1 API Retrieval

A basic embedding-based dense retriever consists
of two main components: (a) an embedding model
to map natural language to fixed-length vector rep-
resentations, and (b) an index retrieval mechanism
to get the most similar items given a new sample.
For the case of API retrieval, typically, developers
provide the description of their API in natural lan-
guage which can be used to generate index keys.
A user’s utterance can be directly considered as a
semantic retrieval query.

Alternatively, to handle complex/contextual
cases, LLM’s capability to understand the conver-
sational context can be leveraged to decompose
requests and generate queries that are most suited
for retrieval. Figure 1 shows an example flow for
the query-based API retrieval. Here, the LLM rea-
sons over the request and creates queries to be used
for retrieval. Ultimately, the retrieved APIs are
presented to the LLM to plan the next actions.

In this paper, we consider the problem of retriev-
ing APIs for complex requests. A complex request

30

requires a higher level of common-sense and se-
mantic understanding than what is achievable via
simple dense retrieval. Complex requests are of-
ten ambiguous or involve invoking multiple APIs.
For example, take “I’m bored and tired of staying
home. Literally watched tv all day. Give me some
ideas what to do”. In this example, a potential so-
lution is to retrieve a list of APIs that are related to
outdoor activities; however, simple dense retrieval
may retrieve APIs for watching TV shows!

More formally, for a given user utterance, the
tool retriever’s task is to propose a ranked list of
APIs, where the size of the list is denoted by |h| =
k. Also, when available, we are provided with a
ground-truth set of relevant APIs |y| = n where n
(1 < n < k) is the total number of relevant items
for the specific sample.

2.2 Retrieval Metrics

To evaluate the relevance of the retrieved results,
we define three primary metrics: Recall at rank
X (Recall@X), Multiple Mean Reciprocal Rank
(M M RR), and Mean Average Precision (M AP).

Assuming I'(h;, y) is an indicator function that
is set to one if h; is in the set of relevant items (y)
and zero otherwise, we define Recall@X as:

1 X
RecallQX = — x I'(h;,y) . (1)
RPN
Here, Recall@X is reporting for a cut-off at
X, what percentage of relevant items would be
retrieved in the set of retrieved items.
We introduce Multiple Mean Reciprocal Rank
(M M RR) as a generalization of the Mean Recip-
rocal Rank (Radev et al., 2002) to consider cases

with multiple relevant items are present:
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The numerator of (2) is the average rank position
for perfect retrieval of n items. In the denominator,
we compute average rank position for retrieved
relevant items while clipping the tail by considering
any missing item in the set of k retrieved items to
appear at rank k+1. Intuitively, M M R R measures
the average rank where the relevant items appear in
the ranked list normalized by the best case where all
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Figure 1: An illustration of leveraging LLMs commonsense and contextual understanding to generate queries for
tool retrieval. The steps before and after retrieval are similar to a typical in-context learning setup not shown here.

top results are relevant items. With this definition,
M RRR reaches to one for perfect retrieval of all
relevant items and is gradually reduced when the
retrieval quality degrades.

Mean Average Precision (M AP) is defined
based on computing a finite sum of precision for
the ranked list at each position (Zhu, 2004):
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where the first term in the outer summation is preci-
sion at rank i. M AP for perfect ranking takes the
value of one, gets smaller values as relevant items
appear further in the retrieved list, and reaches zero

when no relevant item is retrieved.
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3 LLM-Based Query Generation

In this section, we explore three approaches to
leverage LLMs for retrieval query generation
including zero-shot prompting, supervised fine-
tuning for API description generation, and align-
ment learning for optimizing the end-to-end re-
trieval performance. We provide additional details
about the implementation, hyper-parameters selec-
tion, and ablation studies in the appendices.

3.1 Zero-Shot Prompting

As a simple baseline, we prompt the 13B parameter
LLaMA (Touvron et al., 2023) model to generate a
description of tools required to address the user’s
request. We consider this method as zero-shot since
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Given a request by user (Human), generate the
description of an API(s) that can be used to
address the request.
Try to decompose the request to a set of
descriptions for API(s) that can help handle
the request.
Do NOT respond to the Human and just describe
the API(s) that can help.
to
Each
be less than 20 words.

Use new line separate multiple

descriptions. description should
Return at most 5 descriptions (lines).

Do not provide any additional explanation
or return set of API

examples, just a

descriptions.

Human: <user request>
Answer:

Figure 2: Prompt format used for the tool description
generation experiments.

there is no use of API information or task supervi-
sion therefore it can be directly applied to unseen
APIs. Figure 2 shows the prompt template used for
this method.

In our early experiments with simpler prompts,
we observed that the pre-trained model is inclined
to attempt answer the Human directly rather than
following the query generation task. We were able
to mitigate this type of hallucination to some extent
by emphasizing “Do NOT respond to the Human



and just describe the API(s) that can help” in the
final prompt shared above.

Additionally, we found that in many cases the
generated response is formatted differently than
what is expected. For example, the output is for-
matted as a numbered list, or additional information
is provided before (e.g. “Sure, I can...”) and after
(e.g. “These APIs...”) the list output. To address
these, we devised a set of heuristics in the output
parser logic to skip invalid starting characters in
the list and explanatory phrases outside the list to
ensure that the right outputs are captured.

Since intent classification has been tradition-
ally used in dialogue systems for skill selec-
tion (Kachuee et al., 2022), we also conducted addi-
tional experiments instructing the LLM to generate
a list of user intents rather than describing the re-
quired APIs. Note that intents provide a different
abstraction of user requests than tools. In general,
an intent can be potentially served by multiple tools
or a tool can handle multiple intents. While the in-
tent generation method shows marginal regressions
over the tool description generation method, we
found it it be less inclined to hallucination. See
Appendix C for more details.

3.2 Supervised fine-tuning

To address the challenges of zero-shot prompt-
ing, and assuming we have a dataset of user ut-
terances paired with relevant API documents, we
can finetune the model for the query generation
task. Specifically, we reused the prompt template
from zero-shot experiments and considered the list
of ground-truth relevant API descriptions as the
generation target label.

Based on our initial experiments, we found that
keeping the instruction prompt, limiting training to
one epoch with weight decay regularization, and
only computing the loss for generated tokens im-
proved convergence and reduced overfitting.

3.3 Alignment Learning

While supervised fine-tuning alleviates the is-
sues with hallucination and output inconsistency,
teacher forcing (i.e., training objective enforcing
generated sequence to match the target sequence)
to regenerate descriptions for a specific training
dataset may result in overfitting on the seen set of
examples and APIs. This causes unreliable behav-
iors for APIs that are not seen during the training
process. Note that training on a specific set of APIs
may teach the LLM to try to match the current set
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Algorithm 1: Alignment Learning Process
input

:training requests and relevant APIs (X Y),
pretrained LLM weights (6p), number of
stochastic generations (7m), minimum draft
reward (rmqn), top reward percentile
threshold (P%p), number of top drafts to
keep per sample (ngraft)

output : the final trained model (61)

/* for each alignment iteration
fortinl...T do

/* generate queries for the train

dataset, sample m times

*/

*/

Tt generate_queries(X, 6;—1,m)
/* use queries in retrieval and
compute rewards */

R; + compute_rewards(X, Z1..m, Y)
/* filter on min reward and
top-percentile

Xy, Zy

ﬁlter_samples(X, Z1 ..my Rt7 T'min, Ptop, ndra,ft)

*/

/* supevised fine-tuning on filtered
generations
0: < supervised_fine-tuning(X¢, Z¢, 0:—1)

*/

end

of APIs for any new request, regardless of the avail-
ability of additional tools at the time of inference.

Apart from this, the API descriptions are typi-
cally provided by individual developers, often do
not follow any strict format/content protocol, and
may contain extra/irrelevant information. This can
potentially bias the finetuned model and mislead
the retrieval process. In other words, even perfectly
generating a list of API descriptions does not nec-
essarily result in a desirable behavior in terms of
relevant API retrieval, especially when targeting
out-of-domain applications.

To address these issues, we devise an alignment
training scheme based on rejection sampling (Bai
et al., 2022) to teach LLM to generate queries that
result in the best retrieval performance. Rather
than directly forcing the model to generate a par-
ticular target sequence, we define a reward metric
measured based on the downstream retrieval per-
formance, and then encourage high-reward genera-
tions in an iterative alignment learning loop.

Algorithm 1 shows an overview of this process.
We start from a pre-trained LLM, then for T align-
ment iterations, use the model from the most recent
iteration to generate a set of m queries (21“,”) for
each training sample and relevant API pair (X, Y).
To generate such queries given the most recent
iteration of the model 6;_1, we use stochastic gen-
eration to promote diversity among the generated
drafts. Then, we simulate retrieval of items in the



train set using the generated queries in 21”,71 and
compute retrieval reward for all samples. A simple
filter is applied on the reward values to only keep
the top n4yq ¢ generated query sets (drafts) with the
highest rewards , and subsequently remove any re-
maining draft that has a reward value less than 7,,,;,,
or falls outside the py,, percentile of the popula-
tion. Finally, we finetune the model on the filtered
samples i.e. request and generated queries using
similar settings as in Supervised fine-tuning. This
process is repeated T times to iteratively improve
the model’s capability to generate better queries.

Regarding the reward metric, we experimented
with MMRR, MAP, and average recall. While the
choice of reward is use-case specific, we observed
the best results for MMRR as the reward metric
(see Appendix B.3).

4 Experiments

4.1 Dataset

For our experiments, we used the dataset published
by Qin et al. (2023b) which has requests and rel-
evant APIs covering complex and multi-tool sce-
narios. We conducted a simple preprocessing step
to reduce low-quality API documents and samples.
Specifically, we remove API documents that have
descriptions that are shorter than 5 words or longer
than 50 words as well as samples with no rele-
vant API assignment or more than 3 APIs assigned.
This preprocess step results in a smaller set of about
1,831 APIs.

Subsequently, we split the APIs into 1,458 in-
domain and 373 out-of-domain sets randomized
based on tool names. The in-domain set is further
divided into 15, 987 training and 1, 776 in-domain
test requests. The out-of-domain test set consists of
4,451 examples. During the split process, to ensure
a complete split and no contamination between in-
domain and out-of-domain sets, we removed any
sample that had relevant APIs overlapping the other
set. Throughout this paper, we use the in-domain
training set for experiments that require any form
of training/supervision. The test datasets are only
used for evaluation.

4.2 Retriever Setup

We focus our experiments on a retriever which
builds an index on API descriptions. This re-
triever uses a set of queries during retrieval to effi-
ciently find relevant APIs. We use all-mpnet-base-
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v2! (Reimers and Gurevych, 2019) as the embed-
ding model. The retrieval is done via a simple flat
index and nearest neighbor search with cosine dis-
tance metric. To retrieve a ranked list based on
a set of generated queries, we use an interleaving
scheme. The interleaving method independently re-
trieves items based on each generated query sorted
by the similarity metric. Then we iterate over the
lists and take one item from each while skipping
duplicates to compose the final retrieval result.

In our early experiments, we found that append-
ing the original request to the set of generated
queries generally improves the retrieval metrics.
Therefore, for any experiment that involves query
generation, we use this by default. For ablation
study on the impact this method, please refer to
Appendix B.

4.3 Query Generation Setup

As introduced in Section 3, we experiment with
four main cases: (a) the baseline setup of using user
request as is for the retrieval referred to as Utter-
ance, (b) leveraging an out-of-box LLM for query
generation denoted by Zero-Shot, (c) fine-tuning
the model for query generation on the training split
requests/APIs (SFT), and (d) leveraging the align-
ment learning technique that iteratively improves
the query generation capability without directly
fine-tuning on API documents (Alignment).

For each case, we conduct a basic tempera-
ture calibration by measuring the Recall @5 perfor-
mance while varying the temperature in the range
of 0 to 1.7 with increments of size 0.2. More details
on specific hyper-parameter settings is presented in
Appendix A.

4.4 Results

Table 1 presents a comparison of the results. For the
in-domain test set, SFT results in the best retrieval
metrics. However, for the out-of-domain scenario,
the alignment method consistently shows the most
promising results. This result suggests that for
applications that require supporting out-of-domain
APIs, the alignment approach is more promising.
Note that for many practical applications due to the
cost of LLM training, it is not feasible to retrain
the model when dealing with a growing number of
new APIs.

Figure 3 shows how Recall@5 evolves over the
alignment iterations. In this case, the best out-of-

1https://huggingface.co/sentence—transformers/
all-mpnet-base-v2
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Metric No Gen. LLM-Gen.
Utterance Zero-Shot SFT Alignment
In-Domain Evaluation
MMRR 0.4841 0.4145 0.7370 0.6925
MAP 0.5675 0.5111 0.7508 0.7225
Recall@3 55.67% 61.28%  80.95% 76.36%
Recall@5 63.82% 57.86%  87.29% 85.34%
Recall@11 | 74.36% 7047%  91.60% 91.00%
Out-Of-Domain Evaluation
MMRR 0.6290 0.5440 0.6130 0.6487
MAP 0.7031 0.6432 0.6893 0.7151
Recall@3 69.68% 52.78% 68.56% 71.04%
Recall@5 75.26% 71.76% 76.18% 78.53%
Recall@11 | 82.79% 80.86% 82.83% 85.51%

Table 1: Comparison of retrieval performance for the
in-domain and out-of-domain evaluation sets using the
user utterance as the retrieval query as well as LLM-
based query generation methods including zero-shot
prompting, SFT, and alignment learning.

domain performance is reached after 5 iterations,
while the in-domain performance is consistently
improving. We found that with increasing the num-
ber of alignment iterations, the performance of this
method surpasses SFT, however, usually at that
point the out-of-domain performance starts to de-
cline, potentially due to overfitting to the limited
train set. While in the experiment results shared
in Table 1, we do not evaluate models at such op-
erating point and aim for the best out-of-domain
performance, depending on the application, it could
be a better balance to train for more iterations and
enjoy a better in-domain performance at a marginal
cost to the out-of-domain performance.

To dive deeper into the progression of rewards
during the alignment process , we used bar plots in
Figure 4 to show the distribution of at each iteration.
From this figure, we can see the distribution of
rewards measured on the train set monotonically
increases with the alignment iterations. This figure
indicates overfitting on the in-domain data after the
Tth iteration which is consistent with the Recall@5
trends presented in Figure 3.

5 Conclusion

In this study, we investigated improving the tool
retrieval performance for complex and contextual
cases. We showed that leveraging LLM-generated
queries provides an effective method to introduce
contextual and common-sense understanding to the
retrieval process. We experimented with different
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Figure 3: Comparison of Recall@5 performance for the
zero-shot, SFT, and alignment iterations reported for the
in-domain and out-of-domain evaluation sets.
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Figure 4: Bar plots showing the distribution of rewards
for the train set examples during the iterative alignment
process. With more iterations the reward distribution
shifts significantly toward higher values.

approaches such as zero-shot prompting, super-
vised fine-tuning, and alignment learning. Based
on the experimental results, we found that align-
ment learning guides the LLM to generate queries
that result in the best end-to-end retrieval per-
formance, especially for the challenging out-of-
domain settings where tools are not seen during the
training process.
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A Hyperparameter Settings

A.1 Generation

For each model, we conduct a basic temperature
calibration by measuring the Recall@5 perfor-
mance while varying the temperature in the range
of 0 to 1.7 with increments of size 0.2. We found
that the best temperature for the evaluation of the
Zero-Shot, SFT, and alignment methods is 1.3, 0.6,
and 0.1, respectively. For all cases, we consider
top 90% of the token distribution, and consider 10
highest probability tokens at each token generation
step.

A.2 Training

For all experiments that require training, we use
a batch size of 32, a constant learning rate of
2 x 107°, and set the weight decay to 0.01. We use
gradient clipping to clip values outside the range
of [—1, 1]. The loss is only computed for the gen-
erated tokens to prevent forcing the distribution of
input/task tokens. For the SFT training or each
iteration of alignment, we only train for one epoch
as we found this to significantly reduce overfitting
issues.

A.3 Alignment

For the alignment learning experiments, to gen-
erate training samples, we use a typical tempera-
ture of 1.0 and generate 24 drafts for each sam-
ple. Regarding the filter setup, we explored differ-
ent reward metrics and values for Py,p,7min, and
Tdraft, but found best results for using MMRR,
Piop = 100,73 = 0.05, rgrqpe = 1, and T' = 5.
Note that due to the computational cost of these
experiments, we were not able to cover a complete
grid search space to find the optimal settings, and
instead limited search space by finding a reason-
able working setting and changing variables one at
a time.

B Ablation Study

B.1 Impact of Adding Utterance to the Query
Set

Table 2 shows ablation results for the change in per-
formance when the original utterance is not added
to the query set. As it can be seen, including the
original utterance in the queries used for retrieval
consistently helps the zero-shot prompting method,
especially for the case of out-of-domain evalua-
tion. However, For the SFT and alignment learning
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Metric Delta wrt. Adding Utterance to the Query Set
Zero-Shot(-utt) SFT(-utt) Alignment(-utt)
In-Domain Evaluation
MMRR -0.0868 0.0286 0.0114
MAP -0.1330 0.0452 0.0201
Recall@3 -13.42% -1.41% 0.34%
Recall@5 -8.67% -4.54% 1.91%
Recall@11 -8.58% -5.52% -1.87%
Out-Of-Domain Evaluation
MMRR -0.0863 -0.1766 -0.0669
MAP -0.1292 -0.2095 -0.0719
Recall@3 -14.50% -19.77% -6.42%
Recall@5 -7.84% -21.28% -6.36%
Recall@11 -6.09% -19.38% -4.65%

Table 2: Ablation study on the impact of adding the orig-
inal utterance to the query set. Delta values reporting
compared to the default case of adding the utterance.

methods, we do observe some regressions for the
in-domain evaluation set. This is likely due to the
capability of these models to generate queries that
are of enough quality so is beneficial to solely rely
on them. Nevertheless, since the gains for the case
of out-of-domain evaluation are more significant,
we decided to consistently append the original utter-
ance to the query set for the main results presented
in this paper. Based on the presented results, such
decision may need to be revisited for use-cases that
are only interested in the in-domain performance.

B.2 Impact of Changing Sample Filtering
Configurations

The rejection sampling method used for alignment
learning can be particularly sensitive to filter set-
tings as it needs to remove low-reward responses
while ensuring diversity in the produced training
samples. As explained in Section A.3, we con-
ducted experiments for finding the right hyperpa-
rameter settings for the alignment learning method.
See Table 3 on the impact of changing rejection
sampling filter configurations. While additional
investigation is required to find optimal settings
for new model architectures and datasets, we found
that generating as many as 24 response drafts, keep-
ing the one with highest reward, and filtering out
any sample that has very low reward generally re-
sults in stable convergence and outperforming al-
ternative methods.



Experiment Recall@5 Delta wrt. Baseline

Ptop  Tmin Ndraft | In-domain  Out-Of-Domain
Baseline 100 0.05 1 0% 0%
Reduced pyop 75 0.05 1 -0.28% -0.29%
Increased 7,,in 100 0.3 1 -0.50% -0.01%
Decreased 7,5, 100 0 1 -0.06% -0.05%
Increased ngrqpe 100 0.05 2 -0.29% -1.43%

Table 3: Impact of changing rejection sampling fil-
ter hyper-parameters. Delta values are reported com-
pared to the baseline of: piop = 100%,7min =
0.05, ngraft = 1.

Reward Metric Recall@5 Delta wrt. MMRR Reward
In-domain Out-Of-Domain

MMRR 0% 0%

MAP -3.45% -0.82%

Avg(Recall@5,Recall@11) | -0.87% -1.10%

Table 4: Impact of changing the alignment learning
reward metric. Delta values reported compared to the
default case of MMRR as the reward metric.

B.3 Impact of Changing the Reward Metric

Table 4 presents a comparison of Recall@5 re-
sults for using different retrieval reward metrics i.e.
MMRR, MAP, and average recall. While choosing
a reward metric is use-case specific, we decided to
use MMRR as it provides a more intuitive measure
of retrieval recall quality compared to the MAP.
Compared to leveraging recall average as the re-
ward metric, MMRR provides a more smooth tar-
get that encourages better retrieval for all positions
rather than focusing on a fixed cut-off.

C Generating Intent vs. Description as
Query

Intent prediction is a classical approach to user un-
derstanding and skill selection in dialogue systems.
Compared to tool descriptions, intents represent a
different level of abstraction and potentially reduce
some of the hallucination models such as made-up
tool names. To evaluate the impact of generating
intents rather than tool descriptions, we used a new
prompt to instruct the model to generate a list of
intent descriptions as queries. See Figure 5. Except
for this change, we used the exact same process to
train and evaluate the alignment learning method.
Table 5 shows a comparison of results for the
alignment learning method when changing the
prompt format and generating intent descriptions
as the retrieval query. Overall, the tool description
generation appears to perform marginally better.
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Given a request by user (Human), generate

the description of the user’s intentions
(intents).

Try to decompose the request to a set of
intents.

Do NOT respond to the Human and just describe
the intents.

Use new line to
Each

be less than 20 words.

separate multiple

descriptions. description should
Return at most 5 descriptions (lines).
Do not provide any additional explanation or

examples, return just a set of intents.

Human: <user request>

Answer:

Figure 5: Prompt format used for the intent generation
experiments.

Reward Recall@5 Delta wrt. Description Generation
Description Generation Intent Generation
In-Domain Evaluation
MMRR 0 -0.0071
Recall@5 0% -0.35%
Recall@11 0% -0.62%
Out-Of-Domain Evaluation
MMRR 0 -0.0040
Recall@5 0% -0.29%
Recall@11 0% -0.50%

Table 5: Impact of generating user intents as retrieval
query rather than tool descriptions for the alignment
learning method. Delta value are reported compared to
the tool description generation approach.

However, we believe that intent description is an
interesting direction for future work and the two
methods can potentially complement each other.



D Qualitative Results

Table 6 presents the outputs of our alignment learn-
ing query generation model for a set of entirely
unseen authored examples. To author these exam-
ples, we did not consider the pool of available APIs
in the training set or even the distribution/structure
of data seen during the alignment process. For all
of the tested cases in this table, the model is able
to reduce ambiguity and complexity by breaking-
down the original request to a set of simpler more
direct tool descriptions.

In the second example, the generated queries
show common-sense understanding capabilities by
focusing on suggestions for outdoor activities. In
the third example, the generated query list is a
decomposition of the initial request which usually
facilitates retrieval for semantic retrievers. One
behavior that is noticeable in the examples here is
that the generated outputs contain hallucinated API
names such as "PartyPlanning API" which points
to non-existent APIs. While we did not observe a
noticeable performance regression for such cases
and the generated API names are often contain
relevant keywords, we believe there is room for
further improvement to address this hallucination
mode.

Request Generated Queries

Give me a good advice for making coffee

- Coffee Tips: Offers a list of tips for making coffee
- Coffee Machine Reviews: Offers reviews and ratings on different coffee machines
- Coffee Beans: Provides information on different types of coffee beans

- Coffee Brewing: Provides tips and techniques for brewing coffee

I’m bored and tired of staying home. Literally

watched tv all day. Give me some ideas what to do

- Get a list of nearby parks and recreational areas

- Search for nearby places to visit based on location and interests

- Get a list of nearby restaurants and cafes, including reviews and ratings

- Get a list of popular tourist attractions and activities, including theme parks,

museums, and other tourist attractions

I'm planning for a small party and need to invite guests,

clean the house, and order food. Can you help me?

- PartyPlanningAPI: Create a party planning checklist for cleaning, decorating, and ordering food
- HouseCleaningAPI: Get a list of cleaning tasks for the house
- FoodOrderAPI: Place orders for food delivery or pickup

- GuestListAPI: Create a list of guests and their contact information

I want to get more healthy, where should I start?

- Nutrition API: Offers a range of nutritional information and tools to help you make healthy choices
- Healthy Eating API: Provides a list of healthy foods and drinks to help you make healthy choices

- Medication API: Offers information on various medications and their effects on your health

- Healthy Living API: Provides a range of healthy living tips and resources

to help you improve your overall health

Table 6: Examples of authored out-of-domain test requests and generated queries by the alignment learning model.
Generated queries generally decompose the request, eliminate unnecessary explanations, and show common-sense

contextual understanding.
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