UnifiedGEC: Integrating Grammatical Error Correction Approaches for
Multi-languages with a Unified Framework

Yike Zhao, Xiaoman Wang, Yunshi Lan*, Weining Qian
School of Data Science and Engineering, East China Normal University
Shanghai Engineering Research Center of Big Data Management
{ykzhao, xmwang}@stu.ecnu.edu.cn, {yslan,wngian}@dase.ecnu.edu.cn

Abstract

Grammatical Error Correction is an important
research direction in NLP field. Although many
models of different architectures and datasets
across different languages have been developed
to support the research, there is a lack of a com-
prehensive evaluation on these models, and dif-
ferent architectures make it hard for developers
to implement these models on their own. To ad-
dress this limitation, we present UnifiedGEC,
the first open-source GEC-oriented toolkit,
which consists of several core components and
reusable modules. In UnifiedGEC, we inte-
grate 5 widely-used GEC models and compare
their performance on 7 datasets in different lan-
guages. Additionally, GEC-related modules
such as data augmentation, prompt engineering
are also deployed in it. Developers are allowed
to implement new models, run and evaluate on
existing benchmarks through our framework
in a simple way. Code, documents and de-
tailed results of UnifiedGEC are available at
https://github.com/AnKate/Unified GEC.

1 Introduction

Grammatical Error Correction (GEC), aiming to
identify and correct grammatical errors in a sen-
tence automatically, is an important research di-
rection in the field of NLP. It has a wide range of
applications in real life, including writing assistant,
search engine, language learning education (Bryant
et al., 2023; Grundkiewicz et al., 2020; Knill et al.,
2019), which has attracted much attention in aca-
demic and industry fields. Existing GEC tools or
commercial products such as Grammarly', Quill-
Bot2, ChatGPT? serve the customers with the close
techniques. But we notice there is a need of an

*Corresponding Author.

"https://app.grammarly.com/

Zhttps://quillbot.com/

3h'ctps ://platform.openai.com/docs/
api-reference/introduction

37

open and unified framework for more researches
on GEC.

Through the investigation, we find there have
been many datasets designed for GEC tasks in dif-
ferent languages (Zhao et al., 2018; Yannakoudakis
et al., 2011; Ng et al., 2014; Zhang et al., 2022a;
Néplava and Straka, 2019; Yamada et al., 2020;
Boyd et al., 2014). Meanwhile, a lot of models
have been proposed for GEC tasks, categorized
into Seg2Seq models (Vaswani et al., 2017; Raf-
fel et al., 2023; Zhang et al., 2022b) and Seq2Edit
models (Omelianchuk et al., 2020; Gu et al., 2019).
However, these models are designed with differ-
ent architectures, and most of them are evaluated
on only one or two datasets with different pre-
processing pipelines, resulting in the lack of a
unified comparison between these models. Fur-
thermore, that makes it difficult for developers to
implement these models on their own.

To tackle these issues, we propose UnifiedGEC,
which is featured with several distinct character-
istics: (1) Modularization: We decouple GEC
methods with different architectures into modular-
ized and reusable components, namely config, data,
model, trainer, and evaluation components. We in-
tegrate them in a unified framework, which can be
adapted to general GEC methods. (2) Comprehen-
siveness: We deploy datasets as well as dataloaders
for different languages, models of different archi-
tectures, and mainstream evaluators for GEC tasks
in our framework, which allows developers to run,
evaluate and simply implement models. (3) Exten-
sibility: UnifiedGEC toolkit provides user-friendly
interfaces for various usages. The components in
the unified framework are modeled as exchange-
able modules, which makes it convenient for devel-
opers to develop their methods.

To validate the effectiveness and credibility of
UnifiedGEC toolkit, we also conduct extensive ex-
periments on GEC tasks via our toolkit, which
achieves close results to the prior reports. Fur-

Proceedings of the 31st International Conference on Computational Linguistics: System Demonstrations, pages 37-45
January 19-24, 2025. ©2025 Association for Computational Linguistics

https://github.com/AnKate/UnifiedGEC
https://app.grammarly.com/
https://quillbot.com/
https://platform.openai.com/docs/api-reference/introduction
https://platform.openai.com/docs/api-reference/introduction

thermore, UnifiedGEC toolkit makes it easier to
perform research on low-resource GEC, GEC with
data augmentation and other cases. In this paper,
we demonstrate extensive experiments on GEC
tasks. We hope that our toolkit will help devel-
opers in GEC field to speed up their development
on GEC tasks.
Our main contributions are as follows:

* We propose the first GEC-oriented toolkit,
UnifiedGEC, which provides developers with
a unified, extensible framework and allows
them to implement models simply.

* We implement 5 GEC models and integrate
7 widely-used datasets and 3 mainstream

Seq2Edit models deal with GEC tasks in the form
of sequence labeling tasks, and these models will
predict labels of edits for the tokens, such as PIE
(Awasthi et al., 2020) and GECToR (Omelianchuk
et al., 2020). We have surveyed works in recent
years and selected several representative models
integrated in our framework. Moreover, there have
been related works using data augmentation and
LLMs in GEC tasks. We comprehensively inte-
grate some augmentation methods and engineering
prompts used in related work in our toolkit (Sottana
et al., 2023; Song et al., 2023).

3 Framework Description

GEC evaluators in our framework, including
2 Seq2Edit models, 3 Seq2Seq models, 2 Chi- | . ‘
nese datasets, 2 English datasets and 3 low- - Wy oo By oo S
resource datasets, so that developers can run

Trainer

and evaluate these models through our frame-
work easily.

* We design a data augmentation module and
prompt module for low-resource tasks and
research on LLMs.

* We conduct a comprehensive evaluation of in-
tegrated models and datasets, providing thor-
ough conclusions and insights for developers
in GEC field.

2 Related Works

In the perspectives of boosting text writing and
language learning education, there are currently
some toolkits or systems designed for different
tasks and scenarios, such as OpenNMT (Klein et al.,
2017) for machine translation tasks, TextFlint (Gui
et al., 2021) for robustness text evaluation, Effidit
(Shi et al., 2023) for writing assistant. Inspired by
these works, we propose our toolkit UnifiedGEC
for GEC tasks. To our knowledge, our UnifiedGEC
is the first GEC-oriented toolkit that integrates
GEC models of different architectures and datasets
across various languages in a unified framework.
For GEC tasks, a lot of pre-trained models have
been proposed and applied (Bryant et al., 2023).
These models can be divided into two categories:
Seq2Seq and Seq2Edit. Seq2Seq models treat GEC
tasks as sequence generation tasks, directly generat-
ing tokens according to the context, such as Trans-
former (Vaswani et al., 2017), T5 (Xue et al., 2021)
and SynGEC (Zhang et al., 2022b). Meanwhile,

38

Data

Error Patterns

| Back-translation |

Figure 1: Framework of UnifiedGEC.

UnifiedGEC is a GEC-oriented toolkit based on
PyTorch (Paszke et al., 2019), which integrates
many models and datasets for GEC tasks. It allows
developers to run models of different structures
under a unified framework with only one single
command. Meanwhile, developers are able to im-
plement their own models through extensive and
reusable modules integrated in our framework.

As depicted in Figure 1, our framework consists
of five components: Config component, Data com-
ponent, Model component, Trainer component,
Evaluation component. Config component defines
training parameters and records parameters of mod-
els to construct a complete configuration for the
training process, which serves as the most basic
part of our framework. Upon the configuration,
data component processes data while model com-
ponent allocates models for training or fine-tuning
in the trainer component. Besides, we integrate
several mainstream evaluators for GEC tasks in
our evaluation component. Next, we will introduce
each component in detail.

[studies] [home] O [studies] [home] G
source source

[studies] [home] O
source

ol | aing s | Bncoer + Decoder | pingse | (__Eneodr |
model E:} Encoder + Decoder model E:} m

Po(ly, ., le | X)

Poe | X,yn - vee) 4}

— Large-scale
LLM:
model corpus E:> S <::| Prompts

P(Y | X, prompt)

. target [studies] [homc] D

Seq2Edit

label
Seq2Seq

target [studies] [home] O

LLM Prompts

Figure 2: Illustration of different deployed method paradigms with examples. Noting that both Seg2Seq and
Seq2Edit paradigms aim to fine-tune the models on the GEC training data set while the LLM prompting paradigm

aims to conduct inference on an LLM.

3.1 Config Component

The config component is the preliminary compo-
nent in which developers may customize the set-
tings of datasets or models through related configu-
ration files. There are two kinds of configuration
files in our framework: External Config and Inter-
nal Config. The internal configuration file defines
default configuration such as names of the model
and dataset, learning rate and number of training
epochs, while the external configuration file allows
developers to modify some more detailed settings
such as the parameters of a model.

3.2 Data Component

The data component plays a crucial role in our
framework as it provides a unified approach for
handling GEC datasets across diverse languages
via various methods. As shown in Table 1, there
are 7 GEC datasets integrated in our framework, in-
cluding 2 Chinese datasets, 2 English datasets and
3 datasets in other languages. All the datasets de-
ployed in our framework are open-sourced. Specif-
ically, for MuCGEC* (Zhang et al., 2022a), we
deploy its development set of as the test set in
our framework because its official test set has not
been published yet. Due to the different sources of
datasets, unexpected variance my be involved for
training. To bridge the gap, we integrate these pre-
processing steps in our framework. This results in
a standard and basic preprocessing pipeline, includ-
ing Dataset, Dataloader and Data Augmentation
modules.

Dataset module: Raw GEC data is initially read
from a JASON file and converted into a Dataset
class, which supports data splitting, noise removal
and simple tokenization.

*https://github.com/HillZhang1999/MuCGEC/

39

DataLoader module: After reading data, Dat-
aloader module takes charge of preparing the data
into batches in the configured format. Specifi-
cally, Dataloader module converts data into tensors
based on the requirement of different model archi-
tectures. For example, the dataloader converts data
into tagged text for GECToR (Omelianchuk et al.,
2020) model, and the dataloader extracts the syn-
tactic information of the dataset as additional input
for SynGEC (Zhang et al., 2022b). We also provide
Abstract Dataloader so that developers may inherit
the abstract class and implement their dataloader
class.

Data Augmentation module: We integrate Data
Augmentation module in our framework, which
can be launched via a single command line, which
supports to augment training data with limited raw
data. There are two methods implemented in this
module, error patterns (Zhao et al., 2019; Ehsan
and Faili, 2013), which will directly inject errors to
original data to generate more sentence pairs, and
back-translation, which generates parallel corpus
through a bridge language (Madnani et al., 2012;
Zhou et al., 2019).

3.3 Model Component

The model component consists of a variety of GEC
models, which can be flexibly called to perform
fine-tuning or inference. In this component, we
introduce a unified paradigm for implementation.
Each model should be pre-defined in terms of their
initialized parameters, loss definition, and propa-
gation procedures for training as well as testing.
Hence, developers could simply focus on the de-
velopment of the GEC model, trying different com-
binations and architectures for solving GEC tasks.
In addition, since the basic modules such as Trans-
former are reusable to implement a new model, our

https://github.com/HillZhang1999/MuCGEC/

Module Component
FCE (Yannakoudakis et al., 2011) English dataset
CoNLL14 (Ng et al., 2014) English dataset
NLPCC18 (Zhao et al., 2018) Chinese dataset
Data MuCGEC (Zhang et al., 2022a) Chinese dataset
COWSL2H (Yamada et al., 2020) Spanish dataset
Falko-MERLIN (Boyd et al., 2014) French dataset
AKCES-GEC (Néplava and Straka, 2019) Czech dataset
Transformer (Vaswani et al., 2017) Transformer Encoder + Transformer Decoder
T5 (Xue et al., 2021) Pre-trained Encoder + Pre-trained Decoder
Model SynGEC (Zhang et al., 2022b) syntax analysis, DepGCN + Transformer Decoder
Lev-T (Gu et al., 2019) Transformer Encoder + Transformer Decoder
GECToR (Omelianchuk et al., 2020; Zhang et al., 2022a) | tagging, Pre-trained Encoder
Data Error patterns (Ehsan and Faili, 2013; Zhao et al., 2019) —
Augmentation | Back-translation (Madnani et al., 2012; Zhou et al., 2019) | Pre-trained T5 model
LLM Prompts ‘ prompts (Fang et al., 2023) ‘ Chinese/English prompts for zero-shot/few-shot

Table 1: Deployed datasets and methods in UnifiedGEC, associated with their basic components. Here, “Lev-T” is

the abbreviation of “Levenshtein Transformer”.

UnifiedGEC also encapsulates these basic modules
in a folder such that it is convenient for developers
to build their models by reusing these basic mod-
ules. According to the paradigms of the methods,
we categorize the deployed methods as Seg2Seq,
and Seq2Edit and LLM Prompts paradigms.

Seq2Seq paradigm: This line of methods follow
the autoregressive principle as shown in Figure 2,
where the correct sentence is generated token by
token. In detail, we have implemented Transformer
(Vaswani et al., 2017), (m)T5 (Xue et al., 2021) and
SynGEC (Zhang et al., 2022b) as the representative
models of this type due to their good perforamnce
on GEC tasks.

Seq2Edit paradigm: This line of methods have
non-autoregressive architectures as shown in Fig-
ure 2. Instead of predicting the correct token, they
first identify the operation labels, including keep-
ing, substitution and deletion, then the model pre-
dicts the operation for each token in parallel. We
implement Transformer(Vaswani et al., 2017) and
Levenshtein Transformer(Gu et al., 2019) as base-
line models for Seq2Edit models.

LILM Prompts paradigm: Due to the impressive
capability of the Large Language Models (LLMs)
in general tasks, we include LLM-based methods
for solving GEC tasks and a Prompt module is
integrated in our model component. We provide
prompts for directly generating correct sentences in
English and Chinese. In-Context Learning (Dong
etal., 2023) is also supported in our Prompt module.
Models integrated in our framework are shown in
Table 1.

40

Our framework also provides developers with
a unified interface through which they can either
load any models or write their own instructions
to prompt LLMs to correct erroneous sentences.
Developers can specify the backbone model and
dataset they use and the number of examples for in-
context learning through command lines, and then
our framework will extract demonstrations from
the specified dataset randomly. In this way, the
developers are able to test the capabilities of LLMs
on various GEC datasets.

3.4 Trainer Component

To facilitate a more standard training and infer-
ence pipeline, we introduce a Supervised Trainer
as the trainer component in our framework, which
is mainly designed for GEC tasks. This component
controls the training procedure with some tunable
parameters such as learning rate and number of
epochs. Developers can simply adjust the config-
uration file to modify related training setups. Fur-
thermore, developers can choose to either conduct
a full training process from scratch or load a pre-
trained checkpoint to perform inference directly,
based on their needs.

Similair as other components, we also provide
an Abstract Trainer so that developers can inherit
the class and implement their own trainer if there
is any.

3.5 Evaluation Component

In the evaluation component, we implement a GEC
Evaluator which can switch between different eval-

https://www.cl.cam.ac.uk/research/nl/bea2019st/
https://www.comp.nus.edu.sg/~nlp/conll14st.html
http://tcci.ccf.org.cn/conference/2018/taskdata.php
https://github.com/HillZhang1999/MuCGEC
https://github.com/ucdaviscl/cowsl2h
https://www.merlin-platform.eu
https://lindat.mff.cuni.cz/repository/xmlui/handle/11234/1-3057
https://github.com/google-research/multilingual-t5
https://github.com/HillZhang1999/SynGEC
https://github.com/grammarly/gector

uation metrics based on the language of the dataset.
For Chinese datasets, we use ChERRANT (Zhang
et al., 2022a), and for other languages, we use ER-
RANT (Bryant et al., 2017). Following the majority
of prior studies, our UnifiedGEC toolkit calculates
average precision, recall and Fg 5 as the final evalu-
ation results, known as Micro PRF.

In addition, we still integrate traditional eval-
uation metrics, known as Macro PRF, includ-
ing mentioned ChERRANT and ERRANT, and
M2Scorer (Dahlmeier and Ng, 2012) for specific
datasets such as FCE (Yannakoudakis et al., 2011).
These diverse evaluation methods enable a more
comprehensive comparison of GEC models.

4 Usage

With our framework, developers are allowed to run
existing models on integrated datasets and add a
new model or a new dataset in a customized man-
ner. This section illustrates the detailed usage and
workflow of UnifiedGEC.

4.1 Basic Usage

Developers can simply run our toolkit through the
following command:

$ python run_gectoolkit.py -m model_name -d
dataset_name

Then, Config class will load internal config and
external config to construct a complete configura-
tion file that includes necessary information such
as the language of the dataset and hyper-parameters
of the model. Based on the configuration file, the
Dataset class as well as the Dataloader class will
be initialized to process the data. Subsequently, our
UnifiedGEC toolkit initializes the model specified
by developers and loads the pre-trained checkpoint
if there is any. Next, it initializes the evaluation
module and the Trainer class will be built upon the
configuration file. Once everything is ready, the
training process starts.

To set the configuration in a fast way, develop-
ers are allowed to modify detailed configurations
through command lines, for example:

$ python run_gectoolkit.py -m model_name -d
dataset_name --learning_rate le-5

During the process of initialization, our framework
will parse arguments in the command line and over-
write original ones in external config. All the pa-
rameters in configuration files are allowed to tune
through command lines, such as learning rate in

internal config and dropout possibility in external
config.

To implement a new model, we provide abstract
options for models, so developers are able to add
customized model modules by inheriting the Model
class and defining their own functions. It is worth
noting that possible parameters of the model are
suggested to be stored in a configuration file in
properties directory, as well as other required files
such as a vocabulary or a configuration for the
tokenizer, which makes it easy for developers to
modify and manage these configuration files with
a little efforts.

To add a new dataset, developers can simply
incorporate new JSON files of datasets into the
framework and create a corresponding configura-
tion file in properties directory. Then, they can
either call the existing components or implement
their own Dataset class to process specific datasets
in different languages.

4.2 Extended Usage

In addition to the aforementioned basic usage, we
also deployed some commonly used functions in
UnifiedGEC for extended usage.

To augment limited training data, developers
can use the specified data augmentation strategy
in experiments, as the Data Augmentation module
can collaborate with any GEC models:

$ python run_gectoolkit.py -m model_name -d
dataset_name --augment translation

UnifiedGEC toolkit will automatically detect
whether the file of augmented data exists. If it
does not exist, our framework will execute the cor-
responding augmentation function specified by de-
veloper’s command line, and generate new data
files in the dataset directory. Then our framework
will directly use augmented data instead of gener-
ating them again. Eventually, the training process
will then be conducted on the augmented data.

To conduct LLM prompting, developers can
launch the Prompt module in the same way:

$ python run_gectoolkit.py -m model_name -d
dataset_name --use_llm --example_num 4

41

When flag use_Ilim is detected, our framework will
use provided prompts in Prompt module for the
LLM specified by developers. Developers are able
to specify the LLM through model_name param-
eter, such as Qwen/Qwenl.5-14B-chat. The ar-
gument example_num indicates the number of in-
context learning examples. When the value of this

CoNLL14 (EN) NLPCC18 (ZH)

Models full data 10% of data w/ EP w/ BT full data 10% of data w/ EP w/ BT

R P Fos Fos Fo.5(A) Fo.5(A) R P Fos Fos Fo.5(A) Fo.5(A)
Levenshtein Transformer | 12.6 13.5 13.3 9.5 6.4(13.1) | 12.5(13.0) | 85 126 10.7 6.0 4.9(41.1) | 5.9(40.1)
GECToR 21.7 523 408 14.2 15.1(10.9) | 16.7(12.5) | 209 30.9 28.2 17.4 19.9(1 2.5) | 19.4(1 2.0)
Transformer 155 241 21.7 12.6 14.5(11.9) | 16.6(14.0) | 20.8 223 22.0 9.5 9.9(10.4) | 10.4(10.9)
T5-large 39.5 36.6 37.1 31.7 32.0(10.3) | 32.2(10.5) | 21.1 325 294 26.3 27.0(10.7) | 21.1(4 5.2)
SynGEC 51.8 50.6 50.9 47.7 48.2(10.5) 47.7(-) 36.8 36.0 36.2 324 34.9(12.5) | 34.6(12.2)
zero-shot + LLM 49.1 48.8 4838 - - - 38.3 247 26.6 - — -
few-shot + LLM 50.2 504 50.4 - - - 39.8 248 268 - - -

Table 2: Results of GEC models on CoNLL14 and NLPCC18 datasets implemented via UnifiedGEC. Here, “EP”
and “BT” are abbreviations of error patterns and back-translation augmentation methods, respectively. The top
section includes the setups with full and partial training data. The bottom section includes the setups with zero/few-

shot data.

parameter is not 0, prompts designed for in-context
learning will be used.

5 Evaluation

To validate our unifiedGEC toolkit, we conduct
numerous experiments to evaluate 5 models in our
toolkit on 7 GEC datasets of different languages.
Furthermore, we also conduct experiments to eval-
uate our data augmentation module and prompt
module. To be consistent with the evaluation set-
tings in the original papers, different evaluation
metrics are employed across various datasets in our
experiments. We use M2Scorer (Dahlmeier and
Ng, 2012) for FCE, CoNLL14, NLPCC18, while
ChERRANT (Zhang et al., 2022a) is utilized on
MuCGEC. For other languages, we employ ER-
RANT (Felice et al., 2016; Bryant et al., 2017).
The results are shown in Table 2°. As we can
see, most of the models integrated in our framework
perform comparably to levels demonstrated in the
original papers. The performance of GECToR on
CoNLL14 dataset is slightly lower than that in the
original paper, as we did not conduct cold epoch
training. The performance of Transformer may also
be lower than that in other papers because we only
implemented the basic greedy decoding strategy
instead of beam searching. According to Table 2,
it can be observed that models tend to have better
performances on Chinese and English datasets than
on datasets of other languages. We believe this is
because the amount of data in other languages is
relatively limited in the GEC field, and most of
the models we used have not been fine-tuned on
corresponding languages. As an exception, the T5
model integrated in our framework performs well

SWe put results of experiments on more datasets on GitHub
page.

42

on all datasets, as we implement a multilingual
version in our framework.

For evaluation of data augmentation module, we
extract 10% data from the original datasets to simu-
late low-resource setting, and then conduct tests on
two data augmentation methods. It is evident that
our proposed approaches are effective in improving
the performance of models in most cases.

For prompt module, we evaluate the performance
of zero-shot and few-shot prompts. In the few-
shot experiment, we randomly select examples
from the training set and try different sets of num-
ber of examples. For Chinese dataset, we choose
Qwenl.5-14B-chat®(Bai et al., 2023) as an exam-
ple, while for English dataset, we use LLaMA2-7B-
Chat’ (Touvron et al., 2023), and we demonstrate
the best performance achieved in our evaluation.
Due to the page limitation, we put all the experi-
mental results on our GitHub page®.

6 Conclusions

We propose a developer-friendly, modularized and
GEC-oriented toolkit UnifiedGEC in this paper. In
our UnifiedGEC, we provide developers with mul-
tiple extensive modules so that they can implement
their own models easily. We also integrate models
of different architectures and datasets across vari-
ous languages, which allows developers to evaluate
their models simply. These features enable our our
framework to help developers handle GEC tasks
easily. Furthermore, we conduct a comprehensive
evaluation on integrated models, which provides
developers in GEC field with thorough conclusion
and insights.

6https://huggingface.co/Qwen/Qwem.5—14B—Chat

"https://huggingface.co/meta-1lama/
Llama-2-7b-chat

8https://github.com/AnKate/UnifiedGEC

https://huggingface.co/Qwen/Qwen1.5-14B-Chat
https://huggingface.co/meta-llama/Llama-2-7b-chat
https://huggingface.co/meta-llama/Llama-2-7b-chat
https://github.com/AnKate/UnifiedGEC

In the future, we will continue improving our
framework and adding more GEC-related models,
datasets and modules to the toolkit.

Acknowledgments

The authors would like to thank the anonymous
reviewers for their insightful comments. This work
is supported by the Young Scientists Project (No.
62206097) and the Funds for International Cooper-
ation and Exchange of the National Natural Science
Foundation of China (No. W2421085) .

References

Abhijeet Awasthi, Sunita Sarawagi, Rasna Goyal,
Sabyasachi Ghosh, and Vihari Piratla. 2020. Parallel
iterative edit models for local sequence transduction.
Preprint, arXiv:1910.02893.

Jinze Bai, Shuai Bai, Yunfei Chu, Zeyu Cui, Kai Dang,
Xiaodong Deng, Yang Fan, Wenbin Ge, Yu Han, Fei
Huang, Binyuan Hui, Luo Ji, Mei Li, Junyang Lin,
Runji Lin, Dayiheng Liu, Gao Liu, Chengqgiang Lu,
Keming Lu, Jianxin Ma, Rui Men, Xingzhang Ren,
Xuancheng Ren, Chuangi Tan, Sinan Tan, Jianhong
Tu, Peng Wang, Shijie Wang, Wei Wang, Sheng-
guang Wu, Benfeng Xu, Jin Xu, An Yang, Hao Yang,
Jian Yang, Shusheng Yang, Yang Yao, Bowen Yu,
Hongyi Yuan, Zheng Yuan, Jianwei Zhang, Xingx-
uan Zhang, Yichang Zhang, Zhenru Zhang, Chang
Zhou, Jingren Zhou, Xiaohuan Zhou, and Tianhang
Zhu. 2023. Qwen technical report. arXiv preprint
arXiv:2309.16609.

Adriane Boyd, Jirka Hana, Lionel Nicolas, Detmar
Meurers, Katrin Wisniewski, Andrea Abel, Karin
Schone, Barbora §tind10vzi, and Chiara Vettori. 2014.
The MERLIN corpus: Learner language and the
CEFR. In Proceedings of the Ninth International
Conference on Language Resources and Evaluation
(LREC’14), pages 1281-1288, Reykjavik, Iceland.
European Language Resources Association (ELRA).

Christopher Bryant, Mariano Felice, and Ted Briscoe.
2017. Automatic annotation and evaluation of error
types for grammatical error correction. In Proceed-
ings of the 55th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 793-805, Vancouver, Canada. Association for
Computational Linguistics.

Christopher Bryant, Zheng Yuan, Muhammad Reza
Qorib, Hannan Cao, Hwee Tou Ng, and Ted Briscoe.
2023. Grammatical error correction: A survey of
the state of the art. Computational Linguistics,
49(3):643-701.

Daniel Dahlmeier and Hwee Tou Ng. 2012. Better
evaluation for grammatical error correction. In Pro-
ceedings of the 2012 Conference of the North Amer-
ican Chapter of the Association for Computational

43

Linguistics: Human Language Technologies, pages

568-572.

Qingxiu Dong, Lei Li, Damai Dai, Ce Zheng, Zhiyong
Wu, Baobao Chang, Xu Sun, Jingjing Xu, Lei Li, and
Zhifang Sui. 2023. A survey on in-context learning.
Preprint, arXiv:2301.00234.

Nava Ehsan and Heshaam Faili. 2013. Grammatical and
context-sensitive error correction using a statistical
machine translation framework. Software: Practice
and Experience, 43(2):187-206.

Tao Fang, Shu Yang, Kaixin Lan, Derek F. Wong, Jin-
peng Hu, Lidia S. Chao, and Yue Zhang. 2023. Is
chatgpt a highly fluent grammatical error correc-
tion system? a comprehensive evaluation. Preprint,
arXiv:2304.01746.

Mariano Felice, Christopher Bryant, and Ted Briscoe.
2016. Automatic extraction of learner errors in ESL
sentences using linguistically enhanced alignments.
In Proceedings of COLING 2016, the 26th Inter-
national Conference on Computational Linguistics:
Technical Papers, pages 825-835, Osaka, Japan. The
COLING 2016 Organizing Committee.

Roman Grundkiewicz, Christopher Bryant, and Mariano
Felice. 2020. A crash course in automatic grammati-
cal error correction. In Proceedings of the 28th Inter-
national Conference on Computational Linguistics:
Tutorial Abstracts, pages 33-38, Barcelona, Spain
(Online). International Committee for Computational
Linguistics.

Jiatao Gu, Changhan Wang, and Jake Zhao. 2019. Lev-
enshtein transformer. Preprint, arXiv:1905.11006.

Tao Gui, Xiao Wang, Qi Zhang, Qin Liu, Yicheng Zou,
Xin Zhou, Rui Zheng, Chong Zhang, Qinzhuo Wu, Ji-
acheng Ye, Zexiong Pang, Yongxin Zhang, Zhengyan
Li, Ruotian Ma, Zichu Fei, Ruijian Cai, Jun Zhao,
Xingwu Hu, Zhiheng Yan, Yiding Tan, Yuan Hu,
Qiyuan Bian, Zhihua Liu, Bolin Zhu, Shan Qin, Xi-
aoyu Xing, Jinlan Fu, Yue Zhang, Minlong Peng, Xi-
aoqing Zheng, Yaqian Zhou, Zhongyu Wei, Xipeng
Qiu, and Xuanjing Huang. 2021. Textflint: Unified
multilingual robustness evaluation toolkit for natural
language processing. Preprint, arXiv:2103.11441.

Guillaume Klein, Yoon Kim, Yuntian Deng, Jean Senel-
lart, and Alexander M. Rush. 2017. Opennmt:
Open-source toolkit for neural machine translation.
Preprint, arXiv:1701.02810.

Kate M Knill, Mark JF Gales, PP Manakul, and
AP Caines. 2019. Automatic grammatical er-
ror detection of non-native spoken learner english.
In ICASSP 2019-2019 IEEE International Confer-
ence on Acoustics, Speech and Signal Processing

(ICASSP), pages 8127-8131. IEEE.

Nitin Madnani, Joel Tetreault, and Martin Chodorow.
2012. Exploring grammatical error correction with
not-so-crummy machine translation. In Proceedings
of the Seventh Workshop on Building Educational
Applications Using NLP, pages 44-53.

https://arxiv.org/abs/1910.02893
https://arxiv.org/abs/1910.02893
http://www.lrec-conf.org/proceedings/lrec2014/pdf/606_Paper.pdf
http://www.lrec-conf.org/proceedings/lrec2014/pdf/606_Paper.pdf
https://doi.org/10.18653/v1/P17-1074
https://doi.org/10.18653/v1/P17-1074
https://arxiv.org/abs/2301.00234
https://arxiv.org/abs/2304.01746
https://arxiv.org/abs/2304.01746
https://arxiv.org/abs/2304.01746
https://aclanthology.org/C16-1079
https://aclanthology.org/C16-1079
https://doi.org/10.18653/v1/2020.coling-tutorials.6
https://doi.org/10.18653/v1/2020.coling-tutorials.6
https://arxiv.org/abs/1905.11006
https://arxiv.org/abs/1905.11006
https://arxiv.org/abs/2103.11441
https://arxiv.org/abs/2103.11441
https://arxiv.org/abs/2103.11441
https://arxiv.org/abs/1701.02810
https://arxiv.org/abs/1701.02810

Hwee Tou Ng, Siew Mei Wu, Ted Briscoe, Christian
Hadiwinoto, Raymond Hendy Susanto, and Christo-
pher Bryant. 2014. The CoNLL-2014 shared task
on grammatical error correction. In Proceedings of
the Eighteenth Conference on Computational Natu-
ral Language Learning: Shared Task, pages 1-14,
Baltimore, Maryland. Association for Computational
Linguistics.

Jakub Naplava and Milan Straka. 2019. Grammatical
error correction in low-resource scenarios. Preprint,
arXiv:1910.00353.

Kostiantyn Omelianchuk, Vitaliy Atrasevych, Artem
Chernodub, and Oleksandr Skurzhanskyi. 2020.
GECToR - grammatical error correction: Tag, not
rewrite. In Proceedings of the Fifteenth Workshop
on Innovative Use of NLP for Building Educational
Applications, pages 163-170, Seattle, WA, USA —
Online. Association for Computational Linguistics.

Adam Paszke, Sam Gross, Francisco Massa, Adam
Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca
Antiga, Alban Desmaison, Andreas Kopf, Edward
Yang, Zach DeVito, Martin Raison, Alykhan Tejani,
Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Jun-
jie Bai, and Soumith Chintala. 2019. Pytorch: An
imperative style, high-performance deep learning li-
brary. Preprint, arXiv:1912.01703.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, and Peter J. Liu. 2023. Exploring the limits
of transfer learning with a unified text-to-text trans-
former. Preprint, arXiv:1910.10683.

Shuming Shi, Enbo Zhao, Wei Bi, Deng Cai, Leyang
Cui, Xinting Huang, Haiyun Jiang, Duyu Tang,
Kaigiang Song, Longyue Wang, et al. 2023. Effidit:
An assistant for improving writing efficiency. In
Proceedings of the 61st Annual Meeting of the As-
sociation for Computational Linguistics (Volume 3:
System Demonstrations), pages 508-515.

Yixiao Song, Kalpesh Krishna, Rajesh Bhatt, Kevin
Gimpel, and Mohit Iyyer. 2023. Gee! grammar error
explanation with large language models. Preprint,
arXiv:2311.09517.

Andrea Sottana, Bin Liang, Kai Zou, and Zheng Yuan.
2023. Evaluation metrics in the era of gpt-4: Reli-
ably evaluating large language models on sequence
to sequence tasks. Preprint, arXiv:2310.13800.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al-
bert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti
Bhosale, Dan Bikel, Lukas Blecher, Cristian Canton
Ferrer, Moya Chen, Guillem Cucurull, David Esiobu,
Jude Fernandes, Jeremy Fu, Wenyin Fu, Brian Fuller,
Cynthia Gao, Vedanuj Goswami, Naman Goyal, An-
thony Hartshorn, Saghar Hosseini, Rui Hou, Hakan
Inan, Marcin Kardas, Viktor Kerkez, Madian Khabsa,
Isabel Kloumann, Artem Korenev, Punit Singh Koura,

44

Marie-Anne Lachaux, Thibaut Lavril, Jenya Lee, Di-
ana Liskovich, Yinghai Lu, Yuning Mao, Xavier Mar-
tinet, Todor Mihaylov, Pushkar Mishra, Igor Moly-
bog, Yixin Nie, Andrew Poulton, Jeremy Reizen-
stein, Rashi Rungta, Kalyan Saladi, Alan Schelten,
Ruan Silva, Eric Michael Smith, Ranjan Subrama-
nian, Xiaoqing Ellen Tan, Binh Tang, Ross Tay-
lor, Adina Williams, Jian Xiang Kuan, Puxin Xu,
Zheng Yan, Iliyan Zarov, Yuchen Zhang, Angela Fan,
Melanie Kambadur, Sharan Narang, Aurelien Ro-
driguez, Robert Stojnic, Sergey Edunov, and Thomas
Scialom. 2023. Llama 2: Open foundation and fine-
tuned chat models. Preprint, arXiv:2307.09288.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, L. ukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in Neural Information Pro-
cessing Systems, volume 30. Curran Associates, Inc.

Linting Xue, Noah Constant, Adam Roberts, Mihir Kale,
Rami Al-Rfou, Aditya Siddhant, Aditya Barua, and
Colin Raffel. 2021. mT5: A massively multilingual
pre-trained text-to-text transformer. In Proceedings
of the 2021 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies, pages 483—498, On-
line. Association for Computational Linguistics.

Aaron Yamada, Sam Davidson, Paloma Fernandez-
Mira, Agustina Carando, Kenji Sagae, and Claudia
Sénchez-Gutiérrez. 2020. Cows-12h: A corpus of
spanish learner writing. Research in Corpus Linguis-
tics, 8(1):17-32.

Helen Yannakoudakis, Ted Briscoe, and Ben Medlock.
2011. A new dataset and method for automatically
grading ESOL texts. In Proceedings of the 49th
Annual Meeting of the Association for Computational
Linguistics: Human Language Technologies, pages
180-189, Portland, Oregon, USA. Association for
Computational Linguistics.

Yue Zhang, Zhenghua Li, Zuyi Bao, Jiacheng Li,
Bo Zhang, Chen Li, Fei Huang, and Min Zhang.
2022a. MuCGEC: a multi-reference multi-source
evaluation dataset for Chinese grammatical error cor-
rection. In Proceedings of the 2022 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, pages 3118-3130, Seattle, United States.
Association for Computational Linguistics.

Yue Zhang, Bo Zhang, Zhenghua Li, Zuyi Bao, Chen Li,
and Min Zhang. 2022b. Syngec: Syntax-enhanced
grammatical error correction with a tailored gec-
oriented parser. Preprint, arXiv:2210.12484.

Wei Zhao, Liang Wang, Kewei Shen, Ruoyu Jia, and
Jingming Liu. 2019. Improving grammatical error
correction via pre-training a copy-augmented archi-
tecture with unlabeled data. In Proceedings of the
2019 Conference of the North American Chapter of
the Association for Computational Linguistics: Hu-
man Language Technologies, Volume I (Long and

https://doi.org/10.3115/v1/W14-1701
https://doi.org/10.3115/v1/W14-1701
https://arxiv.org/abs/1910.00353
https://arxiv.org/abs/1910.00353
https://doi.org/10.18653/v1/2020.bea-1.16
https://doi.org/10.18653/v1/2020.bea-1.16
https://arxiv.org/abs/1912.01703
https://arxiv.org/abs/1912.01703
https://arxiv.org/abs/1912.01703
https://arxiv.org/abs/1910.10683
https://arxiv.org/abs/1910.10683
https://arxiv.org/abs/1910.10683
https://arxiv.org/abs/2311.09517
https://arxiv.org/abs/2311.09517
https://arxiv.org/abs/2310.13800
https://arxiv.org/abs/2310.13800
https://arxiv.org/abs/2310.13800
https://arxiv.org/abs/2307.09288
https://arxiv.org/abs/2307.09288
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://doi.org/10.18653/v1/2021.naacl-main.41
https://doi.org/10.18653/v1/2021.naacl-main.41
https://doi.org/10.32714/ricl.08.01.02
https://doi.org/10.32714/ricl.08.01.02
https://aclanthology.org/P11-1019
https://aclanthology.org/P11-1019
https://aclanthology.org/2022.naacl-main.227
https://aclanthology.org/2022.naacl-main.227
https://aclanthology.org/2022.naacl-main.227
https://arxiv.org/abs/2210.12484
https://arxiv.org/abs/2210.12484
https://arxiv.org/abs/2210.12484
https://doi.org/10.18653/v1/N19-1014
https://doi.org/10.18653/v1/N19-1014
https://doi.org/10.18653/v1/N19-1014

Short Papers), pages 156—165, Minneapolis, Min-
nesota. Association for Computational Linguistics.

Yuanyuan Zhao, Nan Jiang, Weiwei Sun, and Xiaojun
Wan. 2018. Overview of the nlpcc 2018 shared task:
Grammatical error correction. In Natural Language
Processing and Chinese Computing, pages 439-445,
Cham. Springer International Publishing.

Wangchunshu Zhou, Tao Ge, Chang Mu, Ke Xu, Furu
Wei, and Ming Zhou. 2019. Improving grammatical
error correction with machine translation pairs. arXiv
preprint arXiv:1911.02825.

45

	Introduction
	Related Works
	Framework Description
	Config Component
	Data Component
	Model Component
	Trainer Component
	Evaluation Component

	Usage
	Basic Usage
	Extended Usage

	Evaluation
	Conclusions

