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Abstract

Accurately classifying the relevance of Query-
Product pairs is critical in online retail stores
such as Amazon, as displaying irrelevant prod-
ucts can harm user experience and reduce en-
gagement. While Large Language Models
(LLMs) excel at this task due to their broad
knowledge and strong reasoning abilities. How-
ever, their high computational demands con-
strain their practical deployment in real-world
applications. In this paper, we propose a novel
distillation approach for e-commerce relevance
classification that uses "rationales" generated
by LLMs to guide smaller cross-encoder mod-
els. These rationales capture key decision-
making insights from LLMs, enhancing train-
ing efficiency and enabling the distillation to
smaller cross-encoder models deployable in
production without requiring the LLM. Our
method achieves average ROC-AUC improve-
ments of 1.4% on 9 multilingual e-commerce
datasets, 2.4% on 3 ESCI datasets, and 6%
on GLUE datasets over vanilla cross-encoders.
Our 110M parameter BERT model matches 7B
parameter LLMs in performance (< 1% ROC-
AUC difference) while being 50 times faster
per sample.

1 Introduction

Large-scale e-commerce search systems, used by
companies like Amazon and Walmart, typically fol-
low a multi-step process to retrieve relevant prod-
ucts for a given query (Guo et al., 2022). The
process starts with an initial retrieval step that gen-
erates a broad match set for the query. A rele-
vance model is then applied to capture the nuanced
relationship between the customer’s query intent
and the products in this match set (Momma et al.,
2022). This relevance model plays a role similar
to reranker models used in Retrieval-Augmented
Generation (RAG) pipelines. In real-time retrieval
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tasks, user queries are matched to products as they
occur. However, latency and computational con-
straints often limit the complexity of matching algo-
rithms, resulting in reduced accuracy and coverage.
To mitigate this, search engines pre-generate prod-
uct sets offline for frequently searched queries, stor-
ing them in production tables. This offline retrieval
process, which powers the majority of search oper-
ations, combines lexical, behavioral, and semantic
retrieval models to return a wide range of results.
Once the offline retrieval is complete, the focus
shifts to refining this broad set of results to better
align with the customer’s intent. This is achieved
using a relevance model, where lightweight cross-
encoder models (Mangrulkar et al., 2022) are typi-
cally employed to filter out poor <query, product>
pairs, ensuring a high-quality user experience. In
this paper, we focus on building high-performing
cross-encoder relevance models to predict the rel-
evance of <query, product> pairs. Given that this
relevance model needs to evaluate millions of pairs
daily, it must be small and efficient language model
to minimize compute costs and inference time
while maintaining high accuracy.

The advent of LLMs has revolutionized rele-
vance classification and retrieval tasks. LLMs ex-
cel in these tasks due to their extensive pretrain-
ing, which equips them with vast knowledge, en-
abling high precision in classification. A key break-
through in this area is the introduction of "ratio-
nales" or "chains of thought"—representing the
cognitive processes or contextual understanding
that the model uses to arrive at specific decisions
or classifications. However, the impressive capabil-
ities of LLMs come at the cost of immense com-
putational demands, far exceeding those of cross-
encoder models, making them impractical for large-
scale prediction tasks. For instance, classifying 50
million <Query, Product> pairs using a 20B pa-
rameter LLM can take several days on a single
GPU, while cross-encoder models can accomplish
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the same task in just a few hours, underscoring the
computational efficiency of cross-encoders.

Drawing inspiration from industry practices and
their inherent challenges, we introduce a novel ap-
proach to enhance relevance classification by har-
nessing the reasoning capabilities of LLMs to boost
the performance of cost-effective cross-encoder
models. Our method integrates LLM-generated
rationales as an auxiliary task during cross-encoder
training, utilizing a cross-encoder-decoder architec-
ture. In this framework, the cross-encoder handles
the primary binary classification task, while the de-
coder generates rationales based on LLM outputs.
For inference, we streamline the process by deploy-
ing only the cross-encoder model, removing the
need for the LLM-based rationale generator or de-
coder module. This design ensures an efficient and
powerful relevance classification system that bal-
ances performance with computational efficiency.
Below we summarize our key contributions:
1. Develop a novel cross-encoder-decoder archi-
tecture (Sec. 4.3) that leverages LLM-generated
reasoning to enhance relevance classification. This
approach combines the reasoning capabilities of
LLMs with the efficiency of cross-encoders, uti-
lizing LLM written rationales as auxiliary training
data while maintaining low inference costs by de-
ploying only the cross-encoder at runtime.
2. Rigorous evaluation on diverse datasets, in-
cluding 9 multilingual e-commerce datasets, 3
ESCI datasets, and public datasets (GLUE and
QADSM). Our method achieves average ROC-
AUC improvements of 1.4% on 9 multilingual e-
commerce datasets, 2.4% on 3 ESCI datasets, 6%
on GLUE datasets over vanilla cross-encoders and
state-of-the-art performance on QADSM surpass-
ing finetuned LLMs. Our 110M parameter model
matches 7B parameter LLMs in performance (<
1% ROC-AUC difference) while being 50x faster
per sample.
3. We conduct several ablations (Sec. 5.2) to ex-
amine how rationale distillation benefits the model
across different data sizes. Our rationale-guided
distillation, utilizing LLM-generated reasons, helps
the model focus on relevant tokens and improves
attention between query and product title tokens.
With 10K samples, our method outperforms the
best fine-tuned LLM in 6/9 cases, and with 100K
samples, it remains competitive, outperforming in
1/9 cases.

2 Related Work

Knowledge distillation (Agrawal et al., 2023b)
(Hinton, 2015) (KD) focuses on training a smaller
and inexpensive student model to replicate the be-
havior of a larger, complex teacher model by mini-
mizing a distillation loss based on the teacher’s soft
target probabilities. The key advantage is that soft
probabilities contain richer information than hard
labels. KD for Transformer models has been widely
studied (Freitag et al., 2017). Since the introduc-
tion of BERT (Devlin et al., 2018), efforts to distill
these models have led to variants like DistilBERT
(Sanh, 2019), TwinBERT (Lu et al., 2020), Mo-
bileBERT (Sun et al., 2020), and MiniLM (Wang
et al., 2020). Among these, DistilBERT, with its
6-layers, is the most commonly used for its balance
of performance and efficiency.

Large language models (LLMs) have signifi-
cantly larger parameter spaces than pre-trained
models (Zhao et al., 2023) like BERT (Devlin et al.,
2018), often in the billions. For instance, GPT-
3 (Brown et al., 2020) has around 175B param-
eters, while Megatron-Turing NLG (Smith et al.,
2022) boasts 530B. Deploying these large models
is challenging due to their high computational and
memory demands, prompting practitioners to use
smaller, distilled models (Gu et al., 2023). For ex-
ample, Hsieh et al. (Hsieh et al., 2023) demonstrate
the effectiveness of distilling LLM-generated ratio-
nales using T5 (Raffel et al., 2020) (Agrawal et al.,
2023a) encoder-decoder models in a text-to-text
framework. In contrast, our work applies this con-
cept to smaller BERT cross-encoder models (110M
parameters) in a classification setting, outperform-
ing few-shot prompted LLMs and even surpassing
fine-tuned LLMs in certain e-commerce relevance
classification tasks.

3 Problem Statement

We develop a high-performing cross-encoder rel-
evance model R to predict the relevance of a
<query, product> pair. The model is trained on
human-annotated query-product pairs, DQP

label =
{(qi, pi, yi)}ni=1, where qi, pi, and yi represent the
query, product title, and a binary relevance label.
We also define an LLM θLLM that, using a de-
signed prompt τ(qi, pi, yi), determines the reason-
ing behind relevance. The goal is to leverage LLM
reasoning to improve the efficiency of model R.
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4 Proposed Method

Our approach aims to distill the reasoning capabili-
ties of LLMs into our cost-efficient cross-encoder
model to improve its performance. We first investi-
gate the capabilities of LLMs for our task and then
devise a method to distill this capability. The key
steps are outlined below:

1. Relevance Classification via Direct Answer-
ing from LLM: We first use an LLM to de-
termine the relevance of a query-product pair
in natural language, tested in both zero-shot
(ZS) and few-shot (FS) settings.

2. LLM Finetuning with Linear Layer: We
finetune a linear layer on top of the LLM’s
last layer output using our training data. This
serves as our "Maximum achievable perfor-
mance" or "Performance ceiling" which is the
highest performance possible to achieve using
Language modelling. Our production model
(fine-tuned BERT) is only 110M parameter
model, compared to the 7B LLM used here, is
over 50x faster per sample.

3. Reasoning Generation and Distillation into
Cross-Encoder: We generate reasoning for
relevance using the LLM and use reasoning
generation as an auxiliary task for training
the cross-encoder model. This is achieved
through a cross-encoder-decoder architecture
where the BERT cross-encoder handles the
primary binary classification task, and the
decoder generates reasoning mimicking the
LLM’s rationale.

4.1 Relevance Classification via Direct
Answering from LLM

We use an LLM to assess the relevance of a query-
product pair in both zero-shot and few-shot settings,
providing a baseline for the LLM’s capabilities.

In the zero-shot setting, the LLM is tasked with
determining the relevance without any prior spe-
cific training on similar query-product relevance
tasks. The input to the LLM is formatted using tem-
plate as: "[Query] is [Product Title] relevant?" The
output is parsed to classify as ’relevant’ if the re-
sponse starts with ’Yes’, ’not relevant’ if response
starts with ’No’. Example:

Query: wireless mouse
Product Title: Logitech MX Master 3
Advanced Wireless Mouse

LLM Response: Yes, this product is
relevant to the query.

In the few-shot setting, the LLM is provided
with a few annotated examples before making a rel-
evance determination. This approach leverages the
model’s in-context learning ability. Each example
is presented in the same format as the zero-shot
queries but includes examples at the beginning.

Example:

In-Context Examples:
1. Query: "wireless mouse"

Product Title: "Logitech MX Master 3
Advanced Wireless Mouse"
Relevance: "Yes"

2. Query: "gaming keyboard"
Product Title: "Corsair K95 RGB Platinum
Mechanical Gaming Keyboard"
Relevance: "Yes"

Target:
Query: "wireless mouse"
Product Title: "Logitech MX Master 3
Advanced Wireless Mouse"
LLM Response: "Yes, this product is
relevant to the query."

4.2 LLM Finetuning with Linear Layer

This method, shown in Figure 6 in the Appendix,
involves appending a linear layer to the LLM’s final
hidden state output and fine-tuning this layer using
a labeled dataset. The results from this method
serve as our "Performance ceiling" or "Maximum
achievable performance" and are reported in the
last column of Table 1 & 2. The parameters of the
linear layer are optimized by minimizing the binary
cross-entropy loss, keeping the LLM’s parameters
fixed to preserve its pre-trained capabilities.

The LLM’s output for the i-th query-product
pair, denoted hi, is hi = θLLM (qi, pi) The lin-
ear layer applies a transformation to hi to yield
a relevance score ŷi = Whi + b. We use
binary cross-entropy loss for training as L =
− 1

N

∑N
i=1 LCE(yi, ŷi), where yi is the ground

truth and ŷi is the predicted probability of relevance.
This enhanced approach, albeit slow and expensive
for inference, effectively bridges the gap between
general language understanding and specific task
requirements, leading to marked performance im-
provements in relevance classification.
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4.3 Cross-Encoder-Decoder for Reasoning
Distillation

The LLM generates rationales using a carefully
crafted prompt (see Appendix C) that emphasizes
semantic connections and functional similarities
between queries and product titles. Then reasoning
prediction via decoder is used as an auxiliary task
for training a cross-encoder model. This approach
leverages the interpretability of LLM-generated
reasoning to enhance the performance of a smaller,
more efficient BERT cross-encoder model. We uti-
lize the Mixtral 8X7B Instruct LLM from AWS
Bedrock to generate reasoning for why a query-
product pair is relevant or not. This process in-
volves providing the LLM, θLLM , with a query-
product-relevance triplet (qi, pi, yi) with the de-
signed prompt τ as τ(qi, pi, yi) and asking it to
generate a natural language explanation.

The input is formatted as: "[Query] is [Product
Title] relevant? [Relevance (yi)]. Explain why."
The LLM response is a reasoning statement that
explains the relevance decision.

Example:

Query: noise-cancelling headphones
Product Title: Bose QuietComfort 35 II
Relevance: Relevant
LLM Response: The product is relevant to
the query because the Bose QuietComfort
35 II headphones are designed with
noise-cancellation features, making them
ideal for users looking to reduce ambient
sound. The query specifically mentions
'noise-cancelling', which is a primary
function of this product.

Our architecture, shown in Figure 1, consists of
a transformer-based BERT cross-encoder and a T5
decoder. The cross-encoder handles the primary
binary classification task, while the decoder gener-
ates reasoning based on the LLM’s output. We use
a standard BERT base encoder, 110M parameters
with 12 layers and a 768-dimensional hidden state,
a T5 base decoder for auto-regressive reasoning
token prediction, and a binary classification head
using a linear layer on the CLS token.

The query-product pair is fed into the BERT
cross-encoder, producing a hidden state representa-
tion hi as hi = BERT(qi, pi). The CLS token rep-
resentation hCLS is used for generating predictions
for binary classification as ŷi = σ(WhCLS + b).
The overall token representations are fed into the

Figure 1: Cross-Encoder-Decoder for Reasoning Distil-
lation

T5 decoder to generate the reasoning sequence ri
as ri = Decoder(hi) The total loss function com-
bines the binary classification loss and the auxiliary
reasoning generation loss:

Ltotal = Lclassification + λLaux

The binary classification loss is defined as:

Lclassification = − 1

N

N∑
i=1

LCE(yi, ŷi)

The auxiliary task loss for reasoning generation
is:

Laux = − 1

N

N∑
i=1

T∑
t=1

logP (ri,t|ri,<t,hi)

where yi is the ground truth label, ŷi is the predicted
probability, ri,t is the reasoning token at time step
t, hi is the encoder hidden state from BERT, and λ
is the weight for the auxiliary task loss. We set λ
to 0.1 based on our early experiments.

4.4 Practical Modifications
Warmup of Decoder To stabilize learning, we
initially train only the decoder on 50% of the data
with a frozen BERT encoder. We then introduce
a linear warmup phase for the encoder over the
first 30% of training. During warmup, the loss
focuses solely on auxiliary reasoning generation:
Lwarmup = Laux. Post-warmup, the total loss com-
bines binary classification and auxiliary task losses:
Ltotal = Lclassification + λLaux.

Ignore CLS Token for Decoder We experi-
mented with including or excluding the CLS token,
typically used for classification in transformers, in
the decoder input. The hidden state representation
hi is adjusted accordingly based on this choice.
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Embedding-based Reasoning As a compute-
efficient alternative, this approach (Figure 4) com-
pares embeddings of the reasoning to mean-
pooled BERT cross-encoder representations. BGE-
M3 (Chen et al., 2024) generates embeddings
(ereasoning) for LLM-written reasonings. The
cross-encoder’s final layer output is mean-pooled
(hmean), transformed (htransformed), and compared
to ereasoning using the loss function: Laux =
∥htransformed − ereasoning∥2.

5 Results and Ablations

Baseline We use pretrained BERT base model
further trained on MS-MARCO query-passage-
relevance dataset for search query relevance clas-
sification. We train this model using cross entropy
loss to estimate P (yi|qi, pi), shown in Figure 5, we
refer to this as BERT in our results tables.

Datasets and LLM Models: (1). 9 e-commerce
regions for query-passage relevance: AU (English),
ES (Spanish), BR (Portuguese), AE (English), FR
(French), MX (Spanish), Saudi Arabia (Arabic),
DE (German), and IN (English), each with 100K
training and 10K test samples. All datasets used in
our analysis are anonymized, aggregated, and do
not represent production distribution. (2). Public
ESCI dataset from Amazon for the US (English),
JP (Japanese), and ES (Spanish) marketplaces, with
100K training and 10K test samples (Reddy et al.,
2022). (3). GLUE benchmark and QADSM dataset
for natural language inference and query-passage
relevance classification (Wang et al., 2018; Liang
et al., 2020). (4). LLaMA2-7B and Mistral-7B-
v0.3 models for LLMs finetuning experiments (Tou-
vron et al., 2023; Jiang et al., 2023). More details
are provided in Appendix B.

5.1 Results

We refer to our method from Section 4.3 with De-
coder warmup optimisation as + Reasoning (Ours)
and we also show the best results for LLM finetun-
ing with linear layer from Section 4.2, taking best
among the two LLMs (LLaMA2-7B and Mistral-
7B-v0.3) as "Best of LLaMa2 and Mistral-7B". We
run all our experiments 10 times each and report the
mean and the 95% confidence interval in our tables.
Under Appendix E we provide detailed results with
results from both LLMs along with precision, re-
call and accuracy in Tables 5, 6, 7, 8. For details on
the reproducibility of our experiments and hy-
perparameter settings, please refer to Appendix

Dataset Samples BERT + Reasoning Best of LLaMA2
(ZS/FS) (Ours) and Mistral-7B

AU
10K 1x +2.21%(±0.70%) -0.06%(±0.58%)

100K 1x +1.21%(±1.20%) +2.19%(±1.31%)

ZS/FS (-23.14%(±0.35%) / -15.53%(±0.69%))

ES
10K 1x +2.84%(±1.11%) -0.73%(±0.49%)

100K 1x +1.45%(±1.39%) +3.98%(±1.16%)

ZS/FS (-28.01%(±0.37%) / -15.64%(±0.74%))

BR
10K 1x +0.37%(±1.05%) -1.69%(±0.82%)

100K 1x +1.14%(±1.21%) +1.62%(±1.32%)

ZS/FS (-24.50%(±0.35%) / -18.30%(±0.58%))

AE
10K 1x +1.45%(±0.94%) +3.85%(±1.18%)

100K 1x +1.83%(±1.20%) +3.13%(±1.31%)

ZS/FS (-29.77%(±0.35%) / -20.48%(±0.59%))

FR
10K 1x +2.11%(±0.96%) +1.85%(±0.84%)

100K 1x +2.16%(±1.24%) +2.47%(±1.24%)

ZS/FS (-36.49%(±0.24%) / -18.12%(±0.56%))

MX
10K 1x +0.32%(±0.84%) +4.28%(±1.08%)

100K 1x +2.16%(±1.23%) +3.64%(±1.34%)

ZS/FS (-27.87%(±0.36%) / -15.05%(±0.67%))

Arabia
10K 1x +1.56%(±0.95%) -0.45%(±0.72%)

100K 1x +2.20%(±1.21%) +1.37%(±1.21%)

ZS/FS (-30.06%(±0.33%) / -19.68%(±0.55%))

DE
10K 1x +2.14%(±0.85%) +4.56%(±0.98%)

100K 1x +1.81%(±1.15%) +4.97%(±1.26%)

ZS/FS (-24.70%(±0.37%) / -7.52%(±0.85%))

IN
10K 1x +1.76%(±1.05%) +0.61%(±0.94%)

100K 1x +0.87%(±1.24%) +4.28%(±1.35%)

ZS/FS (-23.27%(±0.47%) / -12.37%(±0.67%))

ESCI Dataset

US
100K 1x +2.55%(±1.29%) +4.34%(±1.17%)

ZS/FS (-16.29%(±0.70%) / -9.61%(±0.94%))

JP
100K 1x +1.53%(±1.09%) +1.60%(±0.97%)

ZS/FS (-33.61%(±0.36%) / -25.55%(±0.61%))

ES
100K 1x +4.59%(±1.29%) +3.77%(±1.17%)

ZS/FS (-29.47%(±0.47%) / -15.45%(±0.82%))

Table 1: Relative Performance Metrics Comparison
Across Multilingual Datasets

A.
Table 1 shows ROC-AUC metrics across 9 e-

commerce datasets (upper part of table). Our rea-
soning method outperforms BERT baseline by 0.3-
2.3 pp for 10K samples, surpassing Best LLM fine-
tuned in 6/9 cases. At 100K samples, it remains
competitive, outperforming in 1/9 cases. ZS/FS
LLM performance is >20 pp lower, emphasizing
finetuning necessity. For ESCI dataset (100K sam-
ples, bottom part of Table 1), our method shows
1.3-3.9 pp gains over BERT baseline across 3 re-
gions surpassing even our "Performance ceiling"
of 7B parameter finetuned LLM.

Table 2 shows results for 7 GLUE benchmark
datasets. Our method outperforms the BERT base-
line but not LLMs. The closest performance
to LLMs is on QQP (0.9625 vs 0.97279) and
MRPC (0.88105, a 0.09 improvement over BERT’s
0.79548). LLMs’ advantage on these challenging,
low-resource tasks stems from extensive pretrain-
ing. However, for the QADSM query-passage rele-
vance task, our method excels with an ROC-AUC
of 0.91228, surpassing both BERT (0.71741) and
the best LLM (0.87868) by 0.20 and 0.03 points
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Dataset BERT + Reasoning Best of LLaMA2
(Ours) and Mistral-7B

QQP 0.9571(±0.006) 0.9625(±0.009) 0.9728(±0.004)

RTE 0.4754(±0.011) 0.5873(±0.007) 0.8867(±0.005)

MRPC 0.7955(±0.008) 0.8811(±0.003) 0.9486(±0.010)

QNLI 0.9467(±0.005) 0.9531(±0.012) 0.9887(±0.002)

Cola 0.5912(±0.009) 0.6130(±0.007) 0.9060(±0.011)

SST2 0.9488(±0.004) 0.9480(±0.006) 0.9907(±0.008)

QADSM 0.7174(±0.010) 0.9123(±0.005) 0.8787(±0.007)

Table 2: ROC-AUC of GLUE & QADSM benchmark

(a) Attention maps and Shap-
ley visualization for BERT
baseline model, demonstrat-
ing inconsistent focus on rele-
vant tokens.

(b) Our model showcases im-
proved token focus, attention
on query-tokens and inter-
pretability.

Figure 2: Attention maps, Shapley visualization, and
generated reasoning for our proposed model, showcas-
ing improved token relevance and interpretability.

respectively, demonstrating its effectiveness in e-
commerce relevance classification.

5.2 Ablations

Figure 2 presents a comparative analysis of our
proposed model against the BERT baseline for
query-product relevance classification. The visual-
ization includes attention maps and Shapley values,
illustrating the models’ focus on different tokens
when determining relevance. Our model (Fig. 2b)
demonstrates superior performance by consistently
attending to semantically relevant tokens in both
queries and product titles. In contrast, the baseline
model (Fig. 2a) shows inconsistent attention pat-
terns, often failing to identify the most relevant
tokens for accurate classification. Additionally,
we show that rationales generated from our cross-
encoder-decoder are coherent and show deeper task
understanding.

Figure 3: AUC-ROC vs Sample Size for various practi-
cal modifications.

Table 3: ROC-AUC scores for IN marketplace dataset
with changing dataset sizes.

BERT with + Decoder + Ignore Reasoning
Samples Reasoning Warmup CLS Embeddings

100 1x +2.94% +5.24% +0.80% +3.71%
500 1x +3.14% +4.98% +1.49% +3.48%
1000 1x +3.39% +5.76% +1.76% +3.79%
5000 1x +2.55% +2.88% +2.72% +3.72%
10000 1x +1.15% +1.75% +0.97% +1.70%
50000 1x +0.62% +0.93% -0.55% +0.48%
100000 1x +0.24% +0.87% +1.24% +1.05%

Table 3 and Figure 3 compare our modifica-
tions from Sections 4.3 and 4.4 on the IN (En-
glish) dataset with varying training sample sizes.
Our method with Decoder Warmup consistently
performs best, providing up to 2 pp gain over rea-
soning alone. The compute-efficient Reasoning
Embeddings approach outperforms the BERT base-
line and nearly matches the full decoder method.
Performance improves with sample size, but at a
decreasing rate (e.g., 4.4 pp improvement from 100
to 10K samples, but only 2.9 pp from 10K to 100K).
Our methods significantly outperform the baseline
at lower sample sizes, demonstrating their efficacy
in low-resource scenarios.

6 Conclusion

We developed a novel approach for enhancing rel-
evance classification in e-commerce searches by
integrating Large Language Models (LLMs) via
knowledge distillation with a cost-efficient cross-
encoder model. Our method leverages LLMs ratio-
nales during the training phase while only utilising
the trained cross-encoder in production to achieve
compute efficiency. Our experimental results con-
firm that this approach surpasses traditional models
across various e-commerce datasets.
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A Reproducibility and Hyperparameters

In this section, we describe the hyperparameters
and training methodologies employed in our ex-
periments, which utilize publicly available datasets
and open-source models to ensure that our work
can be independently verified and reproduced.

We conducted our experiments on the GLUE
benchmark (Wang et al., 2018) and the ESCI
dataset (Reddy et al., 2022), both of which are
publicly available and widely used in the NLP com-
munity. For generating reasoning, we used the
"Mixtral 8X7B Instruct" model provided by AWS
Bedrock, which is available under the Apache 2.0
license. This model’s open-source nature and the
permissive licensing ensure that other researchers
can use the same model for their work.

Hyperparameter Value
Batch Size 32
Learning Rate 5e-5
Number of Epochs 8
Warmup Steps 500
Weight Decay on Decoder 0.001
Weight Decay on Encoder 0.0
Adam ϵ 1e-8
Adam β1 0.9
Adam β2 0.999
Gradient Clipping 1.0

Table 4: Hyperparameters used for training the models.

To ensure reproducibility, we provide the hy-
perparameters used in our experiments in Table
4, which were optimized through a series of pre-
liminary trials. For our training methodology, we
utilized PyTorch’s Fully Sharded Data Parallel
(FSDP) (Rajbhandari et al., 2021) to efficiently
handle the large-scale models and datasets. FSDP
allows us to shard model parameters, gradients,
and optimizer states across data parallel workers,
significantly reducing memory requirements and
enabling the training of models on available multi-
GPU hardware.

To generate reasoning with the "Mixtral 8X7B
Instruct" model, we used the following prompt tem-
plate, which was designed to elicit detailed expla-
nations for relevance decisions:

Prompt:
"Given the following query-product pair,
is the product
relevant to the query?
Please provide reasoning for your answer.

Query: [Query]
Product Title: [Product Title]
Relevance: [Yes/No]

Reasoning:"

An example of a generated reasoning is as fol-
lows:

Example:
Query: noise-cancelling headphones
Product Title: Bose QuietComfort 35 II
Relevance: Yes

Reasoning: The Bose QuietComfort 35
II headphones are relevant to the query
because they are equipped

https://api.semanticscholar.org/CorpusID:259950998
https://api.semanticscholar.org/CorpusID:259950998
https://doi.org/10.18653/v1/W18-5446
https://doi.org/10.18653/v1/W18-5446
https://doi.org/10.18653/v1/W18-5446


144

with advanced noise-cancelling technology,
which aligns with the user's search
for 'noise-cancelling headphones'.
This feature helps to
minimize ambient noise,
providing a quiet listening experience.

B Additional details on Datasets and
LLM Models

For query-passage relevance, we use datasets from
9 e-commerce regions across with different lan-
guages - Australia (AU, English), Spain (ES, Span-
ish), Brazil (BR, Portuguese), United Arab Emi-
rates (AE, English), France (FR, French), Mexico
(MX, Spanish), Saudi Arabia (Arabic), Germany
(DE, German), and India (IN, English). We also use
the publicly available ESCI (E-commerce Search
Corpus with Implicit user feedback) dataset (Reddy
et al., 2022) from Amazon, which contains search
sessions sampled from the Amazon Search Query
Logs. The ESCI dataset is used to evaluate the per-
formance across three marketplaces - United States
(US, English), Japan (JP, Japanese), and Spain (ES,
Spanish). Each of these datasets contains 100K
training samples and 10K test samples. We also
compute results by training on only 10K data points
for our 9 e-commerce datasets.

For natural language inference, we use the
GLUE benchmark (Wang et al., 2018) which in-
cludes 6 datasets that cover a range of natural
language understanding tasks. We also use the
QADSM (Question Answering Dataset on Search
Media) dataset (Liang et al., 2020) for evaluating
query-passage relevance classification. QADSM
is a large-scale dataset designed for research on
search relevance over e-commerce search media
data like product titles and descriptions.

For our experiments involving large language
models (LLMs), we use the LLaMA2-7B (Touvron
et al., 2023) and Mistral-7B-v0.3 (Jiang et al., 2023)
models. These LLMs are used to generate reason-
ing statements which are then used to train the
smaller cross-encoder model through our proposed
reasoning distillation approach. The performance
of these LLMs on the zero-shot (ZS) and few-shot
(FS) settings is also reported in the results tables
for comparison.

C LLM Prompt for Rational Generation

In our approach, we utilize a Large Language
Model (LLM) to generate rationals that inform the

training of our smaller BERT model. The LLM
is provided with a query, a product title, and their
relevance label. It then generates a concise reason-
ing about the relevance between the query and the
product title. The prompt used to guide the LLM
in generating these rationales is as follows:

Given a query, a product title and their rel-
evance label, generate a concise reasoning
(1-2 sentences) for their relevance. Focus
on key semantic connections and functional
similarities, rather than relying solely on ex-
act word matches. Consider the following
aspects:
1. Identify core functionality matches be-
tween the query and product title.
2. Recognize semantic relationships be-
tween different terms that serve similar pur-
poses.
3. Align user needs across potentially differ-
ent demographics or use cases.
4. Note shared purpose indicators or com-
mon structural elements in both query and
title.
5. Connect conceptually related terms that
may not be identical but serve similar func-
tions.
Emphasize how these connections demon-
strate relevance despite potential differences
in wording or target audiences.
Your reasoning should highlight functional
similarities and shared purposes that a clas-
sification model should learn to recog-
nize when determining relevance between
queries and product titles.
Prioritize understanding context, functional-
ity, and user needs to generate nuanced and
accurate relevance determinations.
Query: [Query]
Product title: [Title]
Actual Relevance label: [Relevance]
Write concise reasoning for given relevance
label.

This prompt is designed to guide the LLM in
generating rationals that capture nuanced semantic
relationships and functional similarities between
queries and product titles, going beyond simple
word matching. The generated rationals are then
used to train our model, enhancing its ability to rec-
ognize complex relevance patterns in e-commerce
scenarios.
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D Figures detailing our methodology

In this section, we present architecture diagrams
(Figure 4, 5, 6) which help show how various com-
ponents of our approach work. Refer Section 4 for
details on our methodology.

Figure 4: Embedding-based Reasoning Process

Figure 5: Architecture of Baseline method which trains
an encoder for classification using cross-entropy loss.

E Detailed Results Tables

We present detailed results in this section which
show results on both LLMs used (LLaMa2-7B and
Mistral-7B-v0.3) as well as report precision, recall
and accuracy as additional metrics for our experi-
ments in Tables 5, 6, 7, 8. Tables in the main text
are abridged versions of these tables.

Figure 6: Architecture of LLM Fine-tuned with Linear
Layer.
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Marketplace Model Type Model/Approach Samples Accuracy Recall Precision ROC-AUC

AU

LLM
LLaMA2-7B

10K 0.8670(±0.005) 0.9915(±0.003) 0.8678(±0.007) 0.8661(±0.004)

100K 0.9008(±0.006) 0.9837(±0.002) 0.9054(±0.009) 0.9301(±0.008)

Mistral-7B-V0.3
10K 0.8397(±0.011) 0.9993(±0.002) 0.8390(±0.006) 0.8361(±0.010)

100K 0.9022(±0.004) 0.9837(±0.003) 0.9068(±0.007) 0.9354(±0.005)

BERT
BERT (Baseline)

10K 0.8658(±0.008) 0.9437(±0.006) 0.9001(±0.004) 0.8666(±0.009)

100K 0.8918(±0.007) 0.9800(±0.003) 0.9004(±0.005) 0.9153(±0.006)

+ Reasoning (ours)
10K 0.8841(±0.005) 0.9620(±0.004) 0.9001(±0.008) 0.8857(±0.007)

100K 0.9035(±0.006) 0.9970(±0.002) 0.9136(±0.009) 0.9264(±0.010)

ES

LLM
LLaMA2-7B

10K 0.8511(±0.007) 0.9743(±0.004) 0.8642(±0.006) 0.8026(±0.009)

100K 0.8785(±0.005) 0.9796(±0.003) 0.8866(±0.008) 0.8997(±0.007)

Mistral-7B-V0.3
10K 0.8554(±0.006) 0.9320(±0.005) 0.8983(±0.004) 0.7710(±0.010)

100K 0.8883(±0.008) 0.9773(±0.002) 0.8977(±0.007) 0.8863(±0.006)

BERT
BERT (Baseline)

10K 0.8378(±0.009) 0.8615(±0.007) 0.9000(±0.003) 0.8085(±0.005)

100K 0.8592(±0.004) 0.9304(±0.006) 0.9000(±0.008) 0.8652(±0.007)

+ Reasoning (ours)
10K 0.8483(±0.006) 0.8971(±0.005) 0.9177(±0.004) 0.8314(±0.008)

100K 0.8724(±0.007) 0.9499(±0.003) 0.9107(±0.006) 0.8778(±0.009)

BR

LLM
LLaMA2-7B

10K 0.8507(±0.005) 0.9011(±0.007) 0.9182(±0.004) 0.8399(±0.006)

100K 0.8966(±0.008) 0.9391(±0.003) 0.9369(±0.005) 0.9242(±0.007)

Mistral-7B-V0.3
10K 0.7391(±0.009) 0.7761(±0.006) 0.8969(±0.004) 0.7128(±0.008)

100K 0.9044(±0.005) 0.9488(±0.007) 0.9373(±0.003) 0.7516(±0.006)

BERT
BERT (Baseline)

10K 0.8482(±0.007) 0.9348(±0.004) 0.9004(±0.006) 0.8543(±0.005)

100K 0.8658(±0.006) 0.9695(±0.003) 0.9003(±0.008) 0.9094(±0.007)

+ Reasoning (ours)
10K 0.8534(±0.004) 0.9532(±0.007) 0.9201(±0.005) 0.8575(±0.006)

100K 0.8795(±0.008) 0.9820(±0.003) 0.9107(±0.006) 0.9198(±0.005)

AE

LLM
LLaMA2-7B

10K 0.8619(±0.006) 0.9589(±0.004) 0.8850(±0.007) 0.8486(±0.005)

100K 0.9049(±0.007) 0.9599(±0.003) 0.9284(±0.006) 0.9305(±0.008)

Mistral-7B-V0.3
10K 0.8784(±0.005) 0.9588(±0.008) 0.9016(±0.004) 0.8828(±0.007)

100K 0.9138(±0.006) 0.9593(±0.003) 0.9386(±0.005) 0.9468(±0.004)

BERT
BERT (Baseline)

10K 0.8404(±0.007) 0.9311(±0.005) 0.9001(±0.004) 0.8501(±0.006)

100K 0.8824(±0.004) 0.9812(±0.007) 0.9005(±0.003) 0.9181(±0.005)

+ Reasoning (ours)
10K 0.8522(±0.006) 0.9413(±0.004) 0.9003(±0.008) 0.8624(±0.007)

100K 0.8937(±0.005) 1.0004(±0.003) 0.9107(±0.006) 0.9349(±0.004)

FR

LLM
LLaMA2-7B

10K 0.8360(±0.007) 0.9993(±0.002) 0.8360(±0.006) 0.8226(±0.008)

100K 0.8826(±0.005) 0.9762(±0.004) 0.8929(±0.007) 0.9087(±0.003)

Mistral-7B-V0.3
10K 0.8667(±0.006) 0.9335(±0.008) 0.9090(±0.004) 0.8484(±0.007)

100K 0.8882(±0.004) 0.9677(±0.005) 0.9048(±0.006) 0.9108(±0.003)

BERT
BERT (Baseline)

10K 0.8429(±0.007) 0.8954(±0.005) 0.9000(±0.004) 0.8330(±0.006)

100K 0.8643(±0.005) 0.9482(±0.007) 0.9000(±0.003) 0.8888(±0.008)

+ Reasoning (ours)
10K 0.8556(±0.006) 0.9135(±0.004) 0.9000(±0.007) 0.8506(±0.005)

100K 0.8837(±0.004) 0.9590(±0.006) 0.9130(±0.003) 0.9080(±0.007)

Table 5: Performance Metrics of Different Models Across Various Marketplaces - Part 1
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Marketplace Model Type Model/Approach Samples Accuracy Recall Precision ROC-AUC

MX

LLM
LLaMA2-7B

10K 0.8432(±0.005) 0.9968(±0.003) 0.8435(±0.007) 0.8581(±0.004)

100K 0.8843(±0.006) 0.9634(±0.002) 0.9040(±0.009) 0.9163(±0.008)

Mistral-7B-V0.3
10K 0.8739(±0.011) 0.9857(±0.002) 0.8779(±0.006) 0.8703(±0.010)

100K 0.9070(±0.004) 0.9505(±0.003) 0.9386(±0.007) 0.9261(±0.005)

BERT
BERT (Baseline)

10K 0.8153(±0.008) 0.8908(±0.006) 0.9003(±0.004) 0.8346(±0.009)

100K 0.8472(±0.007) 0.9529(±0.003) 0.9004(±0.005) 0.8936(±0.006)

+ Reasoning (ours)
10K 0.8326(±0.005) 0.8929(±0.004) 0.9117(±0.008) 0.8373(±0.007)

100K 0.8627(±0.006) 0.9682(±0.002) 0.9129(±0.009) 0.9129(±0.010)

Arabia

LLM
LLaMA2-7B

10K 0.8443(±0.007) 0.9891(±0.004) 0.8490(±0.006) 0.8341(±0.009)

100K 0.8964(±0.005) 0.9675(±0.003) 0.9133(±0.008) 0.9226(±0.007)

Mistral-7B-V0.3
10K 0.8633(±0.006) 0.9785(±0.005) 0.8729(±0.004) 0.7667(±0.010)

100K 0.9096(±0.008) 0.9663(±0.002) 0.9282(±0.007) 0.9140(±0.006)

BERT
BERT (Baseline)

10K 0.8501(±0.009) 0.9144(±0.007) 0.9000(±0.003) 0.8379(±0.005)

100K 0.8875(±0.004) 0.9769(±0.006) 0.9001(±0.008) 0.9101(±0.007)

+ Reasoning (ours)
10K 0.8674(±0.006) 0.9300(±0.005) 0.9000(±0.004) 0.8510(±0.008)

100K 0.8983(±0.007) 0.9941(±0.003) 0.9195(±0.006) 0.9301(±0.009)

DE

LLM
LLaMA2-7B

10K 0.8432(±0.005) 0.9968(±0.007) 0.8435(±0.004) 0.8581(±0.006)

100K 0.8843(±0.008) 0.9634(±0.003) 0.9040(±0.005) 0.9163(±0.007)

Mistral-7B-V0.3
10K 0.8564(±0.009) 0.9848(±0.006) 0.8624(±0.004) 0.8242(±0.008)

100K 0.8882(±0.005) 0.9677(±0.007) 0.9048(±0.003) 0.9108(±0.006)

BERT
BERT (Baseline)

10K 0.8383(±0.007) 0.8736(±0.004) 0.9000(±0.006) 0.8207(±0.005)

100K 0.8523(±0.006) 0.9302(±0.003) 0.9000(±0.008) 0.8729(±0.007)

+ Reasoning (ours)
10K 0.8540(±0.004) 0.8888(±0.007) 0.9000(±0.005) 0.8383(±0.006)

100K 0.8677(±0.008) 0.9438(±0.003) 0.9126(±0.006) 0.8887(±0.005)

IN

LLM

LLaMA2-7B
10K 0.8684(±0.007) 0.9774(±0.004) 0.8784(±0.006) 0.8588(±0.005)

50K 0.8827(±0.006) 0.9822(±0.003) 0.8888(±0.008) 0.9117(±0.007)

100K 0.8917(±0.005) 0.9804(±0.007) 0.8988(±0.004) 0.9286(±0.006)

Mistral-7B-V0.3
10K 0.8671(±0.008) 0.9549(±0.005) 0.8930(±0.003) 0.7125(±0.009)

50K 0.8851(±0.004) 0.9858(±0.006) 0.8885(±0.007) 0.8344(±0.005)

100K 0.9004(±0.007) 0.9789(±0.003) 0.9087(±0.006) 0.8905(±0.008)

BERT

BERT (Baseline)
10K 0.8427(±0.006) 0.9698(±0.004) 0.8563(±0.008) 0.8536(±0.007)

50K 0.8792(±0.005) 0.9809(±0.007) 0.8727(±0.003) 0.8795(±0.006)

100K 0.8902(±0.008) 0.9811(±0.003) 0.8992(±0.006) 0.8905(±0.005)

+ Reasoning (ours)
10K 0.8795(±0.007) 0.9478(±0.004) 0.8950(±0.006) 0.8686(±0.005)

50K 0.8840(±0.006) 0.9726(±0.008) 0.8979(±0.003) 0.8877(±0.007)

100K 0.9013(±0.005) 0.9761(±0.003) 0.9125(±0.007) 0.8983(±0.006)

Table 6: Performance Metrics of Different Models Across Various Marketplaces - Part 2
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Dataset Method Recall@0.7 Precision@0.7 ROC-AUC

qqp Llama2-7B 0.8940(±0.006) 0.8410(±0.004) 0.9603(±0.008)

Mistral-7B-v0.3 0.9083(±0.005) 0.8764(±0.007) 0.9728(±0.003)

BERT (baseline) 0.7924(±0.009) 0.8788(±0.006) 0.9571(±0.004)

+ Reasoning (ours) 0.8080(±0.007) 0.9000(±0.005) 0.9625(±0.010)

rte Llama2-7B 0.7939(±0.008) 0.7761(±0.006) 0.8867(±0.004)

Mistral-7B-v0.3 0.7634(±0.005) 0.7813(±0.009) 0.8690(±0.007)

BERT (baseline) 0.0992(±0.003) 0.3514(±0.011) 0.4754(±0.006)

+ Reasoning (ours) 0.1539(±0.007) 0.5790(±0.004) 0.5873(±0.008)

mrpc Llama2-7B 0.9355(±0.006) 0.9063(±0.005) 0.9214(±0.009)

Mistral-7B-v0.3 0.9391(±0.004) 0.9129(±0.007) 0.9486(±0.003)

BERT (baseline) 0.8817(±0.008) 0.8066(±0.006) 0.7955(±0.005)

+ Reasoning (ours) 0.8723(±0.007) 0.9023(±0.004) 0.8811(±0.010)

qadsm (en) Llama2-7B 0.8174(±0.005) 0.7893(±0.008) 0.8511(±0.006)

Mistral-7B-v0.3 0.8166(±0.007) 0.7965(±0.004) 0.8787(±0.009)

BERT (baseline) 0.3398(±0.006) 0.7548(±0.005) 0.7174(±0.008)

+ Reasoning (ours) 0.6462(±0.009) 0.9001(±0.003) 0.9123(±0.007)

qnli Llama2-7B 0.9428(±0.004) 0.9563(±0.007) 0.9842(±0.005)

Mistral-7B-v0.3 0.9453(±0.006) 0.9652(±0.003) 0.9887(±0.008)

BERT (baseline) 0.7874(±0.009) 0.9295(±0.005) 0.9467(±0.004)

+ Reasoning (ours) 0.7912(±0.007) 0.9457(±0.006) 0.9531(±0.010)

cola Llama2-7B 0.9223(±0.005) 0.8614(±0.008) 0.8947(±0.006)

Mistral-7B-v0.3 0.8988(±0.007) 0.9025(±0.004) 0.9060(±0.009)

BERT (baseline) 0.7559(±0.006) 0.7325(±0.005) 0.5912(±0.008)

+ Reasoning (ours) 0.7692(±0.009) 0.7780(±0.003) 0.6130(±0.007)

sst2 Llama2-7B 0.9685(±0.004) 0.9641(±0.007) 0.9907(±0.005)

Mistral-7B-v0.3 0.9662(±0.006) 0.9684(±0.003) 0.9896(±0.008)

BERT (baseline) 0.8536(±0.009) 0.9067(±0.005) 0.9488(±0.004)

+ Reasoning (ours) 0.8419(±0.007) 0.9080(±0.006) 0.9480(±0.010)

Table 7: Detailed Performance Comparison on GLUE Benchmarks

Dataset Method Recall@0.7 Precision@0.7 ROC-AUC

US Llama2-7B 0.9789(±0.005) 0.9145(±0.008) 0.8895(±0.006)

Mistral-7B-v0.3 0.9757(±0.004) 0.9174(±0.007) 0.8920(±0.009)

BERT (baseline) 0.9671(±0.006) 0.9099(±0.003) 0.8549(±0.010)

+ Reasoning (ours) 0.9700(±0.007) 0.9162(±0.005) 0.8767(±0.004)

JP Llama2-7B 0.9638(±0.009) 0.8817(±0.006) 0.8273(±0.005)

Mistral-7B-v0.3 0.9549(±0.003) 0.8880(±0.008) 0.8383(±0.007)

BERT (baseline) 0.9524(±0.005) 0.8836(±0.004) 0.8251(±0.009)

+ Reasoning (ours) 0.9694(±0.008) 0.8807(±0.006) 0.8377(±0.003)

ES Llama2-7B 0.9058(±0.007) 0.9086(±0.005) 0.8714(±0.008)

Mistral-7B-v0.3 0.9429(±0.004) 0.8966(±0.009) 0.8846(±0.006)

BERT (baseline) 0.9185(±0.006) 0.8863(±0.003) 0.8525(±0.007)

+ Reasoning (ours) 0.9144(±0.005) 0.9109(±0.008) 0.8916(±0.004)

Table 8: Performance Comparison of Methods Across Different Regions for ESCI dataset
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