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Abstract

This paper proposes a method to estimate the
performance of pretrained models fine-tuned
with a larger dataset from the result with a
smaller dataset. Specifically, we demonstrate
that when a pretrained model is fine-tuned,
its classification performance increases at the
same overall rate, regardless of the original
dataset size, as the number of epochs increases.
Subsequently, we verify that an approximate
formula based on this trend can be used to pre-
dict the performance when the model is trained
with ten times or more training data, even when
the initial training dataset is limited. Our re-
sults show that this approach can help resource-
limited companies develop machine-learning
models.

1 Introduction

In recent years, the development of pretrained mod-
els (PMs) for natural language processing (NLP)
has been growing rapidly, with the widespread
availability of Transformers (Vaswani et al., 2017),
a representative example. Notably, Transformers
framework (Wolf et al., 2020), provided by Hug-
ging Face', is capable of advanced analysis without
specialized knowledge.

However, when we attempt to fine-tune such a
PM for use in a business context, we are likely to
face "dataset size issues", such as data size limita-
tions and a lack of clarity in the number of datasets
required for expected performance. Moreover, fine-
tuning a PM with the small amount of data initially
available to most businesses does not always result
in ideal performance. This raises another issue:
"Fine-tuning with available data did not achieve
ideal performance, good, so how much data would
be enough?" When the fine-tuning results are based
on only a few hundred units of data, this question is
a difficult one to answer. One recent study, which
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reviewed the performances of the latest PMs (Min
et al., 2021), noted that the quantification of the re-
quired labeled data is another significant challenge.
Meanwhile, Rosenfeld et al. (2020) investigated
the relationship between model size and dataset
size and proposed certain formulas to predict gen-
eralization errors in language models. However,
similar considerations have not been made in the
context of fine-tuning PMs. Solving the "dataset
size issues" would be a significant contribution in
this era of widespread PM use. Furthermore, data
collection and annotation are time-consuming and
costly processes; therefore, knowing the amount of
data required to achieve specific performance goals
can save time and money. Therefore, the primary
objective of this study was to develop a means of
determining future guidance for situations in which
data are limited. More specifically, the objective
was to develop a method that predicts the perfor-
mance achievable when fine-tuning PMs with a
large dataset using a limited dataset.

2 Related Work

Kaplan et al. (2020) explored scaling laws in
Large Language Models (LLM) and demonstrated
that performance extends exponentially based on
three factors: model size, dataset size, and the
amount of computation. These scaling laws have
been observed not only in NLP but also in other
fields (Henighan et al., 2020).

These facts suggest that model performance will
increase indefinitely if these factors continue to
be raised. In fact, performance improvement is
widely pursued by scaling up to compete for the
number of parameters. For example, BERT (De-
vlin et al., 2019), a pioneer in this field, has around
300 million parameters. Subsequent GPT series
have continued to expand, with some reaching 175
billion parameters (Radford et al., 2019; Brown
et al., 2020). Google’s LLLM, PalLM, is reported
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Figure 1: Classification performance trend by datasets

to have been trained with 540 billion parameters
and has shown high performance in a variety of
tasks (Chowdhery et al., 2023). The subsequent
PalLM2 is reported to be even more capable, al-
though the number of parameters has not been dis-
closed (Anil et al., 2023). Likewise, Open Al has
demonstrated high performance with GPT-4, al-
though the number of parameters has not been dis-
closed either (Achiam et al., 2023). Based on the
principle of scaling up, various studies have investi-
gated how to efficiently train LLMs (Devlin et al.,
2019; ABenmacher et al., 2021). The continued
development of LL.Ms at such scales can contribute
significantly to the development of this field; how-
ever, this is only possible for a few resource-rich
organizations and groups. In fact, there are sev-
eral limitations for developing or using an LLM
in proportion to the size of the available parame-
ters, such as machine specifications. Hence, it is
becoming crucial to find how to handle LLMs ef-
ficiently and achieve LLM-like performance with
PMs with small parameters. Several studies have al-
ready addressed these topics (Schick and Schiitze,
2021; Ouyang et al., 2022; Pfeiffer et al., 2020).
Additionally, modern LLMs often do not make
their internal mechanisms available, limiting user
customization. In this respect, PMs, which are rela-
tively lightweight and whose internal mechanisms
are publicly available, present notable advantages.
This study therefore aims to contribute to these
efforts, examining ways to efficiently use PMs to
solve the challenges mentioned above, given the
limitations of a relatively small data size.

3 Task Definition

This study aimed to predict the performance that
can be achieved when fine-tuning a PM with a
larger dataset in a situation in which no such dataset
is available.

Suppose we have a small fine-tuning dataset
Dg. Moreover, suppose we plan to create a larger
fine-tuning dataset Dy, which always includes Dg.
Then, our task is to construct a function f(-) that
returns the value of the predefined performance
metric Y, such as the classification accuracy of the
target task, given Dy, from the information in Dg
(before actually creating Dy ), namely,

Y = fps(Dr). )

This function would be highly beneficial for devel-
oping real-world systems. For example, it would
allow users to estimate how much fine-tuning data
would be needed to achieve the desired perfor-
mance or decide whether they should reconsider
building a new system before creating expensive
fine-tuning data.

4 Preliminary Experiment

First, we investigated whether a particular correla-
tion exists among the performances obtained from
various sizes of fine-tuning datasets.

4.1 Data Set

This study addressed the classification task of re-
view comments. Such a task is likely to be required
in a company to develop a new product or improve
service. In this study, datasets on review comments
in different languages, categories and subjects were
selected to provide a broad test set. We prepared
four different datasets using online reviews. These
included lodging reviews (LodgeRev) (Kanouchi
et al., 2020), Amazon customer reviews> (ACRev),
movie reviews (MovRev) (Maas et al., 2011), and
reviews of pharrnaceuticals3 (DrugRev) (GraBer
et al., 2018).
2https://s3.amazonaws.com/amazon—reviews—pds/

readme.html

3https://ar‘chive.ics.uci.edu/ml/datasets/Drug+
Reviewt+Dataset+/28Drugs.com/29
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Datasets Review Language| # of |Available| Divided Predict target
name Contents labels | data size | data size ‘ data size
LodgeRev |Lodging / Accommodation| Japanese | 9 500 100,300 1K,1.5K,2K,5K
MovRev Movie English | 2 1,000 |100,300,500| 2K,5K,10K,30K
ACRev Electric appliances Japanese | 5 1,000 |100,300,500|2K,10K,50K,100K
DrugRev Medical products English 10 1,000 |100,300,500|2K,10K,50K,100K

Table 1: Experimental
In the case of the dropping out condition, the divid

LodgeRev consists of lodging reviews in
Japanese, with nine labels. These reviews were de-
rived from the evidence-based explanation dataset
provided by Recruit Co., Ltd., (Kanouchi et al.,
2020). However, as the purpose of this study was
different from the purposes of the original study,
the data were only partially processed. Specifically,
only the review comments were taken out, and
appropriate labels were assigned to them. There
were nine categories of labels: meals, buildings and
equipment, customer service, tourism and recre-
ation, fares, baths, access, revisit, and others. The
annotation process was conducted by two trained
workers. ACRev was a set of Japanese reviews of
electric appliances, categorized based on Amazon’s
five-star ranking system (1-5). MovRev consisted
of movie reviews in English, which were assigned
either a positive or negative sentiment class for
each review. Originally, this consisted of 25,000
reviews each for the train and test datasets; in this
study, however, they were combined . However,
the 50:50 ratio of positive/negative reviews was not
changed. DrugRev was a set of reviews of medici-
nal products in English, with ten ranks (1-10).

We randomly sampled review texts from these
datasets and then created eight different sizes of
fine-tuning and evaluation data for each dataset.

4.2 Method

We selected the BERT model as the pretrained
model for the fine-tuning experiments. Two ex-
periments were planned: one each for the Japanese-
and English-language datasets. The model used
for the Japanese datasets was cl-tohoku/bert-base-
japanese-whole-word-masking* and that for the
English datasets was bert-base-uncased®. The hy-
perparameters for fine-tuning in both experiments
were consistently set as follows: Token size = 128,
Batch size = 32, and Learning rate = 2e-5.

For the analysis, we continued to update epochs

“https://huggingface.co/cl-tohoku/
bert-base-japanese-whole-word-masking
Shttps://huggingface.co/bert-base-uncased

condition (K : Thousand)
ed data size of 100 is not used to calculate the formula.

until no further improvements in performance ap-
peared. Accuracy, F1 Score, and root mean squared
error (RMSE) were adopted as evaluation metrics.
The closer the accuracy and F1 score were to 1
and the closer the RMSE was to 0, the better the
performance. In this study, "learning amount" was
used as a measure of the scale of training when
fine-tuning a model. This value was calculated as
a multiplier of the dataset size and the number of
epochs. For example, if the dataset size was 100
and a model was fine-tuned by 10 epochs, the learn-
ing amount was 1,000 (100 examples x 10 epochs)
Similarly, if the dataset size was 500 and a model
was fine-tuned by 2 epochs, the amount of learning
was 1,000 (500 examples x 2). Both examples the-
oretically indicate a model that has been fine-tuned
with a dataset size of 1,000. In other words, the
learning amount was defined as the total amount of
data used to train the model.

4.3 Results

Figure 1 shows the learning curve of the classi-
fication performance obtained by fine-tuning the
same pretrained model with each prepared data
size. The vertical axis shows the score of the evalu-
ation metric, that is, accuracy, F1 value, or RMSE.
Meanwhile, the horizontal axis shows the learning
amount on a logarithmic scale. Each plot indi-
cates the average score of five runs, varying the
random seeds given the fact that performance can
vary significantly depending on seeds during fine-
tuning (Dodge et al., 2020).

An increase in the learning amount resulted in
better scores. Interestingly, the slopes did not de-
pend on the size of the fine-tuning datasets; rather,
they advanced in a similar manner, particularly
when taken on a logarithmic scale and were close
to linear. In contrast, where performance satu-
rates look proportional to the fine-tuning data size.
These phenomena were observed regardless of met-
rics, tasks, and PMs, at least within these prelimi-
nary experiments.

In summary, the following noteworthy findings
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Figure 2: Approximate formula for performance growth
Approximate line in the figure is the pseudo (nega-

tive) ramp loss function calculated based on Eq. (2),
and this slope is used for prediction..

were made based on the preliminary experiment:
(1)When taking the log scale, it was observed that
performance improved at a constant rate as the
learning amount increased. This had a similar trend
in slope regardless of the dataset size. (2)The tim-
ing at which performance saturated depended on
the dataset size. These findings are used to attempt
to predict performance in the following experiment.

5 Proposed Method

Based on the findings of the preliminary experi-
ments, this section proposes a method to predict the
evaluation score when the number of fine-tuning
data is increased using evaluation scores obtained
from much smaller sets of fine-tuning data.

More specifically, the proposed method attempts
to predict the accuracy from the fine-tuning of
100,000 units of data (Dy,) from a set of accuracies
obtained from the fine-tuning of less than 1,000
units of data (Dg). For this purpose, we assume
that each line in Figure 1, namely, the increase in
performance against the learning amount increase,
can be approximated by a simple (negative) ramp
loss function (Collobert et al., 2006), f(z), which
can be written as follows:

wo + w1y loglo tmin  1If © < toun
f(x) = S wo + w1 10g1g tmaz  if T > tmae (2)
wo + wy loggx otherwise

where t,,,;, and t,,4, represent the start and end
points of performance growth in the learning
amount. Based on Eq. (2), the learning amounts

of t,,;n and t,,4, are calculated where the RMSE
with the actual value of the fine-tuned model is
minimum. This slope w; is used to predict perfor-
mance improvement. Figure 2 shows an example
of applying the ramp loss function to the LodgeRev
result.

Moreover, from the results of the preliminary
experiment, it can be inferred that the saturation
point varies depending on the size of the data used.
As the Eq. (2) is a linear equation, it can be inter-
preted that performance will improve as the learn-
ing amount increases. In reality, however, perfor-
mance should saturate at some point, where the PM
should reach the limit of its learning. Therefore,
an equation for predicting the learning amount at
saturation is proposed below. First, the maximum
(or minimum, in the case of RMSE) score is ex-
tracted for each small dataset. The maximum value
is fitted to Eq. (2) and the learning amount ¢4,
for each smaller dataset is calculated backward.
This is the estimated learning amount at saturation
for each small dataset. Additional linear regression
equations are calculated with the estimated learning
amount as the objective variable and each smaller
dataset size as the explanatory variable. This regres-
sion equation is then used to calculate the amount
of learning amount at saturation for an arbitrary
dataset size. The saturated learning amount de-
pending on dataset size can thus be calculated as
follows:

tmax(D) = 90 + 01 1Ogl[) D, (3)

where 6y and 6; are assumed to be estimated
from a set of performances on smaller datasets.
Finally, the proposed method estimates perfor-
mance after fine-tuning with data size D by cal-
culating f(tmqz (D)) in Eq. (2) with the condition
tmaz = tmaz (D)

The proposed method is shown in Figure 3. The
maximum possible of performance can therefore be
predicted from limited data by combining Eq. (2),
which predicts the improvement in performance ac-
cording to the learning amount, and Eq. (3), which
estimates the learning amount at saturation.

6 Experiment

We conducted an experiment to verify the effective-
ness of the proposed methodology.
6.1 Experimental Conditions

Using the same data as the preliminary experi-
ment, we experimented with the proposed method
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Figure 3: Proposed method and application

to predict future performance, assuming a situation
in which the amount of available data is limited,
specifically, where approximately 1,000 samples
of data are available at most. The specific data size
conditions are shown in Table 1.

The predicted performances were evaluated by
comparing them with the actual performances
when fine-tuning with 2 ~ 100 times more data
sizes. The values given here refer to the best pos-
sible scores estimated when fine-tuned with each
dataset.

As a further validation, a condition was added
in which some data were not used. As seen in
Figure 1, the learning curve in a particular dataset
size does not overlap well with the ones in other
datasets. This is the case for the 100-sample
datasets for MovRev or ACRev. Generally, it can
be assumed that prediction performance can be
improved by excluding indicators that show out-
lier values. Therefore, based on this assumption,
cases in which some data were dropped were also
added to the validation conditions. Specifically,
this proposed method was applied while excluding

(a) LodgeRev
D Actual Predict diff

Predict diff
(w/drop) (w/drop)

Metrics

F1 1K 0.731 0.744 +.013 0.735 +.0047F
1.5K 0.738 0.763 +.025 0.749 +4.011¢}
2K 0.746 0.775 +.028 0.758 +.0127%
5K 0.765 0.809 +.044 0.784 +4.020}
Acc 1K 0.779 0.789 +.011 0.775 —.004}
1.5K 0.788 0.804 +.016 0.783 —.005t
2K 0.793 0.814 +.021 0.789 —.004%
5K 0.814 0.842 +4.028 0.806 —.008%}
(b) MovRev
Metrics D Actual Predict diff Predict diff

(w/drop) (w/drop)

F1 2K 0.908 0916 +.007 0.903 —.005F
5K 0.920 0.933 +.013 0915 —.0067F
10K 0931 0944 +.014 0.922 —.0087F
30K 0935 0960 +.024 0.934 —.002}

Acc 2K 0909 0914 +.005 0.903 —.005F
5K 0921 0.930 +.009 0914 —.006F
10K 0.931 0.940 +.010 0.922 —.009F
30K 0936 0954 +.019 0.933 —.003}

(c) ACRev
Metrics D  Actual Predict diff  Predict diff
(w/drop) (w/drop)

F1 2K 0.375 0.370 —.006 0375 —.001f%
10K 0.434 0.402 —.032 0407 —-.027%
50K 0.500 0425 —-.075 0429 —-.071%

100K 0.523 0.433 —.090 0.436 —.087%
RMSE 2K 1.007 1.012 +.004 1.012 +.0047%
10K 0.938 0.943 +.006F 0.953 +.015

50K 0.880 0.895 +.015f 0913 +4.033

100K 0.846 0.877 +.032% 0.899 +4.053

(d) DrugRev

Metrics D Actual Predict diff  Predict diff
(w/drop) (w/drop)
Acc 2K 0.423 0411 —-.012 0421 —.002%
10K 0.453 0424 —.029 0.438 —.015%
50K 0.495 0433 —.062 0449 —.046%
100K 0.538 0.436 —.102 0.452 —.086F
RMSE 2K 2.262 2368 +.106 2322 +.059%
10K 2.074 2.061 —.014% 2.010 —.065
50K 1.742 1.837 +.095 1.794 +.052}
100K 1.518 1.756 +.238 1.718 +.200%

Table 2: comparison between prediction and actual re-
sult (D:dataset size, K :Thousand)

Daggers show the closer of the two prediction conditions to
the actual measurements.

the results of the 100-sample dataset in which per-
formance did not improve after fine-tuning. Other
experimental conditions followed the preliminary
experiment.

6.2 Results

Table2 shows the predicted performances obtained
from the proposed method and the actual results
achieved when using the review datasets. For
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the predictions were lower than the actual results,
especially for the datasets of SOK and 100K sam-
ples, where the predictions differed widely. Overall,
the larger the hypothetical dataset size (and thus
the farther away from the available dataset size),
the lower the prediction accuracy. Although the
RMSE predictions were generally larger than the
actual performance, the variability in predictions
and actual differences did not necessarily increase
proportionally to the dataset size.

Next, we examined the effect of data exclusion
based on the results for each experimental condi-
tion. In this experiment, the prediction results for
most conditions were slightly better when the data
from the 100-sample datasets were excluded. As
this method fit a linear regression model based on
the observed data, excluding possible outliers may
improve the fit.

Figure 4 shows the predicted performances ob-
tained from the proposed method and the actual
results by metrics. Each dot plots the actual per-
formance value when fine-tuning the PM with data
from 1K- to 100K-sample datasets and the pre-
dicted value from this method based on the limited
available data. The closer each dot is to the line,
the higher the prediction accuracy. As can be seen
from this figure, the prediction achieved a good
approximation of the actual results.

To better understand the difference between the
predicted and actual results, RMSEs were calcu-
lated for each metric between them. The RMSE
of RMSE prediction may be somewhat confusing
, but these were calculated to verify the discrep-
ancies when each metric is considered as a mere

Table 3: RMSE between predicted and actual values in
each metric

numerical indicator. The results are presented in
Table 3. Overall, the predictions showed good
performance. These results demonstrate that ex-
cluding outliers results in better prediction. In
some cases, the slope of the performance improve-
ment based on the small datasets was gentler than
those based on larger datasets. Therefore, exclud-
ing smaller datasets—in this case, the 100-sample
dataset—would lead to a better fit for the predictive
model. However, while the 100-sample dataset was
dropped in this case, it may not always be sufficient
to exclude the smallest dataset. Although neither
condition was able to predict the results perfectly,
even a simple linear regression-based method could
predict the performance of fine-tuned PMs with in-
creased dataset size.

6.3 Simulation

Finally, we verified the effectiveness of our pro-
posed method by making some assumptions and
estimating the costs of implementing it.

Let us consider a case in which a company builds
a model that automatically classifies customer re-
views about its products, in line with the setting
of the above experiments. Model implementation
requires not only a model but also data for train-
ing and testing. The task of data collection for
a model can be further subdivided into data col-
lection itself and annotations for machine learn-
ing. If there is a review site available, such as
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those created for restaurants, it is possible to ac-
quire review data through methods such as crawl-
ing. However, in general, acquiring evaluation data
on products is costly and time-consuming for many
companies. Of course, it is also not easy to ac-
curately define survey costs given the differences
in the various types of businesses, situations, and
customs across countries. However, as an example,
let us consider the cost of a survey conducted by a
Japanese marketing research firm. The actual name
of this company has been withheld, but it is a well-
known and popular research firm in Japan. The
cost of a 10-question survey by this research firm
is approximately US$1,700 for 500 samples and
US$2,600 for 1,000 samples (converted at US$1
= JPY148.21). This excludes the cost of annota-
tion for the survey data. The cost of annotations
using crowd workers was estimated to be between
US$0.13 and 0.41 per annotation. Assuming a me-
dian of US$0.27 as a standard value, annotating
1,000 samples would cost a total of US$270, and
US$2,870 would be required to collect and anno-
tate 1,000 data samples. There are further costs
associated with this process, but for the sake of
simplicity, we only consider the costs of collecting
and annotating survey data.

Below, some simulations are performed under
these cost assumptions, assuming the interested
company wants to build a classification model with
an 80% accuracy or F1 score and that the earlier
experimental results have been obtained. For ex-
ample, in the case of ACRev or DrugReyv, let us
assume that the company paid US$2,600 to collect
1,000 survey samples. If we want to construct a
model with an 80% F1 score, we can expect not to
be able to reach the performance target based on
the proposed method even if 100,000 samples are
available. This would save the company an unreal-
ized cost of around US$284k that would have been
incurred by collecting additional data, and allow
them to proceed with other strategies.

In contrast, let us apply the same consideration
to LodgeRev. In this case, if there are 5,000 data
samples, it is likely that an 80% accuracy can be
achieved. Subsequently, additional investments can
be made only to obtain the quantity necessary (i.e.,
4,000 more data samples ) without incurring extra
investment costs.

Thus, this method for predicting future perfor-
mance and required quantities allows for optimiz-
ing data collection costs and making quicker deci-
sions.

7 Conclusion

This study proposed a method for predicting perfor-
mance improvement using a limited dataset by ex-
amining the characteristics of performance trends
when fine-tuning PMs from the relationship be-
tween dataset size and learning amounts and us-
ing these characteristics to formulate predictions.
We verify that it is possible to accurately predict a
certain degree of performance by combining sim-
ple linear formulas. The study was limited to
the classification task of NLP, but it nevertheless
demonstrated that if there are about 500 ~ 1,000
data samples, it is possible to predict future per-
formance by taking advantage of trends in perfor-
mance growth. These predictions are very useful
when facing the challenge of small datasets in prac-
tice. Even with limited data, this approach can
accurately predict the performance expected and
the data collection needed to achieve this perfor-
mance, thus allowing for rapid and cost-effective
decision-making.

Limitation

This study has dealt with a very basic classifica-
tion task in NLP, but it remains to be seen whether
this method can be applied to other tasks as well.
There is also room for various improvements to this
method. For example, in this study, each seed was
changed five times, and calculations were run un-
til the performances were saturated. Even though
the PM was relatively lightweight and dataset sizes
were small, it still required time and appropriate
machine specifications. Prior research has explored
various methods for refining the fine-tuning process
itself (Sun et al., 2020; Dodge et al., 2020; Mosbach
et al., 2021; Aghajanyan et al., 2021). Therefore, it
may be possible to utilize such methods to further
improve the efficiency of learning. Future research
should refine the definitions of the saturation point
and various operations to further improve perfor-
mance. The results also demonstrate that excluding
outliers improved the model’s fit, but the selection
of such outliers should be contextualized. In this
study, improvement was achieved by excluding
the results of a 100-sample dataset, but selection
methods should be considered when predicting the
performance of larger datasets. While this study
has intentionally focused on a simple linear regres-
sion model, there is room to improve the equation.
Finally, a BERT-based PM was used for this study,
but the results should be verified using other PMs.
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