GECTurk WEB: An Explainable Online Platform for Turkish
Grammatical Error Detection and Correction

Ali Gebesce 2, Gozde Giil Sahin' 2

!Computer Engineering Department, Ko¢ University, Istanbul, Turkey
2 KUIS AI Lab, Istanbul, Turkey
https://gglab-ku.github.io/

Abstract

Sophisticated grammatical error detection/cor-
rection tools are available for a small set of lan-
guages such as English and Chinese. However,
it is not straightforward—if not impossible—
to adapt them to morphologically rich lan-
guages with complex writing rules like Turk-
ish which has more than 80 million speakers.
Even though several tools exist for Turkish,
they primarily focus on spelling errors rather
than grammatical errors and lack features such
as web interfaces, error explanations and feed-
back mechanisms. To fill this gap, we intro-
duce GECTURK WEB, a light, open-source,
and flexible web-based system that can detect
and correct the most common forms of Turkish
writing errors, such as the misuse of diacrit-
ics, compound and foreign words, pronouns,
light verbs along with spelling mistakes. Our
system provides native speakers and second
language learners an easily accessible tool to
detect/correct such mistakes and also to learn
from their mistakes by showing the explanation
for the violated rule(s). The proposed system
achieves 88,3 system usability score, and is
shown to help learn/remember a grammatical
rule (confirmed by 80% of the participants).
The GECTURK WEB is available both as an
offline tool ' or at www.gecturk.net.

1 Introduction

Grammatical Error Correction/Detection
(GEC/D) (Bryant et al., 2023) is a well-established
NLP task, that aims to detect and correct various
errors in text, including grammatical issues like
missing prepositions, mismatched subject-verb
agreement, as well as orthographic and semantic
errors such as misspellings and inappropriate
word choices. Tools that can perform GEC/D
have recently gained attention due to the rise in
digital communication, remote work, and global
interactions, which demand clear and professional

1https://github.com/GGLAB-KU/gecturkweb

writing. With the inclusion of the detection module,
GEC/D formulation facilitates the teaching of
grammar rules, empowering users not only to
produce error-free writing but also to enhance their
language skills and comprehension gradually.

Therefore, developing open-source GEC/D tools
is particularly crucial, yet challenging for lan-
guages with complex writing rules, such as Turk-
ish. The writing rules for such languages gener-
ally involve multiple linguistic layers—phonetic,
syntactic, and semantic—which makes them diffi-
cult to follow and remember even for native speak-
ers. While several tools exist for high-resource
languages such as GECko+ (Calo et al., 2021) and
ALLECS (Qorib et al., 2023), they often suffer
from discontinuation of support or lack adaptabil-
ity for languages such as Turkish. Moreover, while
advanced commercial tools such as LanguageTool?
offer support for 31 languages, yet Turkish is no-
tably absent from their list. Furthermore, as high-
lighted in § 2, numerous offline tools are accessible
for Turkish spelling correction, whereas only two
models (not tools) (Uz and Eryigit, 2023; Kara
et al., 2023) are dedicated to Turkish GEC/D.

To bridge this gap, we leverage the state-of-
the-art pretrained GEC/D (Kara et al., 2023)3 and
spelling correction models; and, for the first time,
provide a user-friendly web-interface to them. Our
system does not only correct errors but also dis-
play them in different colors, while providing ex-
planations for each correction through interactive
elements in the interface. Additionally, the system
includes a feedback mechanism to foster contin-
uous improvement and enhance user engagement.
Our system is lightweight and flexible, allowing
easy adaptation to other languages through pre-
trained sequence tagging models. The results of

2https://languagetool.org/

3We use the pretrained sequence tagging model that has
been trained on 130,000 high-quality sentences covering more
than 20 expert-curated grammar rules (a.k.a., writing rules)
implemented through complex transformation functions.

163

Proceedings of the 31st International Conference on Computational Linguistics: System Demonstrations, pages 163—173
January 19-24, 2025. ©2025 Association for Computational Linguistics

https://gglab-ku.github.io/
www.gecturk.net
https://github.com/GGLAB-KU/gecturkweb
https://languagetool.org/

GECTurk

Girdi

Segim galigmalari baglad.tiim partilerin teskilatlar il ilce ve hatta
mahalle diizeyinde harekete gegti. Sonuglari herkes gibi bende merakla
bekliyorum. Oniimiizdeki hafta istanbul, ankara ve izmir gibi nemli illerde
mitingler diizenlenecek. Tatil yapmk istiyrum fakat galismaya devam etmem sart.
Gidip te gelmemek var, gelip te gérmemek var. Sen yada o buradan gidecek.
Ayse'de geldi. Ev de hig siit kalmamisti. Bugiin dyle ok yorulmugki hemen yatti.
Karakara diigiiniiyordu. insanlik 6ldiimii? Bu sirkette ise bagliyacagim. Agizi
bigak agmiyor. igerde kimse yok. Bu yaptiginin higbir sebepi yok. Hukugu ayaklar
altina aldi. Dansetmek istemedidi igin gitti. Onu hemen ortadan kayip et. Uyuya
kalmak huyun olmus. Arkadasi ile birlikte kahve hane agtilar. Hig bir sey

2

Oniimiiz - Soru Eklerinin Yazimi 4

diigiintiyordu. insaniik GETIGITE Bu sirkette ise

3 5
Cikti Metni Kopyala
Secim caligmalari bagladl. Tim partilerin teskilatlar il, ilge ve hatta mahalle

diizeyinde harekete gegti. Sonuglari herkes gibi (LI merakla bekliyorum.

gibi 6nemli illerde mitingler

diizenler alismaya devam etmem sart. Gidip £
S ki ol i] .

gelmeme y;)Zr:”e olan mi, mi, mu, md ayr XD o buradan gidecek. [NTEXL

geldi. 3 « (TIIEIY™ hemen yatti.

bigak agmiyor.
kimse yok. Bu yaptiginin_ higbir yok. (JITZD ayaklar altina aldi.

Yanlslari Bul istemedigi igin gitti. Onu hemen ortadan (BT huyun

7

Geri Bildirim Vermek ister Misin?

olmus. Arkadast ile birlikte

agtilar. sey yapmadan bekledi.

6

Bu Hala Hatali!

Figure 1: The screenshot of UI after user entering an input. 1- Girdi (Input): The input area for the user. 2- Yanliglar
Bul (Find Errors): A button which is pressed after entering an input. 3- Cikt1 (Output): The output area for the
tagged and corrected text. Note that each error is categorized (colored) according to Table 2. 4- Pop-up: Each
corrected word is represented as button. When clicked the violated rule, i.e., error type, is shown. 5- Metni Kopyala
(Copy Text): A button for copying corrected text. 6- Bu Hala Hatali1 (Still Erroneous): A button for giving feedback
in case the user thinks the output still contains errors. When clicked, a pop-up is shown and user is expected to
write the corrected version. 7- Geri Bildirim Vermek Ister Misin? (Give Feedback): A button for collecting general

suggestions.

the user study (see §4) demonstrate excellent us-
ability and a significant impact on learning and
retention of grammar rules. GECTURK WEB,
shown in Fig. 1, is accessible both as an offline
tool and online at www.gecturk.net and source
code licensed with CC BY-SA 4.0 is available at
https://github.com/GGLAB-KU/gecturkweb.

2 Previous Systems

High-Resource Languages: Numerous GEC/D
models exist for high-resource languages such as
English (Lai et al., 2022; Tarnavskyi et al., 2022;
Sorokin, 2022; Qorib et al., 2022a) and Chinese
(Ren et al., 2018; Qiu and Qu, 2019; Wu and Wu,
2022; Xu et al., 2022). However, these models
lack user interfaces, which are crucial for accessi-
bility to non-specialists. Although fewer in num-
ber compared to models, several GEC/D tools are
available. For instance, GECko+ (Calo et al., 2021)
integrates the GECToR XLNet model for sentence-
level grammatical correction with a sentence order-
ing model (Prabhumoye et al., 2020). It processes
texts by segmenting them into sentences, applying
corrections, and then reordering them. Initially,
GECko+ offered a web interface, but it is currently
inactive. Now, the only access is through download-

ing the source code and running it locally, which
is inconvenient for general users. Similarly, MiSS
(Li et al., 2021), a Multi-Style Simultaneous Trans-
lation system that includes a GEC/D feature us-
ing GECToR XLNet, initially had a web interface
which is now inactive.

The most recent non-commercial GEC/D tool is
ALLECS (Qorib et al., 2023), which uses GECToR-
RoBERTa, GECToR-XLNet, and T5-Large mod-
els, alongside two combination methods: ESC
(Qorib et al., 2022b) and MEMT (Heafield and
Lavie, 2010). ALLECS takes input and displays
corrected errors with clickable buttons, and has
an easy-to-use web interface. Despite its advan-
tages, ALLECS lacks a feedback mechanism and
an enhanced interface that uses color coding to dis-
tinguish between different types of errors. More-
over, its implementation is not flexible enough to
be extended to other languages, i.e., one cannot
simply upload a Turkish GEC/D model and expect
the application to function without significant mod-
ifications to the source code.

Morphologically Rich Languages: In the case
of morphologically rich languages, there are fewer
GEC/D models available. Examples include Ara-
bic (Solyman et al., 2022), Bengali (Hossain et al.,

164

www.gecturk.net
https://github.com/GGLAB-KU/gecturkweb

Spelling Offline Open Source Grammatical Explanation Feedback Web Interface

Google Docs
Microsoft Word
Zemberek (Akin, 2017)
Hunspell (Zafer, 2017)
TurkishNLP(Cetinkaya, 2018)
TrNLP (Bayol, 2018)
Starlang Yildiz (2019)
VNLP (Turker, 2021)
Mukayese (Safaya et al., 2022)

v
v

N RN N N N N N NN

Rule-based (Uz and Eryigit, 2023)
GECTurk (Kara et al., 2023)
GECTurk WEB (Ours)

AN N RN N N NENENEN

<

AN N N N N N NENEN

ENENEN
ENENEN

' v

Table 1: Comparison of features in previous grammatical and spelling error correction tools for Turkish, contrasted
with ours. Spelling: Correction of spelling errors. Grammatical: Detection of grammatical errors. Explanation:
Explanations for error types. Feedback: User feedback mechanism for model and interface improvement. Web

Interface: Availability of a web-based interface.

2024), Czech (Ndplava and Straka, 2019; Néplava
et al., 2022), and Russian (Rozovskaya and Roth,
2019). However, again these systems lack user
interfaces, making them merely as models rather
than practical tools, thus limiting their usability for
general users. One exception exists in Arabic; how-
ever, this tool just underlines mistakes (Alkhatib
et al., 2020) and not explain the errors. Also it lacks
a web support, making it less suitable for general
users.

Commercial Tools: Grammarly* offers ad-
vanced features for improving writing tone on sev-
eral aspects like clarity, engagement, and delivery.
However, it is not open-source and supports only
English. Also, full access to its features requires
a paid subscription °. LanguageTool, being open-
source, supports multiple languages and addresses
some of Grammarly’s limitations. However, it im-
poses a 10,000-character limit on inputs, expand-
able only through a paid subscription ®. More im-
portantly, despite supporting 31 languages ’, Turk-
ish is not among them.

Turkish: Since aforementioned systems are ei-
ther commercial or not directly applicable to Turk-
ish GEC/D, we have surveyed commonly available
tools and resources that offer support for Turkish,
given in Table 1. Google Docs ® and Microsoft
Word ?, widely accessible for their user-friendly
interfaces, provide basic spelling error detection.
However, they fall short in addressing the spe-
cific grammatical nuances of the Turkish language.

https://www.grammarly.com/
https://www.grammarly.com/plans
https://languagetool.org/premium_new

https://dev.languagetool.org/languages

© ® N o A

https://docs.google.com

https://www.microsoft.com/word

For instance, these tools fail to correctly apply es-
sential rules, such as the proper separation of the
conjunction "-de/-da." In Turkish grammar, the con-
junction "-de/-da," meaning "too" or "also," should
always be written separately from the preceding
word when used in this context. However, nei-
ther tool detects or corrects this mistake. For ex-
ample, in the sentence "Bende okula gidecegim."
(English: "I am going to the school too"), the cor-
rect form is "Ben de okula gidecegim," with "de"
separated. Unfortunately, both tools overlook this
error, leaving the grammatical mistake uncorrected
and potentially perpetuating improper language use.
Additionally, these tools are not open-source, lack
explanations for corrections, and do not offer a
mechanism for user feedback.

There are also open-source tools, such as Zem-
berek (Akin, 2017), Hunspell (Zafer, 2017), Turk-
ishNLP (Cetinkaya, 2018), TrNLP (Bayol, 2018),
StarlangSoftware (Yildiz, 2019), VNLP (Turker,
2021) and MukayeseSpellChecker (Safaya et al.,
2022), however they only provide an offline
spelling. To the best of our knowledge, there are
only two resources for Turkish GEC/D (Uz and
Eryigit, 2023; Kara et al., 2023). Uz and Ery-
i8it (2023) propose a rule-based, offline GED sys-
tem that employs common, universal error types
(Bryant et al., 2017), while Kara et al. (2023) pro-
vide several pre-trained GEC and GED models that
can detect expert-curated language specific writing
rules and show significant improvements on exist-
ing and proposed benchmarks. In this work, we
combine the state-of-the-art GEC/D (Kara et al.,
2023) and spelling correction models; and, for the
first time, provide a user-friendly web-interface to
them. Additionally, we provide colorful explana-
tions for a wide range of error types to train the

165

https://www.grammarly.com/
https://www.grammarly.com/plans
https://languagetool.org/premium_new
https://dev.languagetool.org/languages
https://docs.google.com
https://www.microsoft.com/word

Example

Rule ID
we Correction

Category Description Color

< "
a .) Durumu [oglunada
3 1. CONJ_DE_SEP Conjunction *-de/-da™ is — ogluna da] Red
a written separately. bildirdi
Bugiin dyle ¢ok
E. 7. CONJ_KI_SEP Con'Juncuon -ki” is [yorulmuski ‘~> Navy
written separately. yorulmus ki]
hemen yatt1.
. Words that start with
) double consonants of
‘é 9. FOREIGN_R1 foreign origin are written [giram — gram] Purple
I without adding an “-i”
between the letters.
R Some bisyllabic words
; 13. BI- undergo haplology when [aiiz1 — agz]
= SYLL_HAPL_VOW they get a suffix starting & s
with a vowel.
m Light verbs such as
;‘f “etmek, edilmek, eylemek,
> 17. olmak, olunmak”™ are [arzetmek — arz Blue
E LIGHT_VERB_SEP written separately in case etmek]
9, of no phonological
- assimilation
Compound words formed
A . .
2
e 20. uid \%v'ritinpparf.wrilteng. uyuyakalmal, [gide
S COMP_VERB_ADJ adiavent fglh havo s durmak —
o Jacent it they have a gidedurmak]
o suffix starting with -a, -e,
-1, -, -u, -ii.
E‘L‘I 2 Traditionally, some [hig bir — higbir],
o 2. i . .
z PRONOUN_EXC pronoun:s are written [her hanglva
7 adjacent. herhangi]

Table 2: A selection of grammatical error types covered
in the system from Kara et al. (2023).

users, and incorporate a feedback mechanism for
continuous training of pre-trained models.

3 GECTUrRK WEB

Our system has four main components: i) frontend,
ii) backend, iii) grammatical error correction/detec-
tion (GEC/D), and iv) spelling correction modules.
GECTURK WEB is based on the Python Django
framework,!” which manages everything related
to performance, security, scalability, and database
handling. The architecture of our system, incorpo-
rating these components along with the data flow,
is shown in Figure 2.

3.1 Frontend

For the user interface, we use the Bootstrap frame-
work !! that provides us with modern, responsive,
and mobile compatible HTML and CSS. Initially,
empty “Input” and “Output” fields are shown. Af-
ter identifying and correcting grammatical and
spelling errors in the input, the output is enriched
with error types (see Figure 1). For each correction,
HTML snippets are created to wrap the corrected
words and transforms them to actionable buttons.
These snippets use Bootstrap’s pop-over functional-
ity to provide an interactive way to display the error

1
Ohttps://www. djangoproject.com

11
https://getbootstrap.com

type, an explanation, and the correction. Each cor-
rection is highlighted with a specified background
color and font size for visibility. Additional infor-
mation about each error type is retrieved from a
predefined set of rules given in Table 2!, This in-
formation includes a textual explanation and a title
for the error, which are both used in the content
of the pop-over. For instance, if there is a mis-
spelling of “-de/da”, this is displayed as Conjunc-
tion “-de/da” is always written separately. The
tokens within the input text are replaced with the
generated HTML snippets, respecting the origi-
nal positions of errors. This involves calculating
the offsets to accurately place the HTML snippets
within the text, considering the length of the cor-
rected phrases. The corrected tokens are joined
back together into strings for each line, and then all
lines are combined into a single HTML paragraph

(<p> tags).

3.2 Backend

Our system uses Django, a high-level Python web
framework, to create a strong backend infrastruc-
ture. The architecture of Django, known as Model-
View-Template (MVT), supports a clear separation
of responsibilities. Here, the Model is responsible
for data storage and retrieval. The View handles
user requests and provides responses, and the Tem-
plate dynamically generates HTML pages for user
interaction.

View The send_data function is used for accom-
modating various actions including text submission
for correction, feedback submission, and API in-
teractions. Upon receiving a POST request given
the input text, the function invokes a text correc-
tion process through get_text_corrector. Text
correction process starts with sentence tokeniza-
tion using NLTK’s sent_tokenize function (Bird
et al., 2009) and continues with the grammatical er-
ror correction process, which is described in detail
in §3.3. The corrected text, alongside original input
and HTML-formatted output for interactive display,
is then encapsulated within a TEXT model instance
for persistence. Feedback submission, whether spe-
cific to text corrections or general website feedback,
is similarly processed and stored.

Model Our data model chas two main entities:
TEXT and GENERALFEEDBACK. The TEXT model

12We refer the readers to Kara et al. (2023) for details on
each writing rule and how they are handled by the model.

166

https://www.djangoproject.com
https://getbootstrap.com

captures the essence of each correction session,
storing original and corrected texts, HTML-tagged
corrected text for frontend display, and any user
feedback. This allows for a comprehensive audit
trail of user interactions and system outputs. The
GENERALFEEDBACK model, on the other hand,
aggregates general user impressions and feedback
about the website, enabling continuous improve-
ment based on user insights.

Database and Server Thanks to Django’s ORM
capabilities, we easily integrate these models with
our MySQL!? database, as the database manage-
ment system. We use AWS Elastic Beanstalk'# for
deployment.

3.3 Grammatical Correction

We employ the state-of-the-art GEC/D model, Se-
quenceTagger, previously described in Kara et al.
(2023). Briefly, SequenceTagger finetunes a strong
encoder model (e.g., BERTurk (Schweter, 2020))
to classify tokens into grammatical error classes,
enabling efficient error detection rather than merely
correction. For illustrative purposes, we provide
one sample error type from each category in Ta-
ble 2. Then, corrections are performed with re-
verse transformations. The model weights and as-
sociated files, such as the tokenizer and vocabu-
lary, are securely stored on Amazon S3'>. Deploy-
ment is simplified through the use of AWS Elastic
Beanstalk, requiring only the compression of the
project (including the model itself) and uploading it
to the AWS Elastic Beanstalk application. We have
adapted the original code from (Kara et al., 2023)
into a class named TEXTCORRECTOR and an API
function process_text for performing correction
operations with this model. For further details, we
encourage consulting the source code of Kara et al.

16 and our implementation 7.

3.4 Spelling Correction

It should be noted that users not only make
grammatical mistakes but also commonly commit
spelling errors. Since the GEC/D model is not
designed for spelling error correction, we employ
external tools to extend our system. For mistakes
in proper nouns and common typos, we survey ex-

ternal Turkish spelling correction tools. After eval-
13https://www.mysqlcom/
https://docs.aws.amazon.com/elasticbeanstalk/latest/dg
15https://aws.amazon.com/sS
I6https://github.com/GGLAB-KU/gecturk

l7https://github.com/GGLAB-KU/gecturkweb

uating different options, we find VNLP (Turker,
2021), StarlangSoftware (Yildiz, 2019), and Turk-
1shNLP (Cetinkaya, 2018) unsatisfactory by means
of efficiency and accuracy. As a result, we inte-
grated TrNIp (Bayol, 2018) and ZemberekNLP
(Akin and Akin, 2007; Akin, 2017; Uz, 2020) to
our system. We apply corrections using TrNIp
for proper noun capitalization (e.g., “ankara” —
“Ankara”)—e.g., any proper noun violating it is cap-
italized by the tool. Following the proper noun cor-
rections, we leverage ZemberekNLP’s TURKISH-
SENTENCENORMALIZER for the common typos.
Sentences are processed to ensure that the words
are not corrupted (e.g., “yapmk” — “yapmak’) and
that consistency is maintained across the text. With
the combination of TrNIp and ZemberekNLP, our
system now not only fixes grammatical errors but
also performs spelling correction in Turkish.

4 Evaluation

To evaluate GECTURK WEB, we conduct an in-
depth user study. This study aims to assess the
usability and effectiveness of the tool in facilitating
learning and retention. The voluntary user study is
announced on communication platforms involving
10 undergraduate students. The recruited partici-
pants are native Turkish speakers, aged between
20 and 22. Two of the undergraduates are medical
students, while the rest are engineering students.
The user study is structured into two parts. First,
participants are asked to follow a user scenario,
where they input 10 short sentences into GEC-
TURK WEB. These sentences are selected to cover
all four possible outcomes: True Positives (TP),
where the system accurately identifies and cor-
rects an error; True Negatives (TN), where no
error exists and the system appropriately refrains
from making changes; False Positives (FP), where
the system erroneously alters a correct sentence;
and False Negatives (FN), where the system over-
looks an error. Reflecting on the performance
of GECTURK (Kara et al., 2023), which demon-
strated a detection precision of 0.89 and a correc-
tion F1-score of 0.84, we have designed a repre-
sentative sample to mirror these results. There-
fore, the set of 10 sentences includes 7 True Posi-
tives (TPs) and 1 of each other outcome types. It
is important to note that the participants are un-
aware of this distribution. To guide the participants
on each potential outcome, we create four videos
and present them to participants before they begin

167

https://www.mysql.com/
https://docs.aws.amazon.com/elasticbeanstalk/latest/dg
https://aws.amazon.com/s3
https://github.com/GGLAB-KU/gecturk
https://github.com/GGLAB-KU/gecturkweb

Backend

2) ... yapmk ... istiyormusun?

3) ... yapmk ... istiyormusun?

Frontend

8)... [

1) Tatil yapmk istiyorum. Sen de istiyormusun?

) . Grammatical Error
< Detection/Correction
‘ 5)... Sistiyor musun?

6) Create: ID, Input, Output, Date

4) ...yapmk.| EETIIIETE

\/

Model

User

7) Save: ID, Input, Output, Date
> Database

Spelling Error
Correction

i

Figure 2: The GECTURK WEB Architecture. 1) User inputs text containing two errors: a spelling error, “yapmk”
(shown in red) and a grammatical error, “istiyormusun” (shown in green). 2-3) The view receives the input from
the frontend and forwards it to the GEC/D model. 4) The GEC/D model corrects the grammatical error and adds
tags for the frontend to display, as shown in 1. 5) The SEC module corrects the spelling error, tags it, and sends it
back to the View. 6-7) The model compiles relevant information such as ID, Input, Output, and Date, and records
these in the database. 8) The View sends the prepared output back to the frontend for display.

experimenting with GECTURK WEB, which is
described in detail in §A.1. After viewing these
videos, participants are instructed to input each
sentence and classify it according to one of the
possible outcomes. The complete list of 10 sen-
tences can be found in §A.1. We restrict the aver-
age duration of this part to be 45 minutes to align
with findings from studies (Lavrakas, 2008; Kost
and da Rosa, 2018; Sharma, 2022) on the optimal
length for questionnaires.After completing this part,
participants are asked several questions to assess
the system based on the evaluation metrics. We
employ two established metrics to test usability
and user satisfaction: the System Usability Scale
(SUS) (Brooke, 1995) and the Standardized User
Experience Percentile Rank Questionnaire (SUPR-
Q) (Sauro, 2015). These metrics are widely rec-
ognized for their reliability in assessing user sat-
isfaction and system usability. To understand the
effectiveness of GECTURK WEB, we also ask a
yes/no question about whether participants learned
or remembered a grammatical rule. The SUS ques-
tionnaire contains ten five-level Likert scale ques-
tions. The SUPR-Q includes seven five-level and
one ten-level Likert scale questions. Including our
yes/no question, we ask a total of 19 questions. All
of these questions are in §A.2.

The evaluation results from 10 users are note-
worthy, particularly in terms of usability and user
satisfaction. The average SUS score is 88.3 (out
of a possible 100; the average benchmark is 69

(Bangor et al., 2009)), indicating an excellent level
of usability. Similarly, the average score for the
SUPR-Q was 4.34 (out of a possible 5; the average
benchmark is 3.93 (Sauro, 2015)), suggesting high
user satisfaction with the web interface and func-
tionality. These scores are significantly above the
average benchmarks, highlighting the effectiveness
of GECTURK WEB in providing a user-friendly
and satisfying experience. Notably, 80% of par-
ticipants report that they learned or remembered a
grammatical rule, underscoring the tool’s impact
on learning and retention. Additionally, we mea-
sure the time-efficiency of the system and provide
the results in Appendix §B.

5 Extension to Other Languages

As depicted in Figure 2, our system exhibits flex-
ibility and seamless adaptability for multilingual
support. Expanding our system to support other
languages merely requires the replacement of the
GED/C model and the spelling error correction
module. Specifically, the sequence tagger model
must be trained to identify the distinct grammatical
error patterns of the target language. Similarly, the
spelling error correction module can be replaced
with an existing spelling corrector for the target lan-
guage. Both modules can be adjusted by modifying
the “text_corrector.py” script and the associated
model weights files, facilitating straightforward in-
tegration.

168

6 Conclusion

In this work, we present GECTURK WEB, a prac-
tical online platform for Turkish grammatical er-
ror detection and correction (GED/C) along with
spelling error correction (SEC). Our system aims
to not only correct mistakes but also to facilitate
learning of complex writing rules via user-friendly
rule explanations. Furthermore, the user feedback
mechanism allows for continual support and train-
ing of the tool. The high SUS and SUPR-Q scores,
significantly above average benchmarks, alongside
the positive feedback on learning outcomes, vali-
date the platform’s design philosophy and its focus
on user-centric development. Furthermore, GEC-
TURK WEB is built with a flexible architecture,
suggesting that adaptation to additional languages
is within reach. Source code and the web-based
tool is publicly and freely available.

Limitations

Major limitation of our system is the number of con-
current user interactions it can process. Currently,
the system operates on a single AWS i4i.large in-
stance, which can efficiently manage up to ten si-
multaneous users. Beyond this threshold, perfor-
mance begins to degrade, necessitating additional
instances to preserve service quality. However, it’s
essential to highlight that this limitation can easily
be overcome by enhancing our infrastructure given
the budget. Should the GECTURK WEB platform
experience a surge in popularity, we are prepared to
scale our resources horizontally by incorporating
more instances.

Ethics Statement

The development and deployment of GECTURK
WEB adhere to ethical considerations crucial for
language processing tools. We ensure that user
data is handled with the utmost confidentiality and
integrity, in accordance with data protection reg-
ulations. The feedback system is designed to be
non-intrusive and respectful of user privacy.

Acknowledgements

We thank Asu Tutku Gokgek, Gokee Sevimli, and
Yakup Enes Giiven for their cnotributions to the
project. This work has been supported by the
Scientific and Technological Research Council of
Tiirkiye (TUBITAK) as part of the project “Au-
tomatic Learning of Procedural Language from

Natural Language Instructions for Intelligent Assis-
tance” with the number 121C132. The authors also
gratefully acknowledge KUIS AI Lab for providing
computational support.

References

Ahmet Afsin Akin and Mehmet Diindar Akin. 2007.
Zemberek, an open source nlp framework for turkic
languages. Structure, 10(2007):1-5.

Ahmet Akin. 2017. Zembereknlp - natural language
processing tools for turkish.

Manar Alkhatib, Azza Abdel Monem, and Khaled
Shaalan. 2020. Deep learning for arabic error detec-
tion and correction. ACM Trans. Asian Low Resour.
Lang. Inf. Process., 19(5):71:1-71:13.

Aaron Bangor, Philip Kortum, and James Miller. 2009.
Determining what individual sus scores mean: adding
an adjective rating scale. J. Usability Studies,
4(3):114-123.

Esat Mahmut Bayol. 2018. Trnlp - tr natural language
processing.

Steven Bird, Ewan Klein, and Edward Loper. 2009. Nat-
ural language processing with Python: analyzing text
with the natural language toolkit. " O’Reilly Media,
Inc.".

John Brooke. 1995. Sus: A quick and dirty usability
scale. Usability Eval. Ind., 189.

Christopher Bryant, Mariano Felice, and Ted Briscoe.
2017. Automatic annotation and evaluation of error
types for grammatical error correction. In Proceed-
ings of the 55th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 793-805, Vancouver, Canada. Association for
Computational Linguistics.

Christopher Bryant, Zheng Yuan, Muhammad Reza
Qorib, Hannan Cao, Hwee Tou Ng, and Ted Briscoe.
2023. Grammatical error correction: A survey of the
state of the art. Comput. Linguistics, 49(3):643-701.

Eduardo Calo, Léo Jacqmin, Thibo Rosemplatt,
Maxime Amblard, Miguel Couceiro, and Ajinkya
Kulkarni. 2021. GECko+: a grammatical and dis-
course error correction tool. In Actes de la 28e Con-
férence sur le Traitement Automatique des Langues
Naturelles. Volume 3 : Démonstrations, pages 8—11,
Lille, France. ATALA.

Kenneth Heafield and Alon Lavie. 2010. CMU multi-
engine machine translation for WMT 2010. In Pro-
ceedings of the Joint Fifth Workshop on Statistical
Machine Translation and MetricsMATR, WMT@ACL
2010, Uppsala, Sweden, July 15-16, 2010, pages 301—
306. Association for Computational Linguistics.

169

https://github.com/ahmetaa/zemberek-nlp
https://github.com/ahmetaa/zemberek-nlp
https://doi.org/10.1145/3373266
https://doi.org/10.1145/3373266
https://github.com/brolin59/trnlp
https://github.com/brolin59/trnlp
https://doi.org/10.18653/v1/P17-1074
https://doi.org/10.18653/v1/P17-1074
https://doi.org/10.1162/COLI_A_00478
https://doi.org/10.1162/COLI_A_00478
https://aclanthology.org/2021.jeptalnrecital-demo.3
https://aclanthology.org/2021.jeptalnrecital-demo.3
https://aclanthology.org/W10-1744/
https://aclanthology.org/W10-1744/

Nahid Hossain, Mehedi Hasan Bijoy, Salekul Islam, and
Swakkhar Shatabda. 2024. Panini: a transformer-
based grammatical error correction method for
bangla. Neural Comput. Appl., 36(7):3463-3477.

Atakan Kara, Farrin Marouf Sofian, Andrew Bond, and
Gozde Sahin. 2023. GECTurk: Grammatical error
correction and detection dataset for Turkish. In Find-
ings of the Association for Computational Linguis-
tics: IJCNLP-AACL 2023 (Findings), pages 278-290,
Nusa Dua, Bali. Association for Computational Lin-
guistics.

Rhonda G. Kost and Joel Correa da Rosa. 2018. Im-
pact of survey length and compensation on validity,
reliability, and sample characteristics for ultrashort-,
short-, and long-research participant perception sur-
veys. Journal of Clinical and Translational Science,
2:31-37.

Shaopeng Lai, Qingyu Zhou, Jiali Zeng, Zhongli Li,
Chao Li, Yunbo Cao, and Jinsong Su. 2022. Type-
driven multi-turn corrections for grammatical error
correction. In Findings of the Association for Com-
putational Linguistics: ACL 2022, Dublin, Ireland,
May 22-27, 2022, pages 3225-3236. Association for
Computational Linguistics.

Paul J Lavrakas. 2008. Encyclopedia of survey research
methods. Sage publications.

Zuchao Li, Kevin Parnow, Masao Utiyama, Eiichiro
Sumita, and Hai Zhao. 2021. Miss: An assistant for
multi-style simultaneous translation. In Proceedings
of the 2021 Conference on Empirical Methods in Nat-
ural Language Processing: System Demonstrations,
EMNLP 2021, Online and Punta Cana, Dominican
Republic, 7-11 November, 2021, pages 1-10. Associ-
ation for Computational Linguistics.

Jakub Ndplava and Milan Straka. 2019. Grammatical er-
ror correction in low-resource scenarios. In Proceed-
ings of the 5th Workshop on Noisy User-generated
Text, W-NUT@EMNLP 2019, Hong Kong, China,
November 4, 2019, pages 346-356. Association for
Computational Linguistics.

Jakub Naplava, Milan Straka, Jana Strakovd, and
Alexandr Rosen. 2022. Czech grammar error cor-
rection with a large and diverse corpus. Trans. Assoc.
Comput. Linguistics, 10:452-467.

Shrimai Prabhumoye, Ruslan Salakhutdinov, and
Alan W. Black. 2020. Topological sort for sentence
ordering. In Proceedings of the 58th Annual Meet-
ing of the Association for Computational Linguistics,
ACL 2020, Online, July 5-10, 2020, pages 2783-2792.
Association for Computational Linguistics.

Zhaoquan Qiu and Youli Qu. 2019. A two-stage model
for chinese grammatical error correction. /IEEE Ac-
cess, 71:146772-1467717.

Muhammad Reza Qorib, Geonsik Moon, and Hwee Tou
Ng. 2023. ALLECS: A lightweight language error

correction system. In Proceedings of the 17th Con-
ference of the European Chapter of the Association
for Computational Linguistics. EACL 2023 - System
Demonstrations, Dubrovnik, Croatia, May 2-4, 2023,
pages 298-306. Association for Computational Lin-
guistics.

Muhammad Reza Qorib, Seung-Hoon Na, and
Hwee Tou Ng. 2022a. Frustratingly easy system
combination for grammatical error correction. In
Proceedings of the 2022 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
NAACL 2022, Seattle, WA, United States, July 10-15,
2022, pages 1964-1974. Association for Computa-
tional Linguistics.

Muhammad Reza Qorib, Seung-Hoon Na, and
Hwee Tou Ng. 2022b. Frustratingly easy system
combination for grammatical error correction. In
Proceedings of the 2022 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
NAACL 2022, Seattle, WA, United States, July 10-15,
2022, pages 1964-1974. Association for Computa-
tional Linguistics.

Hongkai Ren, Liner Yang, and Endong Xun. 2018. A
sequence to sequence learning for chinese grammati-
cal error correction. In Natural Language Processing
and Chinese Computing - 7th CCF International Con-
ference, NLPCC 2018, Hohhot, China, August 26-30,
2018, Proceedings, Part II, volume 11109 of Lecture
Notes in Computer Science, pages 401-410. Springer.

Alla Rozovskaya and Dan Roth. 2019. Grammar error
correction in morphologically-rich languages: The
case of russian. Trans. Assoc. Comput. Linguistics,
7:1-17.

Ali Safaya, Emirhan Kurtulus, Arda Goktogan, and
Deniz Yiiret. 2022. Mukayese: Turkish NLP strikes
back. In Findings of the Association for Computa-
tional Linguistics: ACL 2022, Dublin, Ireland, May
22-27, 2022, pages 846—863. Association for Com-
putational Linguistics.

Jeff Sauro. 2015. Supr-q: A comprehensive measure of
the quality of the website user experience. J. Usabil-
ity Studies, 10(2):68-86.

Stefan Schweter. 2020. Berturk - bert models for turk-
ish.

Hunny Sharma. 2022. How short or long should
be a questionnaire for any research? researchers
dilemma in deciding the appropriate questionnaire
length. Saudi journal of anaesthesia, 16(1):65-68.

Aiman Solyman, Zhenyu Wang, Qian Tao, Arafat Ab-
dulgader Mohammed Elhag, Rui Zhang, and Zeinab
Mahmoud. 2022. Automatic arabic grammatical er-
ror correction based on expectation-maximization
routing and target-bidirectional agreement. Knowl.
Based Syst., 241:108180.

170

https://doi.org/10.1007/S00521-023-09211-7
https://doi.org/10.1007/S00521-023-09211-7
https://doi.org/10.1007/S00521-023-09211-7
https://aclanthology.org/2023.findings-ijcnlp.26
https://aclanthology.org/2023.findings-ijcnlp.26
https://api.semanticscholar.org/CorpusID:53211568
https://api.semanticscholar.org/CorpusID:53211568
https://api.semanticscholar.org/CorpusID:53211568
https://api.semanticscholar.org/CorpusID:53211568
https://api.semanticscholar.org/CorpusID:53211568
https://doi.org/10.18653/V1/2022.FINDINGS-ACL.254
https://doi.org/10.18653/V1/2022.FINDINGS-ACL.254
https://doi.org/10.18653/V1/2022.FINDINGS-ACL.254
https://doi.org/10.18653/V1/2021.EMNLP-DEMO.1
https://doi.org/10.18653/V1/2021.EMNLP-DEMO.1
https://doi.org/10.18653/V1/D19-5545
https://doi.org/10.18653/V1/D19-5545
https://doi.org/10.1162/TACL_A_00470
https://doi.org/10.1162/TACL_A_00470
https://doi.org/10.18653/V1/2020.ACL-MAIN.248
https://doi.org/10.18653/V1/2020.ACL-MAIN.248
https://doi.org/10.1109/ACCESS.2019.2940607
https://doi.org/10.1109/ACCESS.2019.2940607
https://doi.org/10.18653/V1/2023.EACL-DEMO.32
https://doi.org/10.18653/V1/2023.EACL-DEMO.32
https://doi.org/10.18653/V1/2022.NAACL-MAIN.143
https://doi.org/10.18653/V1/2022.NAACL-MAIN.143
https://doi.org/10.18653/V1/2022.NAACL-MAIN.143
https://doi.org/10.18653/V1/2022.NAACL-MAIN.143
https://doi.org/10.1007/978-3-319-99501-4_36
https://doi.org/10.1007/978-3-319-99501-4_36
https://doi.org/10.1007/978-3-319-99501-4_36
https://doi.org/10.1162/TACL_A_00251
https://doi.org/10.1162/TACL_A_00251
https://doi.org/10.1162/TACL_A_00251
https://doi.org/10.18653/V1/2022.FINDINGS-ACL.69
https://doi.org/10.18653/V1/2022.FINDINGS-ACL.69
https://doi.org/10.5281/zenodo.3770924
https://doi.org/10.5281/zenodo.3770924
https://doi.org/10.1016/J.KNOSYS.2022.108180
https://doi.org/10.1016/J.KNOSYS.2022.108180
https://doi.org/10.1016/J.KNOSYS.2022.108180

Alexey Sorokin. 2022. Improved grammatical error
correction by ranking elementary edits. In Proceed-
ings of the 2022 Conference on Empirical Methods
in Natural Language Processing, EMNLP 2022, Abu
Dhabi, United Arab Emirates, December 7-11, 2022,
pages 11416-11429. Association for Computational
Linguistics.

Maksym Tarnavskyi, Artem N. Chernodub, and Kos-
tiantyn Omelianchuk. 2022. Ensembling and knowl-
edge distilling of large sequence taggers for gram-
matical error correction. In Proceedings of the 60th
Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), ACL 2022,
Dublin, Ireland, May 22-27, 2022, pages 3842-3852.
Association for Computational Linguistics.

Meliksah Turker. 2021. Vnlp - nlp library for turkish
language.

Harun Uz. 2020. Zemberek-python - python implemen-
tation of zembereknlp.

Harun Uz and Giilsen Eryigit. 2023. Towards automatic
grammatical error type classification for Turkish. In
Proceedings of the 17th Conference of the European
Chapter of the Association for Computational Lin-
guistics: Student Research Workshop, pages 134—
142, Dubrovnik, Croatia. Association for Computa-
tional Linguistics.

Xiuyu Wu and Yunfang Wu. 2022. From spelling to
grammar: A new framework for chinese grammati-
cal error correction. In Findings of the Association
for Computational Linguistics: EMNLP 2022, Abu
Dhabi, United Arab Emirates, December 7-11, 2022,
pages 889-902. Association for Computational Lin-
guistics.

Lvxiaowei Xu, Jianwang Wu, Jiawei Peng, Jiayu Fu,
and Ming Cai. 2022. FCGEC: fine-grained corpus
for chinese grammatical error correction. In Find-
ings of the Association for Computational Linguistics:
EMNLP 2022, Abu Dhabi, United Arab Emirates, De-
cember 7-11, 2022, pages 1900-1918. Association
for Computational Linguistics.

Olcay Taner Yildiz. 2019. Turkish spell checker - star-
langsoftware.

Harun Resit Zafer. 2017. hunspell-tr.

Metehan Cetinkaya. 2018. Turkishnlp - turkish nlp with
python.

171

https://doi.org/10.18653/V1/2022.EMNLP-MAIN.785
https://doi.org/10.18653/V1/2022.EMNLP-MAIN.785
https://doi.org/10.18653/V1/2022.ACL-LONG.266
https://doi.org/10.18653/V1/2022.ACL-LONG.266
https://doi.org/10.18653/V1/2022.ACL-LONG.266
https://github.com/vngrs-ai/vnlp
https://github.com/vngrs-ai/vnlp
https://github.com/Loodos/zemberek-python
https://github.com/Loodos/zemberek-python
https://doi.org/10.18653/v1/2023.eacl-srw.14
https://doi.org/10.18653/v1/2023.eacl-srw.14
https://doi.org/10.18653/V1/2022.FINDINGS-EMNLP.63
https://doi.org/10.18653/V1/2022.FINDINGS-EMNLP.63
https://doi.org/10.18653/V1/2022.FINDINGS-EMNLP.63
https://doi.org/10.18653/V1/2022.FINDINGS-EMNLP.137
https://doi.org/10.18653/V1/2022.FINDINGS-EMNLP.137
https://github.com/StarlangSoftware/TurkishSpellChecker-Py
https://github.com/StarlangSoftware/TurkishSpellChecker-Py
https://github.com/harunzafer/hunspell-tr
https://github.com/MeteHanC/turkishnlp
https://github.com/MeteHanC/turkishnlp

Appendix
A User Study

A.1 The user scenario

Participants are given 10 short sentences and are re-
quested to input them into GECTurk WEB. To help
participants understand the potential outcomes, we
produced four instructional videos and showed
them to the participants before they started us-
ing GECTurk WEB. Figures 3 through 6 display
screenshots of each scenario along with its English
transcription. Following the video demonstration,
participants are directed to input each sentence and
categorize it based on the possible outcomes. The
full list of the 10 sentences is provided in Table 3.

DURUM - 1: Ciimlede hata var ve GECTurk hatayi basariyla tespit ediyor.
Ornek: "Sonuglar herkes gibi bende merakla bekliyorum."
Bu ciimlede GECTurk dogru bir sekilde "bende" kelimesini "ben de" olarak

degistirmektedir. Bu nedenle, asagidaki videoda da gosterildigi gibi "Bu Hala
Hatali!" butonuna tiklamaniza gerek bulunmamaktadir.

Figure 3: CASE - 1: The sentence contains an error
and GECTurk successfully detects the error. Example:
“Sonuglar herkes gibi bende merakla bekliyorum.” In
this sentence, GECTurk correctly changes “bende” to
“ben de”. Therefore, there is no need to click on the
“This is still incorrect!” button, as shown in the video
below.

DURUM - 2: Ciimlede hata yok ve GECTurk ciimleyi degistirmiyor.
Ornek: "Lyon, bir milyonu agan niifusuyla Fransa'nin tigiinci biiyiik kenti."
Bu cimlede herhangi bir hata yoktur ve GECTurk climleyi degistirmemektedir. Bu

nedenle, asagidaki videoda da gosterildigi gibi "Bu Hala Hatali!" butonuna
tiklamaniza gerek bulunmamaktadir.

Figure 4: CASE - 2: There is no error in the sentence
and GECTurk does not change the sentence. Example:
“Lyon, bir milyonu asan niifusuyla Fransa’nin tigiincii
bilyiik kenti.” There are no errors in this sentence and
GECTurk does not change the sentence. Therefore,
there is no need to click on the “This is still incorrect!”
button, as shown in the video below.

DURUM - 3: Ciimlede hata yok ama GECTurk ciimleyi degistiriyor.

Omek: "0 kadar merhametlidir ki yakin arkadaslar arasinda karincaincitmez olarak
anilir

Bu ciimlede bir hata yok ama GECTurk "karincaincitmez" kelimesini "karinca
incitmez" olarak degistirmektedir. Bu nedenle, asagidaki videoda da gosterildigi
gibi "Bu Hala Hatali!" butonuna tiklamalisiniz ve cimlenin dogru versiyonunu
yazmalisiniz.

Figure 5: CASE - 3: There is no error in the sentence
but GECTurk changes the sentence. Example: “O kadar
merhametlidir ki yakin arkadaglar1 arasinda karincaincit-
mez olarak anilir.” There is no mistake in this sentence,
but GECTurk changes the word “karincaincitmez” to
“karinca incitmez”. Therefore, you should click on the
“This is still incorrect!” button and type the correct ver-
sion of the sentence, as shown in the video below.

DURUM - 4: Ciimlede hata var ancak GECTurk ciimledeki hatayi tespit edemiyor.
Ornek: "0ldum olasi kendime geki diizen vermeyi hig bilmem."

Bu ciimle "geki diizen" kelimesi "gekidiizen" seklinde yazilmadigi i¢in hatalidir
ancak GECTurk bu hatayi tespit edememektedir. Bu nedenle, asagidaki videoda da
gosterildigi gibi "Bu Hala Hatali!" butonuna tiklamalisiniz ve ctimlenin dogru
versiyonunu yazmalisiniz.

Figure 6: CASE - 4: There is an error in the sentence
but GECTurk cannot detect it. Example: “Oldum olas1
kendime ceki diizen vermeyi hi¢ bilmem.” This sentence
is incorrect because the word “cekidiizen” is incorrectly
spelled as “ceki diizen”, but GECTurk is unable to detect
this error. Therefore, you should click on the “This is
still incorrect!” button and type the correct version of
the sentence, as shown in the video below.

172

Input No Input GECTurk WEB Output Ground Truth Case No
Dilin birey ve toplum
1 hayatinda tasidii Gnem, UNCHANGED ... [anadili — ana dili] ... 4
anadili 6gretimini de
onemli kilmaktadir.
Onu baban gormeden
2 hemen ortadan kayip et. " [kayip et — kaybet] [kayip et — kaybet] ... 1
Tatil yapmak istiyrum [istiyrum — istiyorum]
3 fakat calismaya devam ™ Y Y .. [istiyrum — istiyorum] ... 1
etmem gart.
Bugiin hep beraber
4 gittigimiz geziye Ayse’de ... [Ayse’de — Ayse de] [Ayse’de — Ayse de] ... 1
geldi.
5 Bir talam ansiklopediye oo Bty UNCHANGED 3
diinyanin parasini 6dedim.
Diistiigii bu durumdan
6 kurtulmak i¢in karakara (karakara — kara kara] ... [karakara — kara kara] ... 1
diistiniiyordu.
Bugiin dyle ¢cok ... [yorulmugki — . .
7 yorulmuski hemen yatti. yorulmus ki] ... + [yorulmuski = yorulmus kil ... !
Bu yaptiginin elle tutulur)
8 sebepi yok. ... [sebepi — sebebi] [sebepi — sebebi] ... 1
Sanki uyurgezer biri gibi
9 carsiy1 bastan basa UNCHANGED UNCHANGED 2
adimladi.
icerde kimsenin
10 olmadigin1 gordii ve [igerde — Tceride] ... [igerde — Tceride] ... 1

bagirmaya bagsladi.

Table 3: The complete list of 10 sentences is given to the participants. For each sentence, participants are required
to enter the Input and observe the GECTurk WEB Output. Based on this output, they decide the Case No. Note

that participants have no access to the Ground Truth.

A.2 User Evaluation

In the second part of the user study, participants
are asked to complete the SUS and SUPR-Q ques-
tionnaires based on their experience in the first
half of the study. Additionally, participants are
asked a yes/no question regarding whether they
learned or remembered a grammatical rule. The
SUS questionnaire comprises ten five-level Lik-
ert scale questions, while the SUPR-Q consists of
seven five-level Likert scale questions and one ten-
level Likert scale question, making a total of 19
questions including the yes/no question.

B Time Efficiency

This section highlights the model’s performance in
terms of time efficiency, demonstrating a linear re-
lationship between the volume of words processed
and the response time. The data suggests that the
system can process up to 14,000 words in under
90 seconds, affirming its ability to scale effectively
while retaining user engagement. This performance
is supported by robust hardware specifications of an
AWS idi.large instance, including 2 vCPUs, 16.0
GiB of memory, and a 3.5 GHz Intel Xeon 8375C

90
80 4 A
70 g

60 g

50 |

Time in seconds
d

40 | A
30 |

20 A ~

T T T T T
6000 8000 10000 12000 14000

Number of words

T T T
0 2000 4000

Figure 7: The relationship between the number of words
processed by the GECTURK model and the response
time, demonstrating the model’s time efficiency.

processor, which collectively ensure minimal la-
tency even under significant text processing loads.
For visual representation, see Figure 7.

173

