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Abstract

Large language models (LLMs) are playing a
pivotal role in deploying strategic use cases
across a range of organizations, from large
pan-continental companies to emerging star-
tups. The issues and challenges involved in the
successful utilization of LLMs can vary signifi-
cantly depending on the size of the organization.
It is important to study and discuss these perti-
nent issues of LLM adaptation with a focus on
the scale of the industrial concerns and brain-
storm possible solutions and prospective direc-
tions. Such a study has not been prominently
featured in the current research literature. In
this study, we adopt a threefold strategy: first,
we conduct a case study with industry practi-
tioners to formulate the key research questions;
second, we examine existing industrial publi-
cations to address these questions; and finally,
we provide a practical guide for industries to
utilize LLMs more efficiently. We release the
GitHub' repository with the most recent papers
in the field.

1 Introduction

Large language models (LLMs) have recently gar-
nered significant attention due to their exceptional
performance in various predictive and generative
tasks (Hadi et al., 2023; Kar et al., 2023). Ex-
tensive research has been conducted to harness
LLMs across diverse domains and tasks (Raiaan
et al., 2024), including medicine (Thirunavukarasu
et al., 2023), finance (Li et al., 2023b), and rea-
soning tasks (Huang and Chang, 2023; Qiao et al.,
2023). Despite their unprecedented adaptation to
numerous industrial applications, there is a notable
lack of studies examining the potential challenges
and risks associated with LLMs, which can vary
depending on the size of the organization. Such
studies would not only be valuable for industries

1h'ctps ://github.com/vinayakcse/
IndustrialllLMsPapers

seeking informed adaptation but also help shape
research focus to address the key challenges and
obstacles faced in real-world scenarios.

The challenges and bottlenecks faced by organi-
zations of different sizes are not uniform. Factors
such as funding availability, workforce size, skill
and training deficits, ethical and regional consid-
erations, and access to adequate hardware can all
influence how these challenges manifest. Previous
research has largely addressed general challenges
(Raiaan et al., 2024) with LLMs, such as multi-
lingual support, domain adaptation, and compute
requirements. However, there is a lack of studies
specifically focusing on the industrial perspective
and the unique challenges of implementing LLMs
in this context.

To this end, we conduct a study with a three-
fold strategy, firstly, we conduct a rigorous case
study of real-world practitioners from the IT indus-
try, who are trying to work on Al adaptation and
formulate three guiding research questions. RQI.
How have industries adopted LLMs so far, and
what challenges do they face? RQ2. What are the
barriers hindering the full utilization of LLMs in
industrial applications, and how can these barriers
be addressed? RQ3. How can various industries
advance to maximize the utility of LLMs in prac-
tical applications? Subsequently, with an aim to
address guiding research questions, we perform a
thorough scoping survey of existing research publi-
cations from industrial entities of all sizes. Finally,
we discuss our takeaways and insights and present
a practical pilot scenario-based guide for industries
to adapt to LLMs in a more informed manner.

The key contributions of this work can be sum-
marised as: this study identifies various categories
of challenges associated with LLMs for industrial
adoption and proposes potential solutions. These
challenges broadly relate to data confidentiality,
reliability of LLM responses, infrastructure bottle-
necks across industries, domain-specific adoption,
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synthetic data generation, and ethical concerns. Ad-
ditionally, we offer a practical guide tailored for
small, medium, and large industries to maximize
the utilization of LLMs.

2 Related Work

In the literature, numerous studies focus on prac-
tical and ethical challenges associated with LLMs
across diverse application domains includes educa-
tion (Yan et al., 2024), finance (Li et al., 2023d),
healthcare (Zhou et al., 2023) and security (Shao
et al., 2024). Additionally, several studies address
the task-specific challenges for LLMs’ adoption in
areas such as spoken dialog systems (Inoue, 2023),
mathematical reasoning (Ahn et al., 2024), mining
software repositories (Abedu et al., 2024). More-
over, studies explore the challenges based on LLMs
capabilities with explanations generation (Kunz
and Kuhlmann, 2024), data augmentation (Ding
et al., 2024), support for multilingual context (Shen
etal., 2024) and compliance with ethical challenges
(Jiao et al., 2024).

Close to our work, Gallagher et al. (2024) ad-
dresses a few concerns on the adoption of LLMs
for specific high-stake applications, particularly in-
telligence reporting workflows. In contrast to exist-
ing studies, our work specifically concentrates on
the utilization of LLMs for industrial applications.
Moreover, this study provides a comprehensive
overview of several roadblocks to LLMs adoption
for industrial use cases and corresponding potential
solutions. Additionally, our study offers a sugges-
tive guide to maximize the utilization of LLMs for
various industries.

3 Methodology

This section aims to explore how industries have
adopted LL.Ms and the challenges they face (RQ1).

3.1 Industrial Case Study on LLMs

We conduct an industrial case study to understand,
how the LLMs are shaping industry practices,
identify the underlying challenges and benefits.
Through a meticulous process of expert consulta-
tion and iterative refinement, the questionnaire was
designed to capture insightful data and serve as a
tool for understanding the evolving role of LLMs in
the industry. This case study covers a multitude of
aspects related to LLM usage for specific applica-
tion domains, corresponding risks, trust attributes,
and challenges. In crafting a succinct questionnaire,

our objective was to gauge the adoption and impact
of LLMs in various industries. These questions can
be found in Appendix B Table 4. We receive 26
responses in total from real-world practitioners of
the IT industry. We did a case study on 26 compa-
nies which are leveraging LLMs for their use-cases.
This exercise is non-trivial as most companies have
not made their LLM-related use cases public.

3.2 Quantitative Analysis

Based on the responses obtained from the industrial
case study, we make the following observations.

Participants of the case study. We shared the
questionnaire with the IT professionals, who
are either working on LLMs or have developed
some solutions. The participants are industry
professionals and practitioners with expertise
ranging from beginner to expert level.

Widely adapted applications by leveraging LLMs.
Even though LLMs are being utilized for various
applications, we observe that the majority of these
industrial applications are related to financial,
retail, security, and healthcare domains.

Modality of the datasets. More than 60% of the
industry practitioners prefer to use either textual or
tabular data as shown in Figure 1.a.

Widely used LLMs. Our case study indicates
more than 50% of the applications utilize the
GPT-3.5 and GPT-4 models. Recently, researchers
have been assessing the capabilities of LLaMA-2
(Touvron et al., 2023) and Mistral (Jiang et al.,
2023a).

Prompting strategy. We observe that zero-shot
and in-context learning prompting strategies are
widely adapted compared to fine-tuning.

Risks associated with LLMs. Based on our case
study, LLMs pose risks associated with security
and safety, quality of service, and license-related
challenges as depicted in Figure 1.b.

Trust attributes to be considered. We observe
that robustness, security, and hallucination are the
major challenges that need to be considered to
utilize the LLMs as shown in Figure 1.c.

Moreover, to gain a better understanding of the
barriers to leverage the LLMs for industrial use
cases, we also survey 68 research papers specifi-
cally from the industry. In this study, we compile
several prominent challenges and present potential
solutions to address them. The selection criteria for
the papers can be found in the Appendix A.
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Figure 1: Industrial case study statistical overview of various aspects

4 Challenges and Potential Solutions

In this section, we explore several barriers to lever-
aging LLMs for industrial applications and discuss
potential solutions (RQ2).

4.1 Data Confidentiality

4.1.1 Pre-training data issues

Potential privacy risks. To deploy large language
models (LLMs) on cloud platforms, robust data pri-
vacy protocols are required to handle extensive sen-
sitive datasets while pre-training. Key challenges
include mitigating data breaches and preventing
unauthorized extraction of sensitive information.
Despite the adoption of LLMs in applications like
disaster response management (Goecks and Way-
towich, 2023), public health intervention (Jo et al.,
2023), and assisting Augmentative and Alterna-
tive Communication (AAC) users (Valencia et al.,
2023), there is noticeable lack of focus on privacy
and security aspects. Moreover, it is imperative that
potential risks associated with deploying LLMs in
high-stakes scenarios are addressed.

Regulations. GDPR in Europe and CCPA in Cal-
ifornia introduce stringent guidelines for deploy-
ing LLMs by enforcing strict data handling and
intellectual property rules to ensure transparency
and fairness. As highlighted by Mesko and Topol
(2023), adhering to these laws in sensitive domains
like healthcare is crucial to avoid harm and protect
privacy.

Potential solution. Developing a comprehensive
framework that aids in LLM compliance is essen-
tial for responsible use and interaction with users.

4.1.2 Usage of APIs

To access the closed-source LLMs, passing the
commercial data through third-party APIs raises
potential privacy concerns (Laskar et al., 2023).
Potential solutions. 1. Robust security and pri-
vacy techniques like federated learning are essential
to safeguard user data while maintaining the func-
tionality of LLMs, 2. A strategic way of crafting
prompts is essential to avoid Personally Identifiable
Information (PII) leakage (Kim et al., 2024).

4.2 Reliability of LLMs’ Responses

Control the level of AI proactivity. LLMs
should minimize social awkwardness, enhance
expressiveness, and adapt to different scenarios
(Liu et al., 2023b; Urlana et al., 2024). The open-
ended generation of LLMs makes it challenging
to customize dialog systems for public health
intervention applications (Jo et al., 2023).
Outdated knowledge. The open-endedness of
LLMs often leads to hallucinations due to a lack of
an updated knowledge base (Faizullah et al., 2024).
Additionally, the training data might contain errors
and become outdated over time.

Potential solutions.  Techniques such as
Retrieval-Augmented Generation are effective in
reducing hallucinations. However, such systems
struggle with complex questions that require addi-
tional information often generating out-of-context
content. Moreover, techniques such as diverse
beam search (Vijayakumar et al., 2018), confident
decoding (Tian et al., 2019) are promising in
mitigating hallucinations. Additionally, model
editing techniques (Hoelscher-Obermaier et al.,

2023) can address the unintended associations,
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enhancing the practical usage of LLMs.

4.3 Infrastructure Accessibility

Carbon emissions. Infrastructure is crucial for
deploying LLMs, influencing factors like process-
ing speed, latency, cost, and training needs. High-
performance hardware is necessary to boost speed
and reduce latency, enhancing user experience but
it requires careful budgeting due to associated high
costs. Achieving an optimal balance between cost
and performance is crucial for the efficient training
and scalability of LLM applications.
Potential Solution. Implementing robust small
language models lead to reduced carbon emissions.
Compute requirements. Despite the state-of-the-
art performance of the large language models, uti-
lizing them for small-scale industries is not feasible
due to high compute requirements.
API costs. While LLMs like GPT-3.5 and GPT-4
(Achiam et al., 2023) demonstrate superior perfor-
mance over open-source models, their high cost of
API access is prohibitively expensive to perform
comprehensive studies (Laskar et al., 2023).

Potential Solution. Balancing the trade-off be-
tween performance and cost is necessary for the
practical usage of LLMs (Laskar et al., 2023).
High inference latency. APIs can be slow when
demand is high. For instance, tasks like business
meeting summarization can take GPT-4 around 40
seconds to generate a single response (Laskar et al.,
2023). Additionally, longer prompts increase com-
putational demand (Jiang et al., 2023b).

Potential Solution. Open-source models like
LLaMA-2 (Touvron et al., 2023) are more favor-
able for industrial deployment. Further studies on
efficient model optimization techniques such as
quantization, pruning, and distillation are required
(Laskar et al., 2023). Moreover, closed-source mod-
els that can utilize prompt compression techniques
such as LLMLingua (Jiang et al., 2023b).

4.4 Domain Adaption

Lack of domain-specific datasets. The ability
of LLMs in the finance and medical domains is
lacking due to insufficient domain-specific training
data in the foundation models (Liu et al., 2024; Li
et al., 2023c). Consequently, the current versions
of GPT-4 and ChatGPT do not meet the industrial
requirements to build financial analyst agents (Li
et al., 2023c). While LLMs can generate relevant
reasoning, they fall short of the desired standard,
indicating significant room for improvement.

Diversity. LLMs fail to mitigate social bias due
to a lack of diverse demographic data (Lee et al.,
2023). Foundation models must equally consider
factors like ethnicity, nationality, gender, and reli-
gion, as most currently reflect western perspectives.
In-context learning (ICL). The scope of in-
context learning is limited by its pretraining data
(Han et al., 2023). It is unlikely that any model
will perform well when using ICL with data signif-
icantly different from its pretraining data.
Potential Solution. 1. Pre-training data should
consist of various domain mixtures; however, find-
ing the right mixture is still an open challenge. 2.
LLMs should be carefully tested to ensure they
treat marginalized individuals and communities
equally (Kotek et al., 2023). 3. Continuous pre-
training can help overcome the drawbacks of the
in-context learning strategy.

4.5 Data Creation Using LLMs

Few works attempt to generate synthetic datasets by
utilizing LLMs. However, three major concerns ex-
ist with using LLMs for synthetic data creation/an-
notation; 1). Lack of diversity. Synthetic datasets
may lack diversity due to the limited knowledge
base (Ramakrishna et al., 2023) of LLMs, 2). Qual-
ity and compute. The quality of the annotated data
might improve with the size of the LLM used for
the annotation (Sun et al., 2023). However, leverag-
ing large LLMs requires higher computational re-
sources, 3). In-context learning (ICL) challenges.
ICL is a widely adopted approach for textual task
data annotation tasks (Li et al., 2023¢). However,
the main challenge lies in responsibly incorporat-
ing the model’s output is to deliver value to users
without misleading them or inadvertently amplify-
ing malicious behavior (Deng et al., 2023).
Potential solution. Currently, tools like FABRI-
CATOR (Golde et al., 2023), support tasks like
classification, sentence similarity and QA for data
labeling and other tasks should be explored.

4.6 Sub-standard Performance of LLMs

Code generation. LLMs’ coding ability is limited
to generate general-purpose coding tasks. However,
the generation of high-quality code for complex
network management tasks remains challenging
(Mani et al., 2023). Moreover, LLMs have limited
capabilities in repository-level coding tasks except
in C and Python languages (Bairi et al., 2024) and
fail to complete code with potential bugs (Dinh
et al., 2024). Most of the code-LLMs struggle with
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code completion tasks, with undefined names and
unused variables (Ding et al., 2023) being the most
prominent static error cases.

Conversational applications. LLMs face chal-
lenges in providing emotional support and main-
taining long-term memory, impacting their effec-
tiveness in conversational applications (Jo et al.,
2023). Future research on a longitudinal deploy-
ment of LLM-driven chatbots for public health in-
terventions would help understand how users’ en-
gagement changes over time.

Multilingual and Multi-Modal: Most of the
LLMs are being limited to English, there is sig-
nificant room for creating robust multilingual mod-
els. Only a few studies have focused on utilizing
LLMs for such multi-modal industrial applications
(Feng et al., 2024; Lu et al., 2023). More efforts
are needed to integrate LLMs with voice assistants
and Robotics (Yamazaki et al., 2023).

4.7 Explainability and Interpretability

The robust performance of LLMs across various
tasks underscores the importance of explainability
and interpretability to foster trust in their predic-
tions. However, several challenges impede the de-
velopment of explainable models.

Black Box Nature: Many popular LLMs, such
as ChatGPT and Gemini (Team et al., 2023), are
accessible only through APIs, limiting users’ un-
derstanding of their internal workings.

Scale and Complexity of Models: The large-scale
training on vast data leads to complex models, mak-
ing it hard to identify which parameters influence
specific decisions (Brown et al., 2020).
Performance Trade-Off: Balancing model per-
formance with the ability to provide meaningful
explanations is a significant challenge; many mod-
els struggle to maintain this equilibrium.
Language Ambiguity: The inherent ambiguity of
language complicates the generation of clear expla-
nations, as words and sentences can have multiple
meanings depending on context (Wang, 2023).
Potential Solutions. Model Simplification: De-
veloping simpler models can enhance interpretabil-
ity, provides a clear understanding of the decision-
making processes of LLMs (Che et al., 2016).
Training Data Transparency: Sharing details
about training datasets and their sources can illu-
minate knowledge gaps and potential biases in the
models (Bender and Friedman, 2018).

Interactive Exploration Tools: Creating interac-
tive platforms that allow users to manipulate inputs,
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Figure 2: Current state of the industrial applications
utilizing the LLMs; POC stands for proof of concept.

visualize attention patterns, and observe changes
in outputs can provide valuable insights into model
behavior (Olah et al., 2018).

4.8 Evaluation of LLMs

In sectors like legal, finance, and healthcare, blend-
ing LLMs with human feedback is crucial to low-
ering false positives, underscoring the importance
of human oversight in safety-critical applications
(Liu et al., 2023a). Moreover, our analysis (see
Appendix C) reveals that less than 15% of studies
conduct human evaluations to assess LLM outputs,
indicating a need for more rigorous validation meth-
ods. Evaluating long-form question answering is
challenging for LLMs (Zhao et al., 2023), as addi-
tional contextual information may not always be
available in practical QA scenarios. Current met-
rics like BLEU (Papineni et al., 2002) and ROUGE
(Lin, 2004) primarily evaluate the similarity, but
are insufficient for assessing the reasonableness of
LLM responses.

4.9 Ethical Concerns

The most common ethical challenges with LLMs
are violation of the model license, model theft,
copyright infringement, producing harmful con-
tent, and trustworthiness (Foley et al., 2023) and
following are the potential solutions .
Protecting LLMs. Watermarking techniques
(Peng et al., 2023) are essential for copy-right pro-
tection of industrial LLMs, aim to minimize the
adverse impact on the original LLM.

Enhancing creativity. Al models should enhance,
not replace, human creativity by generating new
ideas and insights (Shen et al., 2023).

Fairness in data visualization. Interactive data
visualization can help detect and address hidden
biases (Kwon and Mihindukulasooriya, 2023).
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Small Scale Industries

Medium Scale Industries

Large Scale Industries

API Integration, Pre-trained Models,

In-house deployment, Continuous pre-training,

xgd: of LLMs Low-code or No code platforms, Bﬁ;?;lgzﬁzgﬁﬁtFme_tunmg’ Collaborative tools and frameworks,
g Zero-shot, Few-shot & Pre-training from scratch, Re-pretraining
Challenges Cost, Technical expertise, Data Scalability, Ethical concerns, Regulations,

privacy, Performance

Domain Adoption

Data governance

Data modalities Uni-modal

Multi-modal (Max two)

Multi-modal (2 or more)

Training time Few hours to days

Few days to weeks

Few weeks to months

Dataset size 100 to 10k samples

10k to 100k samples

More than 100k samples

Compute resources Cloud

Cloud and Moderate GPUs

In-house high-end GPUs and TPUs

Optimization Quantization

PEFT techniques,
Distillation, Pruning

Prompt compression techniques

Languages Monolingual

Monolingual

Multi-lingual/Cross-lingual

Ethical complexity Low

Moderate to high

High to very high

Type and size Open-source <= 3B

Open-source ~7B

Any open-source model

Table 1: A suggestive guide to various industries to maximize the utilization of LLMs for NLG applications.

Linking models. Techniques such as LLM Attri-
bution (Foley et al., 2023) link fine-tuned models
to their pre-trained versions.

Protecting integrity. Guardrails such as NeMo
(Rebedea et al., 2023), LangKit2, and TrustLLM
(Sun et al., 2024) help to maintain LLM integrity
by preventing biased or inaccurate outputs.
Addressing these challenges requires a combina-
tion of technical expertise, ethical considerations,
and further research efforts. In Figure 2, we cat-
egorize each paper (total of 68) based on its ap-
plication life cycle and observed that, due to the
above-mentioned pitfalls, more than 70% of LLM-
based studies are still in the conceptual phase.

S Maximizing LLM Utilization Across
Industries

This section offers a suggestive guide to various
industries to maximize the utilization of LLMs for
Natural Language Generation (NLG) applications
(RQ3). As shown in Table 1, our suggestions are
tailored to various industries, considering their dis-
tinct goals, resources, and workforce capabilities.
The recommendations for small and medium-sized
industries equally apply to large-scale industries.

1) Small-scale industries such as startups with less
than 100 employees need to optimize the use of
LLMs within constraints of limited computational
resources and workforce. These industries should
emphasize prompt engineering and transfer learn-
ing techniques to utilize robust small LLMs with
up to 3 billion parameters with permissive licenses.
Further, these industries should focus on monolin-

2https://docs.whylabs.ai/docs/langkit-api/

gual tasks and actively perform the inference on a
few hundred samples. To reduce the inference du-
ration, these industries should opt for optimization
techniques such as quantization. Moreover, these
industries encounter challenges such as potential
reductions in model accuracy, costs, and need for
technical expertise. Some of these can be addressed
by partnering with Al consulting firms.

2) Medium-scale industries up to 1000 employees
should focus on utilizing the RAG-based pipelines
and domain-specific parameter efficient fine-tuning
and distillation techniques for LLMs up to 7B pa-
rameters. Additionally, these industries can de-
velop domain-specific adapters to enhance LLMs’
performance on specific tasks. These industries can
explore moderate multi-modal (text + vision) tasks.
Additionally, the key challenges for medium-scale
industries are scalability and domain adoption.

3) Large scale industries such as MNCs should
focus on continuous pre-training of LLMs while
ensuring compliance with regulatory requirements.
These industries can leverage LLMs effectively
across multi-lingual, cross-lingual, and multi-
modal generation tasks. Training such models can
take from a few weeks to months, which requires
high-quality data and huge compute as well. These
industries should focus on establishing several col-
laborative tools and frameworks to maximize LLM
utilization. For all industries, we recommend using
open-source models with appropriate licenses to
address ethical concerns and comply with LLM
regulatory guidelines. Additionally, robust testing
and validation protocols are essential to meet indus-
try standards. Fostering strong collaborations and
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knowledge sharing between industry and academia
is crucial for advancing responsible LLM develop-
ment and deployment.

6 Conclusions

This study delves into the utilization of Large Lan-
guage Models (LLMs) through an industrial lens,
with a specific focus on identifying roadblocks to
their adoption. It meticulously examines various
pitfalls and provides potential solutions. More-
over, this study offers a guide to organizations of
all sizes to maximize the utilization of LLMs for
industrial use cases. By identifying pitfalls and
suggesting potential directions, the study offers a
strategic road-map for optimizing LLM effective-
ness in industrial operations.

7 Limitations

Our study has the following limitations.

Scope. To provide a practical guide to various in-
dustries, we restrict our scope to only Natural Lan-
guage Generation (NLG) applications. Prospective
works should focus on providing an extensive guide
to various other tasks as well.

Coverage. With the rapid development of LLMs
and the voluminous research in this field, it’s not
feasible to comprehensively cover all the papers.
Recognizing this, our survey has focused specifi-
cally on industry-related papers. This allowed us
to delve deeper and gain an understanding of the
unique requirements and challenges faced within
industrial applications of LLMs.

Confidentiality. Due to the confidential nature
of the industrial applications not many details
were available for specific scenarios or challenges.
Hence, we only focused on providing recommen-
dations/insights that can be applicable to a broad
range of industrial applications.

8 Ethics Statement

To our knowledge, this study presents minimal eth-
ical concerns. However, to maintain transparency,
we provide a detailed analysis of all 68 papers
present in the survey in Appendix Section C. Each
paper is reviewed by at least three individuals to
validate its claims and findings. We conduct the
industrial case study, following the guidelines out-
lined by the ACL ethics review policy 3, thereby

3https ://aclrollingreview.org/
ethicsreviewertutorial

Ethics Review Boards (ERB) approval is not neces-
sary. It’s important to note that our research involv-
ing human subjects does not entail the collection
of any medical or sensitive information from the
users.
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A Survey Papers Selection Criteria

We used keywords such as “large language mod-
els”, “LLM” and “LLMs for industrial applica-
tions” for selecting the relevant papers. We selected
the majority of papers from the reputed databases
including the ACL Anthology*, ACM Digital li-
brary>, Google Scholar®, which are known for host-
ing peer-reviewed articles that meet high academic
standards. Subsequently, we finalize suitable re-
search papers for the survey based on the following
criteria.

Criteria Number of papers
arXiv version 37

Non organizational papers 10

Not related to application 6
Relevant 68

Total 121

Table 2: Survey papers filtration criteria.

* The paper should be a peer-reviewed and pub-
lished version.

At least one of the paper’s authors should be
from the industry.

* Paper should use at least one or more LLM.

* The paper should report at least one real-world
application using LLM(s).

Necessary Concessions: We believe that having
at least one author from the industry brought the
following advantages.

* We found that considering papers with only
researchers from industry led to very few re-
search papers. Also, in recent times, collab-
oration between academia and industry has
rightfully expanded resulting in more practi-
cal and applicable research works.

* Also, they brought practical perspectives that
were grounded in real-world applications and
challenges.

In total, we have collected 121 research papers,
and out of them, we have discarded 53 that do not

4https: //aclanthology.org/
5https: //dl.acm.org/
https://scholar.google.com/
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Figure 3: Distribution of research papers from industrial
organizations. Others include Apple, Sony, Alibaba,
Allen Inst for AL, JP Morgan, Nvidia, Adobe.

fall under one or more above-mentioned criteria as
mentioned in Table 2. We have omitted 40 papers
because they are not peer-reviewed and 10 more
papers came from the non-organizations typically
submitted by academic labs/universities. Moreover,
we have discarded six papers, which did not dis-
cuss any industrial application. After applying the
filtering criteria we left with 68 relevant papers.
This distribution of the list of papers from various
industrial organizations is mentioned in Figure 3.

B Industrial Case Study Details

We have created a questionnaire to conduct the
industrial case study as shown in Fig 3.

C Survey Papers Checklist

This paper provides a review of 68 papers and for
each paper, we reported 22 features as mentioned
in Table 5. We briefly describe each feature in the
master table for better understanding.

* Paper: Citation of the paper.

* Venue: The venue where the paper was pub-
lished.

* Year: Year of paper publication.
o LLM name: Names of the LLMs used in the
paper.

* Organization: Name of the industrial organi-
zation involved in the work.

* Domain: Domain information of the applica-
tion in the paper.
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» Application: The type of application under

which the work was categorized into.

Use case: The information of how the paper
leverages an LLLM in a specific scenario or a
task.

Dataset Name: Datasets used by the paper for
modeling and evaluation.

Prompting Strategy: Prompting strategies
used in the paper.

Evaluation metrics: Details of the evaluation
metrics used in the paper.

Application life cycle: Information of applica-
tion’s life cycle stage.

GitHub: Link to the GitHub repository, if any,
that was published in the paper.

License: This field indicates if the paper con-
tains license-related information.

Privacy:This field indicates if the paper con-
tains privacy-related information.

Use cases: This field indicates if the paper
mentions a use case or not.

Limitations: Major limitations of the paper, if
any.



1. Participant level of expertise in LLMs?

(] Beginner

[ Intermediate
[] Proficient
(] Expert

O NA

2. Application Domain

[] Healthcare

[] Banking

[J Financial

[] Retail

(1 Security

(] Privacy

(] Legal

[] Marketing & Advertising
(] Education

[] Media and entertainment
[J Human Resources(HR)
[ eCommerce

(] Other:

3. What is the name of the task that LLM(s) performs in your project?

4. Type of data used?

(] Tabular

(] Image

(] Video

] Audio

(] Text

(] More than one modality
(] Other:

5. How are the LLMs used?

[] Fine-tuning

[] Zero-shot

[] In-context learning
(] Other:

Table 3: Questionnaire for industrial case study: Part 1
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6. Did you consider any of the following Trust attributes or guard rails while designing/implementing
the LLM-based solution?

[] Security

[J Robustness

[] Privacy

[] Bias & Fairness

[] Interpretability or Explainability
[] Toxicity

(] Hallucination

(] None

(] Other:

7. Name of the LLMs being used?

O LLaMA

O LLaMA-2

(] Falcon

(] Mistral

J GPT3.5 (ChatGPT)
O GPT4

] MPT

(] Meta OPT

(] Bard

O PaLM

(] Pythia

[] Cerebras-GPT
O NA

(1 Other:

8. What are the risks associated with the LLMs being used in your project?

[] Security and Safety
[] Reputation

[] Quality of service
[] Revenue

[] License

(] NA

[] Other:

Table 4: Questionnaire for industrial case study: Part 2

202




‘s1oded yoreasar g9 yarm £9AIns Ay Jo I[qe) JASBN G J[qRL

Tt . » » o T ———ry - - B
ULd100) U0 TS SSAUINISUO) PUB SITIE ‘$121 A A A wouordaq N N N ST 30 A13Lm 2pia Jo Kaustoiga 1531 pu ojdaqt ol OTH 20z wnsks dINNE © pumd 89
UONNJOS JUO[EPUEIS SE JQEINS 10U IY[00) 53) 59) wauidojara Kemadn (Buruea) 1x21u03-u) 104s ma siseiep Inidio SWTT fesIaAO) Auuosasni, suauag Isuoup € [® 19 23paga,
A0S SUofEpU S G 10 oo, X oW > woudoaq v Gunarar o> usnod e . s v Aoy o viain e P oo (o0 e 19
s sunos-uado wosy pasins wopcyy v -
resp ool pesnos oLy wa R W v Doy oot e —— na T 0N 11 s Buaota ap— - A IV AN coor sawmox G TR 9
sow1q Btz g opuss g aprson o owm w S wan sz R— SpTT0 st g0 s o o v oy . o a0y oy LoD €200 e (o s S
1 9o a0 3 013 Yo S s =W ow mdzouoy w sz Kamdorg ST v 59 Jo 2 a0 g v Ao sy Suddy pRom N €207 D [ R
s s jo o wWoowow o0, ooz Vomu wpadga 1oy T 0 S epT— fmoog fap— caor awa 200 0 v o
511D AL T
SO 0-19D03SD 0] PRSI 100 SIS oW w om0, W W fr— Sapous wonwpunoJo s pu st o s ¥ S suusey — ANEEON DAY D38 520z v P U by 29
awsdcs oy o N w sdionosg e pavosos P — NISSVINUOLIN  SSAum stho 1svos o1 s (A sy Jr— an T O ova 00wy 19
Souu2s ainiey 01 Fuipeo] 1S G pays — (aAunqunag £1d0
ot S s i pos o o W woudorag oo VN ST S suomonson sogossnnimsgosd a0, o1 somaoy wonmodios s a0 a0 vl (o0 s 09
“Gisyom ssaoms p——
-
Supooua vep iy vonmTSTA
“asumydon o s pe o ot : 5
; o w atuo AT p— Koo oo pi s osory < "
X X x o0 o o pur o017 o o oL o e W e v Cwomaa e
o) womwgA PRI
QLN o s v
B p—— N .
o s pdop LE__:.M___ o iy oo N N N VN Dodonezenidosuod anpuuonsany Jous-onz, W afuwy aumsy  uonowsanu ndino-nduy 100y, (1DH) usuaD. amasay 33000 €20 RISV PAPUIE THD (€200 TSR 88
) ) oy aBesany J0ys-03: S09pIA Butreay noo u 100} Ly §sa00 180f © sysysur; Z00-epe-SuIppaqui-1xa) -} T oraL, Knsnpuy ueseiQ) pue fuepres
w w x xow > o Ariawy won oz o0 1 ST o1 it S pr s s TR LD 0T L TP NI (s200) wswio puw s L
iSO 1O 4 K10 o e ooz, ssouaio St . Y —— somoaon fre— LiomD g0z sy (o R 9
ol uado uu sutousai Suusansus uonsanh ) oduoneziemdasuo; 008 10ys-ox SIS 241 o Fuspuvisiap uoyrIauaF-1x) Suaue joso1o1] odpua £00-ULAEP-1XY) §'¢-] £ o) 2) ui ss
21 S a0 ST WIESSUNOP YL SYSTI [EANINIS o 20T N N A Doguonezenidaduiod ] 1oys-01Z 121129 01 tonNpuL 10N . el 53 yosanN IpUD E00-PUARP-1O) CELD  £20T SdinaN (€200 s s
T —
Wow W W W s w swon w s o sl an f— SEAVI T D 0z e ——
e — R, )
w a0 w wn v oumommmdmu [ T————— ot pur oS-z oLz omIoT o 1 147 U0 ST o U an 1y o st vy D TV e o S i (o ez g
IV-TIN *22V-dS ‘HONOY ‘NATE < e
W o ow ow W i W o oy pasea souspis an 1v 0o sy VN dousyon Szl (0 s 7
oW W w wousordsa AORLI P 190008 +-N7T Aamapdoig s 30 proy amonmsen wosorI Xewdd €0z A0S o0 TR 18
R Yo eoidiooy Lo} ) ;
WoowW W W ooamommmdie B I T T ———p— [ — e, s s koo B skt (20 mRskmEy o8
1o PN T )
WN VN VN YN Dodmoneziemidacuo) N8 00N YN VN anposd 3ual jo vonezuTwwIng wonezLRUING aIN wozewy LAV €200 faway Ansnpur I INING (£200) BROERL 6
) ) p Joduonwzfenidasuo; P E — T uonezmIns Suneou ssaursn wonwzeIng sup epeues po ALGELTVNETT ey, Knsnpuy £207) 1019 1
x x x Dogruon S SDHEA 9900 ooz 1SO1INY WSO, " a s an 1 peus prai o LV gor e Sosnpur 4NN (o0 T s
uny gt odds 01 3300 wWoow o= oedronwzEmdI0), J— SN PO OGS-0Z XVDUIN AU RS XA woE 3o amwios STV smy opou sopsuen fquo-apona €207 a1 (€200 e w1
a0t punos pandso o G poe . . . o, o oy s - ot oo 1o ot s e o o . az1-28-iioq “Punsurg ooty R o
suomsan 524005 o4 [ 2409 100 G 13TE A A A 204 ] oMy MDA MO KSR -z HaEa r o3 Jo Bupuey ansuagaidiaio)y w2105 fwnaog Y onnsurgop woored logpogiiceggn 00 PLASIPULINING (€D ERWS 5y
aannaduion A1 i Jo saueuniopad aq), sk sk sk DoduoneziEmdasuo) 20008 14 VN THSON uoneAnIw Ysu seiq s weduip panog duauan QETIV AHAVN €140 PUC (28 PUE §0E) VAOTORSH €20 Sforag Ansnpuy 4 INING (€200 TR AT S
A oN W Sode — fonnaay (Bunma) 1a1u05-up) 0y SHON-VOU e [erouBY 10) ORISR S[2qe ] oy wusuuag oueuty yaumasay afFoony W EL4D €200 MMM (€200 BR3LG by
Swau Dy “weds voms Pui ST (215 © oo funaag ISV DLS YOsIon “200-vpe-Furppaquia-xay 200) 1 1 Buag
w wWoow oW ow > w v s won P TLSS o cBppID) S0 WO S s WIS s sy s bosmr LR Z00 AP €207 v w0 TR 6
) . e —
s 4110 ST 0 1o pa ¢ 00 paapistc, “ “ “ oz, . L P TN 00150 S0 Aenineso o woigosd o same P e _— PO ONLAD O o fo
s oy ST 0 g pan 0 psapsuo) X x AW Ooamomzmmde) S0l W o L P O 00100 e et noog o e TR ONLIO L0 gz v (w0 e T
WOSE-82090 OO LD L
D SR 10 v pounsig SA e wL W Dodonvpmdonoy 1095 14 0wy W S o s L Wl DEEUD  f0r e SnpuaNwa (o v g 1r
Funduosd joys-a) 10] WAL s Joduoneziedasuo; 4 "xopup pressey tous-au od JuawIn0p puv SUOND2[02 1531 eAoLy ououas — c0p-1ouATp ) 200 jov
el X W W W Oogmonezmdine) pTR— ousau0 B o o i oy o wosorg copupaor €20z Ao 0 TRy or
A Ta0n0x e _ (@ aLvIeTI
onuas Wsisu0d ax2vayy weaop Kiosd Tsis 10w BN ox VN W Dogmomermdae) X014 X AN oo eorpaw wosy suodas ASojorpes Sy oy o 1621 (WpL0) 121D €208 [N €z TR 6
Ssouonon i oGO3 TR WL S0
nusiod o Jauy oy 52 53] 53] wautkoldag Apms 125 104s-0137 ¢ nded s PASLIR, Suaue pavasay 2[Foos €. €200 £207) "I 1 1Y £
oy o X x x ot s sy ooz 5108 Susuarios s St sty swsusn) sy 15000 o e 1o @ BR s
[ ——
woowow fr— ooau N fr— 10010 AL OOAVINS [ sy [r— o YLD anwa @0 w1
o om0 w T20n0N 1 Kormony e vorL . S R DU AN oS0 Lo 20z w1 ez e o
S~ Sonmon prouney wory oy o0 s
wWoow o ow v o v vias [ ooy A am -z Saron @ ey s
Suonis .
W W W W VN Dodmonezpmdasuos 10us-017, maudorg uxa".__u 43 [ego1D e, TNTd €T0T doysyion TWOI (£200) 0 RN e
OPUIIPY PO UOPULIO)U N 1250 SPOOY U sastiodsar 5 o) Bunsa) IR XAI0-U]) 10YSM2, Amraude o) 2104 Swarsks sapuanoo suauag uonwiodios eAojasdA} - 10q01 paduTA] 200) 119 D
e o X NowW oW oL 1 a0 g om0y suaseS puO o oanrt 0 o o paaapy (20 g
W wn w0 on v umommmdmuy s o oo oo pre— e i attoon wra e st (o0 s o
I309] 3XOI0D PASTAINT 1 ST AP sn N W VN Dodmoneaemdasuo wonajduwos ya W ks v esned poseq WTT Fumoseay suauan amasay yosomIy PO SELID €200 doysyion TAOIT (€200 TR tsMoEL T§
25008 e 3000
w B R G sy p— v eowop Vo wvaars suduond s uo pase sa e o Sumoseay frmm— sugy pp— xaa00 sz u (czon ek
forio oS g
qsod aq o S svossad oldwo) S N W YN Doaonmpmdonoy Spms auox Vououdo s o pay WTL0 S Sunossoy [ap— caor Wi @
wWoow s SodronezEmd0), ooy LoD sz AR VoS sy Sunoseas st pa oy o usossoy [r—— L0 oumseld €20z Sanon 5
s i, Soopest s e e ond WoW e W oo Soninany 100 s sz eseeD BV ooy Jr— W4 Q0PN 0T L STl NN (o0 Rz
sowdly o
B T — o e Eeer— 000N 16 1 P Sovion [ET—— s T S n— - [ VIETTWIOMD €200 satnon Gron e oz
LD 0 LD
B T r— W oo ow e rn— [ET—— VOUM VOANOY YONNO'0000  pou e worin fRp—p—— s o0t e s
; p atfuo o P R — [r— s s 1 o ogmgeLan ooz c200) 10 1 T,
w X X oW o0 w ooz N SN VO NN e a ) u G IV WO 4 T L 6co avor oo weIez e
SHREINTI VO o )
oD S o YN 4100 wWoow W ow 5 oz VoS VO s oy o Sunsun-uonisan) an wososg CVIETISELD LD €00 VL AN JINWG 0 iy
‘U038 IHAE HOALAW HONOY :m\—m
uodaq oF sidwosd jo uorssaidwos uaym sdoip adurULIO: 53) 59) 20 neziemdasuo;) a0og 0 10ys-017, ETRIP-ATY aads asuasagur 1ayBry soj uorssaiduio iduwios auoy josoI1] A-apne]) pur. o b €7 Suery w
%557 pw0ssq 5 o s X W x vaonezEm0), SIS 000N N sz g Sy » o o X w WORORIN 1N P 0G0 ELD €207 anwa @500 0
Fojorpra d[BUIS ¥ 01 paiu| s 2 oo 21093 RGXOUD) 100 tous-fuviy ININ S48 AFojorpu jo uoneiuo: [— e Saununy oy yosaia WETLAD 6z0) T 12 0
sturpuy * A N WN wea “qaBnoy “L o 1 0 0US-2UQ 100542 U017 oUW 15345 TINPT LAXD SN puv Supurisiopun ¥ o e ey Yosos “gop-punepar ogmi-geLan 0T (g0 TR (T
womues o o N W w woudoiaa W s @y 3 syoaurs somoao Ivaioon VT 50z (0 mRRmE o
"
S LIS U0 S12POt D3 Pz puIgaq ST s w ox waukoidaq | ooy w puguag 1 E— susuary todioy vrxorsy WP €200 (€200 RSO 61
fommon - s
™ VLN (0L ") D Z-ruer S amiE
) ” oL [ — . S - .
[r—— oW oedronezEmdI0), L 1 2500 onsan) ot pur ogs-os7 ; : P an ooy ffoon wia o o oezo0 sy st
) Loy  dOHIG
oo 10 s
140
Sassasou 1 50 W S 3po e sy 9100 dg o)W oW w woudorag R S ——— W w S0 G SR o UoERD, syonauig sy e oSO YosorIY cama e sammon (20 LTI L
. T S po o popows asend]
jo sady 59) 59) T1-90N04 AW 1043 Ei_ .§uz HOUOXG/ROuBL Sunseaaso, uozeun “pLdE 70T pea Ansnpuy 12 0
1o sad w x xow 5 e haonON Sk oo p u v VIPTILD 60T P Ssnp i @ EEen 9t
asa00 “xdonny iy “rydo
A o N o w0 14 [ — QVADS 9-DAL TINS DA ‘HaNT Jp— suusey i oy Y VO 20 v
soustionp 1
9) ) ur 0, wziemdasuo; “ouanoay Fupuig Anquny (Buruumea) 1x21003-u) 104s ma & - uouag aFe 1-1Xa) o Suruu uoneIAI) B suuag afdoos yido na)
pozss ensnun p 1 N N A WA Doduomzmidaduo) oo a1y (Buaa] wowo3-up) 10y INOH-QE NI-USN a1 10 0 g 0 %) e LD oy S0 SdnaN '
Sdnos o) EnpINDUL U AP o Aisanp paey s N w auog w sy sy adoon, G v
W )W w eI suox pr—— S0 VY 10y 001 5E ST 0 WO i s 000, oo o
] squsp e pana =N W wowiordsq sy W st 208 SMNH  ANOTO HAVN IV AN ez 11
oo sy s o ory = oW ooz [ L i I P —— amwios STV SAV sapous mwsopsuen Ajuo-mpoed  £200 Wt
o Ep— Ao ey — [ — wonmndues apos posea e s 30 amuios sav J— ooz Sapnon B
LW W W Daonmmdnoy s 30> o o ey [T ———— S R RS — w3 305 amuios [— s asaoasa B
oo O — Wi - w e A p—— s 3o amuios - ooz w1 L
oo SusaEn o o sumiod o0 o N v w sdionosg w [ ———— w ST Fusn wopmorsns Adaoyy woneE 305 amwios W e 180 ez men o
pofoldua jou st 5 op odsoneziemdasuo; 10 SIAQELIRA PISTUN ‘AGELIE UYIPUNL auoy jaserep uonajdwiod vonoun, onagdwiod 1oj stsk[eur apos an wonesuad ammjos g v “891-U2D9PO0'E9-B30P0) )2) T 12 S
013 0 COEZO3D PRI K e oy X N W W onamomzpmdoie), Pl e X oD wonaduon wopoung 3581 apoo o et apo wos IV SHY Pl a o v (w0 wRsua s
WN VN N Kowanaay d: dvs3 10 uonwsauad apody. wonwiRuag 3po)) 0 £20T SIONIOH. (€00 TRweW  p
e i g S W — wWooow o ow oaronezEmd), o sy or sz Samdong s S 3pos 9o Koo w05 s J— oo Sammonowan T
X USPIT 10 P PO D 0 SATSAT Woow oW ooz, St 1 e P 0 JOUSTZ 201158 oS S oSS W SIS €59 5 swoupm osorg e “soma G e T
w - "W . [ —— J— 10D PR 10U+ 0us-017 Yous h&ﬁoﬂ%mﬁﬂrﬁﬁ [ R — Sonfpray omasay 1y o df ‘G9LINOOTE ‘H991d0 XON-LAD  §T0T Y%L AnSnpul 4'ININ o TR 1
LADBNUODI 1D LD
Swonmart w1 Gmud weort Qe op i wonwddy o o e sunduiord S v s wonwnddy g oo Tt N o v

203


https://github.com/microsoft/NeMoEval
https://github.com/amazon-science/buggy-code-completion
https://github.com/amazon-science/mxeval
https://guide.ncloud-docs.com/docs/en/clovacarecall-overview
https://github.com/weixi-feng/LayoutGPT
https://github.com/flairNLP/fabricator
https://github.com/google-research/google-research/tree/master/llm4mobile
https://github.com/yhoshi3/RaLLe
https://github.com/microsoft/LLMLingua
https://github.com/nerfies/nerfies.github.io
https://github.com/williamliujl/CMExam/tree/main
https://github.com/lupantech/chameleon-llm
https://github.com/wyu97/GenRead
https://github.com/google/archat
https://aws.amazon.com/machine-learning/responsible-machine-learning/aws-healthscribe/
https://github.com/naver-ai/korean-safety-benchmarks
https://github.com/apple/ml-delphi
https://github.com/amazon-science/mxeval
https://github.com/microsoft/prose
https://github.com/microsoft/ChatGPT-Robot-Manipulation-Prompts
https://microsoft.github.io/lida/
https://github.com/NVlabs/progprompt-vh
https://github.com/IBM/finspector
https://github.com/amazon-science/invite-llm-hallucinations
https://github.com/uclanlp/biases-llm-reference-letters
https://github.com/NVIDIA/NeMo-Guardrails/
https://github.com/h2oai/h2ogpt
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